当前位置:首页 » 地质工程 » 工程地质粘粒含量指什么

工程地质粘粒含量指什么

发布时间: 2021-01-28 14:25:33

1.  区域环境工程地质评价

4.3.1区域稳定性分析

黄河三角洲是在基底构造甚为破碎、济阳凹陷的一个次级负向构造单元上发育形成的。由于区内东北部位于北西向的燕山——渤海地震带及北东向的沂沫断裂地震带的交汇部位,因而与新构造运动有关的构造地震异常活跃。据山东省地震局1985年10月布设的东营—垦利、陈家庄—河口的现代形变及牛庄—新刁口的两次a径迹测量结果,埕子口断裂、孤北断裂、陈南断裂、胜北断裂和东营断裂的现代活动都有显示,说明区内的区域稳定性较差。区内新生代以来的断裂活动表现为具有继承性脉动活动的特点。尤其是5号桩,桩西至海港一带位于上述两条活动断裂地震带的交汇复合部位,新生代以来断陷幅度最大,历史上曾发生过3次7~7.5级地震,区域稳定性差。根据以上的地震预测,影响烈度一般都在Ⅶ度以上,5号桩一带为Ⅷ度。根据我国建筑规范规定,一切建筑物都应设防加固,以保安全。

区内饱和砂土、饱和粉土具有液化的宏观条件。在历史地震发生时,曾有喷水冒砂、地面裂缝等现象发生。其液化程度受以下因素影响:土的颗粒特征、密度、渗透性、结构、压密状态、上覆土层、地下水位埋深、排水条件、应力历史、地震强度和地震持续时间等。

由于黄河三角洲地质体物质组成主要是粉砂,且孔隙度较高,加之形成期堆积速率快,造成地质体中含水量高。随着时间推移,在上覆沉积物挤压下,孔隙中水逐渐被挤压,造成地质体压缩,导致地面下沉。根据1988年在黄河海港地区实测,该地区压实下沉速率可达6cm/a,因此由于地面下沉所引起的海面相对上升则更加剧了海岸侵蚀。

另外,近几十年来的人为活动加剧了本区地面沉降的发展,如:建筑地基承载力不足引起的土体压缩,地下水、石油、卤水的开采所引起的含水层、储油层压缩等。

由此可见,黄河三角洲地区环境工程地质问题颇多,本节将对直接影响东营市经济发展和规划的地表下25m土体工程地质类型及其物理力学性质、工程地质性质的区域性变化等进行深入研究。

4.3.2土体的工程地质分类及工程地质特征

区内小清河以北为黄河三角洲平原,小清河以南多为山前冲洪积平原,基岩埋深在数百米以下,表层均为第四系松散沉积物,鉴于一般工业与民用建筑物地基持力层一般均在15m以上,一般中高层建筑物持力层一般在25m以上的特点,下面仅以0~25m的土体为对象,进行分析和研究(图4-6)。

图4-6地表土体类型示意图

1.土体的岩性与结构特征

(1)土体岩性分类

区内0~25m深度内的地层多为第四系全新统地层,其沉积环境受黄河和海洋交互或共同影响,形成了以细颗粒为主的地层。所表现出的岩性以粉土最为广泛,其次为粉质粘土、粉砂、粘土,局部有细砂,其主要岩性特征见表4-6。

表4-6黄河三角洲0~25m地层岩性分类及主要特征表

(2)土体结构特点

区内土体结构无单层结构,多为多层结构,(多层结构是指一定深度内由3层或3层以上的地层构成),这也是区内的沉积环境所决定的,该区濒临渤海,是河流的最下游段,河道游荡较频繁,古地貌特点反复变化,携带泥、砂的水动力特点也随之变化,因此,区内一般无巨厚的单层岩性沉积。

2.土体工程地质特征

(1)山前冲洪积平原区土体工程地质特征该区地面下25m的沉积物为第四系全新统冲积、洪积(

)物,岩性以土黄—灰黄色粉质粘土、粉土为主,古河道带有粉砂、细砂分布,湖沼相沉积的灰黑色淤泥、淤泥质土比较少见。土层物理力学性质较好,承载力较高。

(2)古黄河三角洲区土体工程地质特征该区地面下25m的沉积物为第四系全新统冲积、海积、湖沼相沉积(

),上部多以土黄色—褐黄色粉土、粉质粘土为主,古河道带有粉砂分布;中部多有灰黑色淤泥质粉质粘土分布;局部有粉砂分布,下部以土黄色粉土、粉砂为主。土层的物理力学性质在水平和垂向上均有较大的变化,局部有小片的软土和高盐渍土分布。

(3)现代黄河三角洲平原区土体工程地质特征

该区地面下25m的沉积物为第四系全新统冲积海积物(

),上部多以土黄—灰黄色粉土、粉质粘土;中部为灰黑色粉质粘土或淤泥质土,具腥味;下部多为浅灰色粉砂土层的物理力学性质在水平和垂向上均有较大的变化,软土分布面积较大,盐渍土呈片状分布,为弱—中等盐渍土。

3.地表下0~25m土体物理力学指标的变化规律

(1)古黄河三角洲区的物理力学性质总体上好于现代黄河三角洲,这正是由于现代黄河三角洲的成陆时间晚于古黄河三角洲,其自重固结的程度差于前者。

(2)无论是古黄河三角洲区还是现代黄河三角洲区各类岩性土层的物理力学指标显示出一个较明显的规律,即从地表向下随深度的增加土层的物理力学指标以较好—较差—好发生变化。一般较差的深度段在5~10m和10~15m。这一变化规律也与区内的沉积环境相吻合,力学指标较差的深度段为1855年黄河改道以前沉积的冲湖积、冲海积相为主的地层。

4.3.3天然地基承载力、饱和砂土液化及软土与盐渍土

1.天然地基承载力

黄河三角洲地区基土承载力在不同位置、不同层位均有较大变化,从小于80kPa到大于300kPa。天然地基承载力指自地表算起的第一层或第二层基土(当第一层厚度小于3m,且第二层基土承载力高于第一层时,取第二层承载力数据)的承载力。区内天然地基承载力可分为4个等级(表4-7),其分布与变化规律与地貌单元有较密切的相关关系(图4-7)。

(1)承载力低区(fk<80kPa)的分布

① 呈条带状分布于现代黄河三角洲工程地质区内。如利津县虎滩乡西南—河口区义和镇南部、河口东南孤河水库—渤海农场总场北以及现代黄河入海口北侧等地,以上各地带多为1855年以后成陆,且位于滨海低地或洼地内,排水条件差,自重固结程度低。

表4-7天然地基承载力分区特征表

② 呈小片状分布于古黄河三角洲平原区。如东营区胜利乡南部,利津县王庄乡南部等。

(2)承载力较低区(80≤fk<100kPa)的分布

① 沿海岸线分布,宽度不一。

② 沿黄河泛流主流带边缘、前缘和洼地展布。如利津县大赵乡—虎滩—罗镇—河口区一带、集贤乡—渤海农场总场、孤北水库北部、利津前刘乡—东营区西城,以及东营区龙居乡—西范乡一带。

(3)承载力中等区(100≤fk<120kPa)的分布

① 分布于决口扇的顶部及缓平坡地区。如利津县南宋—北宋—明集,东营区龙居乡—油郭乡—六户镇—广饶县丁庄乡以及胜坨乡—高盖乡等地。

② 分布于现代黄河三角洲顶点附近。如宁海乡—汀河乡、宁海乡—傅窝乡一带。

③ 分布于现代黄河三角洲北部、东部。如河口区新户—刁口乡、孤东水库—五号桩、垦利县建林乡—孤东水库、建林—西宋乡。

(4)承载力较高区(fk>120kPa)的分布

① 分布于古黄河三角洲的南部。如牛庄—陈官—小清河一带。

② 分布于小清河以南的山前冲洪积平原区。

③ 零星分布于近代黄河三角洲平原区的地势较高处。

2.饱和砂土液化

砂土液化是指处于地下水位以下松散的饱和砂土,受到震动时有变得更紧密的趋势。但饱和砂土的孔隙全部为水充填,因此,这种趋于紧密的作用将导致孔隙水压力骤然上升,而在地震过程的短暂时间内,骤然上升的孔隙水压力来不及消散,这就使原来由砂粒通过其接触点所传递的压力(有效压力)减少,当有效压力完全消失时,砂层会完全丧失抗剪强度和承载能力,变得像液体一样的状态,即通常所说有砂土液化现象。

区内的饱和砂土、饱和粉土具有液化的宏观条件,在历史地震发生时,曾有喷水冒砂、地面裂缝等现象发生。其液化程度受以下因素影响:土的颗粒特征、密度、渗透性、结构、压密状态、上覆土层、地下水位埋深、排水条件、应力历史、地震强度和地震持续时间等。

液化判别就是根据土的物理力学性质及其他工程地质条件,对土层在地震过程中发生液化的可能性的判别。国家标准《建筑基础抗震设计规范》(GBJ11-89)中规定了饱和砂土、饱和粉土的液化判别方法,在对区内饱和砂土、饱和粉土的液化判别时,即依照了前述规范提供的方法,在液化势宏观判定的基础上,采用了原位测试资料——标准贯入试验进行了液化临界值和液化指数的计算。根据液化指数对地基液化等级的划分见表4-8。区内液化砂土的分布规律见图4-8。

(1)严重液化区

① 分布于现代黄河三角洲顶点,向北向东呈扇形展布的黄河泛流主流带的中上游部位,主要在陈庄镇—六合乡、虎滩乡—义和镇一带。

图4-7天然地基承载力分区示意图

表4-8地基液化等级表

② 零星分布于废弃河道带和决口扇,如下述地带:东营区永安乡—广北水库一线,呈条带状分布,为废弃河道带;利津县店子乡—前刘乡,呈片状分布,为决口扇的中部;东营区史口乡附近、东营区六户镇西侧、河口区新户乡东北等地。

该区内的饱和粉土、饱和粉砂颗粒均匀,粘粒含量低,沉积厚度较大,形成年代新,固结程度差,因此是最易发生液化的地区。

(2)中等液化区

① 分布于较大的决口扇及决口扇前缘坡地地带,利津县城东—明集乡—大赵乡、东营区胜利乡—董集乡—油郭乡一带。

② 分布于黄河泛流主流带或其边缘地带。宁海乡—垦利县城;陈庄镇—傅窝乡;渤海农场总场东—建林乡—新安乡;义和水库南—河口区。

③ 在滨海低地带内有零星片状分布,五号桩及以东地区;刁口码头东北—孤北水库北部;新户乡以西及以北的近海地带。该区一般位于严重液化区的外围及决口扇顶部位或零星分布于小规模的黄河主流带,饱和粉土、粉砂的粘粒含量较低,固结程度较差,因此是较易发生液化的地区。

(3)轻微液化区

① 分布于古黄河三角洲泛滥平原及决口扇边缘,如下述地带:利津县南宋乡—北宋乡;东营区龙居乡—广饶县陈官乡—丁庄乡。

② 分布于现代黄河三角洲的非黄河泛流主流带区,如下述地带:利津县王庄乡—垦利县胜坨乡;利津县集贤乡—垦利县城东部;河口区太平乡—义和水库。

该区粉土、粉砂的沉积厚度较小,粘粒含量较高,因此液化程度较轻。

(4)非液化区

① 分布于工作区小清河以南的山前冲洪积平原,该区地下水位埋藏深,水位以下的饱和粉土,粉砂密实程度较好,因此不易液化。

② 分布于沿海地带的滨海低地,该区除河口相沉积外,地层粘粒含量较高或以粘性土为主,因此不易液化。

3.软土与盐渍土

(1)软土

软土一般是指天然含水量高、压缩性大、承载力低的一种软塑到流塑状态的粘性土。如淤泥、淤泥质土以及其他高压缩性饱和粘性土、粉土等。黄河三角洲地区地处渤海之滨,具有软土的沉积环境,钻探资料亦证明,区内呈片状分布着软土。

① 软土的划分标准

本次划分软土时采用如下方法:当满足下列条件之一时,并且厚度大于0.50m,将其确定为软土:承载力标准值fk<80kPa;标贯锤击数N63.5≤2;静力触探锥头阻力qc<0.5MPa;流塑状态。

② 软土的空间分布

软土主要分布于区内的东北部滨海地带、河口—刁口码头一带。利津县罗镇—黄河故道西、垦利县下镇乡东部,另外在利津县明集乡—广南水库一线呈不连续片状、碟状分布。

③ 软土的成因及主要物理力学性质

区内的软土具有两种成因:①烂泥湾相沉积:在历次河口的两侧,沉积的以细粒成分为主的土层,一直处于饱和状态,排水固结过程进展缓慢,所以土的力学性质很差。颜色以灰褐色为主,流塑态,土质细腻,岩性以粉质粘土为主,夹粉土和粘土薄层。②滨海湖沼相沉积:颜色以灰—灰黑色为主,有机质含量较高,具腥臭味,为淤泥或淤泥质土。

图4-8地基砂土液化分区示意图

表4-9软土的主要物理力学指标统计表

从表4-9中可以看出:区内软土具有含水量高、孔隙比大、压缩性高、承载力低的特点,在荷载作用下变形较大,对建筑物极为不利。因此,在工程建设规划时,应尽量避开有软土分布的地区。在无法避开软土的建筑物,应对区内的软土有足够的重视,采取一定的处理措施,对于一般工业民用建筑可采取粉喷桩法进行处理,对于高层重型建筑物应采取深基础,如沉管灌注桩等,以避开软土的不利影响(图4-9)。

(2)盐渍土

当土中的易溶盐含量大于0.5%,且具有吸湿、松胀等特性的土称为盐渍土。区内的盐渍土为滨海盐渍土,按含盐性质则大部分属氯盐渍土,局部为硫酸盐渍土,盐渍土按含盐量可分为弱盐渍土(0.5%~1%),中盐渍土(1%~5%)、强盐渍土(5%~8%)和超盐渍土(>8%),区内的盐渍土主要为弱盐渍土,局部地段有中盐渍土(见图4-10)。

4.3.4工程地基适宜性评价

工程建筑地基适宜性受多种因素的影响,为达到评价结果清晰简洁、合理反映出区内建筑适宜性等级的目的,选用了专家聚类法(亦称总分法)进行评价。评价过程为:首先拟定评价因子,对各评价因子量化、分级并给定各级别的标准分,其次用傅勒三角形法确定各评价因子的权重,然后计算各勘测点单项因子分值和总分值,再按各点的总分值进行分区。最终的评价结果见表4-10、4-11、4-12、4-13。

图4-9软土分布示意图

图4-10盐碱土分布示意图

表4-10一般工业与民用建筑地基适宜性评价方案(评价深度10m)

① 沉降因子

式中:Mi——土层i的厚度;Zi——土层i的埋深;eli——土层i的天然孔隙比。

② D——山前冲洪积平原;D——古黄河三角洲平原;D——现代黄河三角洲平原。

表4-11一般工业与民用建筑地基适宜性评价分区说明表

表4-12高层重型建筑物地基适宜性评价方案(评价深度25~30m)

表4-13高层重型建筑物地基适宜性评价分区说明表

一般建筑、高层建筑物地基适应性评价分区见图4-11、4-12。

图4-11一般建筑物地基适宜性评价分区示意图

图4-12高层建筑物地基适宜性评价分区示意图

2. 公路工程地质勘察,《公路工程地质勘察规范》(JTG C20-2011),《公路工程抗震设计规范》(JTJ 004-89)

这是公路规范自己在打架:
《公路工程抗震设计规范》(JTJ 004-89)实际上已经作废了,
目前公路桥梁采用《公路桥梁抗震设计细则》(JTG/TB02-01-2008),和现行国标抗震规范 《建筑抗震设计规范》(GB 50011-2010)计算方法基本一致;
估计有人不服,所以在《公路工程地质勘察规范》(JTG C20-2011)中7.10强震区、7.11地震液另外搞了一套液化指数计算公式,就是沿用《公路工程抗震设计规范》(JTJ 004-89)的内容;
做公路工程勘察时,准备两套计算公式吧,桥梁采用《公路桥梁抗震设计细则》(JTG/TB02-01-2008)即国标,道路采用《公路工程地质勘察规范》(JTG C20-2011);
二者的实际区别在于砂土的粘粒含量,一个采用3%,一个采用实测值;
同一块场地液化等级可能相差很大,从严重液化变为不液化。

3. 泥质岩的工程地质特性

滇藏铁路沿线的中新生代泥质岩分布比较广泛,主要分布在滇西北的大理、鹤庆松桂、丽江拉石海南、德钦奔子栏等以及西藏境内的芒康盐井、邦达等地。由于泥质岩常具有不良的工程特性且在铁路沿线分布广泛,在野外工作期间,对滇藏铁路沿线典型的中新生界泥质岩进行了系统调查和采样,并进行了主要工程地质特性的试验测试,样品测试结果具有一定的代表性(表12-5)。

表12-5 滇藏铁路沿线泥质岩工程性质测试结果

一、泥质岩的粒度组成和粘土矿物成分

采用移液管法对滇藏铁路沿线部分泥质岩的粒度进行了分析,结果表明:各时代的泥质岩粘粒含量普遍较低,<0.005 mm粘粒含量大多低于20%,仅少量样品的粘粒含量超过20%;同一时代的泥质岩粒度也有较大差异(表12-5)。

粘土矿物成分对泥质岩性质的影响是相当显著的。测试结果表明,铁路沿线泥质岩的粘土矿物成分主要是低活性、非膨胀或低混层比的微膨胀性粘土矿物,而贫单矿物蒙脱石和中-高混层比伊利石/蒙脱石、绿泥石/蒙脱石混层矿物(表12-6,图12-5)。

表12-6 泥质岩<2 μm粒组粘土矿物定量测试结果

图12-5 大理新顺砖厂泥岩<2 μm粒组的X-射线衍射曲线

二、泥质岩的胶结作用和膨胀性判别

泥质岩成岩胶结作用不仅控制和影响岩石的膨胀势,而且控制和影响岩石的强度和风化耐久性,即随着胶结程度的升高,强度增大、耐久性增强。为此,我们对所采集的泥质岩样品进行了胶结程度测试分析,结果表明,滇藏铁路沿线的泥质岩大多数为中等和强胶结,仅个别为弱胶结(表12-5),因而具有较高的强度和风化耐久性。但是应当看到,泥质岩边坡开挖后仍表现出较强的风化剥落现象,因此在工程上采取必要的抗风化设计是必要的。

采用有效蒙脱石含量和成岩胶结系数联合判别的方法对泥质岩的膨胀势进行判别。大量测试结果表明,中国膨胀性岩土有效蒙脱石含量下限一般为8%~10%(曲永新等,2000)。随着有效蒙脱石含量的增高,膨胀势将急剧增大。根据有效蒙脱石含量测试结果,滇藏铁路沿线的侏罗系、三叠系泥质岩的有效蒙脱石含量整体在4.00%~4.64%之间,低于膨胀岩的下限;结合泥质岩的成岩胶结系数进行判别,滇藏铁路滇西北段除了个别侏罗系、白垩系泥质岩具有微-弱膨胀性以外,其他时代较老的泥质岩总体上具有较好的工程地质特性。但是,有时由于结构的差异,泥质岩的工程性质差异较大,因此当粘粒含量高或破碎程度较高的泥质岩作为隧道围岩或边坡时,必须给以高度重视,工程施工中尽量减少扰动,并采取必要防护措施。

4. 德商高速公路鄄城黄河大桥桥基砂土液化综合评判

邢永强

(河南省国土资源科学研究院地质环境所,郑州 450053)

《隧道建设》,文章编号:1672-741X-(2006)-03-0017-04

摘要 德商高速公路鄄城黄河大桥桥位区地震活动频繁,地基饱水的粉、细砂层发育。通过场地液化势宏观和微观判别,对桥区地基进行了液化综合评判,计算了桥区地基液化指数,划分了液化等级;指出砂土液化必须采用多种方法进行综合判别,以提高液化判别的可靠性。

关键词 砂土液化 场地液化势 综合评判

1 引言

地基液化是地震所引起的显著震害之一,地震引起的砂土液化导致建筑物整体失稳等现象越来越受到人们的关注。我国1966~1976年期间先后发生的邢台、海城和唐山3次强地震事件,都伴随着大范围的地震液化,致使建筑物倒塌,造成了严重经济损失和人员伤亡。地基的抗震问题中最突出的是饱和砂土的液化,若能事先准确判别液化,就可在设计中采取适当措施加以预防;如果漏判、误判,将会给工程留下安全隐患。在烈度值较高的地区进行工程建设,液化判别是可液化地基需要解决的首要问题。

饱和砂土的地震液化是基于多种因素共同作用的一个复杂过程,其内因在于砂土质条件,如相对密度、颗粒级配、平均粒径、不均匀系数、渗透系数、塑性指数、粘粒含量、土体结构及超固结比等,即地基土质条件;外因在于动荷条件,如震级大小、幅值、频率、历时及方向等,主要指区域地震条件;媒因即催化因素,埋藏条件(包括上覆地层的排水条件、有效压力及应力历史等)、场地地形地貌、地下水作用、地基与建筑物的相互作用等,主要指场地条件。对于地震液化的评价,实质上就是对上述各种因素在给定条件下可能产生的作用进行全面的估计。本文通过场地液化势宏观判别与微观判别相结合的方法对桥位区的砂土液化进行了比较详细的综合评判,并以此为例,探讨评判中值得研究的问题和方法,以便今后能尽量合理地评价在地震作用下的饱和砂土的液化问题。

2 工程概况

拟建鄄城黄河公路大桥是一座横跨黄河的特大桥梁,地处山东省西南部鄄城县以北,位于山东、河南两省交界处,地理位置在东经115°15′~115°35′,北纬35°35′~36°00′之间,是规划建设的德(州)至商(丘)高速公路的一个重要控制工程,起点桩号K199+150,终点桩号K206+870,全长7.720km,工程投资估算总金额为9.12亿元。鄄城黄河公路大桥的建设,将成为解决拟建的德州至商丘高速公路运输的关键;对改善我国公路交通网,晋煤东运、中原油田的开发等均具有重要意义。

3 桥基场地岩土工程条件

拟建大桥桥位区(以下称评估区)位于黄河中下游,地处黄河冲积平原,属华北平原的一部分;黄河两岸为广阔的河漫滩地,地形平坦开阔,地层地貌总体变化不大,为河漫滩相二元结构。地基土主要以第四系全新统冲积低液限亚砂土为主,夹薄层低液限亚粘土和粉细砂,黄色、黄褐色、灰黄色,粘粒平均含量小于7%,软塑或流塑状,容许承载力80~110kPa。由于地下水位埋藏较浅(0.00~3.00m),上部砂性土、黏性土常处于地下水位以下,土层松散饱和、力学强度较低,工程地质条件较差,压缩性高,结构疏松不均匀,层位、层次变化大,常以互层状、薄层状及透镜体状出现;标贯击数为3~13击,底板埋深25~30m(河南省国土资源科学研究院,2005)。

4 评估区地质构造

评估区位于中国三级阶梯的中后部,区域大地构造上属中朝准地台,地处新华夏系第二沉降带东濮凹陷与鲁西隆起区菏泽断凸的交汇地带,区域地质构造较复杂。评估区处于鲁西隆起的西部边缘,处于断裂强烈活动带,较大断裂主要有:西侧为呈南北向分布的聊兰大断裂,南侧呈东西向分布的郓城断裂,东部呈南北向分布的曹县断裂,范县与鄄城交界处呈东西向分布的范梁断裂,范梁断裂沿鄄城北部伸入范县境与聊兰断裂交会,桥位北岸接该断裂呈现垂直交叉态势。其中,聊兰大断裂为本区的主要控震断裂,该断裂为新华夏系构造体系,生成时间晚、规模大,新生代乃至全新世仍有强烈活动迹象;该断裂使东西两侧菏泽断凸与东濮凹陷落差最大达7 000余m,成为东濮凹陷与鲁西隆起的主要分界断层。西部凹陷区的持续下降,沉积了巨厚的新生代地层,凹陷区与东部相对稳定的鲁西隆起之间产生强大的剪切能,在交界断层上逐渐集聚,促使断层深部撕裂和浅部滑动,成为强震源泉,形成了范县、鄄城、菏泽地震构造带。国家地震局将该地区列为地震重点监视区,对各类工程建设有较大影响。

5 地震活动概况

评估区位于华北平原地震带南端,历史上鄄城、范县及附近地区发生2.0级以上地震部分记录见表1。国家地震局通过分析华北地区历史上发生的地震,得出地震活动具有周期性的规律,活跃期之间为稳定期,其中活跃期如下:

第一活跃期:1022~1068年共46年,后接平静期140年;

第二活跃期:1209~1368年共159年,后接平静期115年;

第三活跃期:1484~1730年共246年,后接平静期84年;

第四活跃期:1815~现在(未结束)。

评估区区域新构造运动强烈,构造上处在华北第二沉降带和第三隆起带过渡带,是华北第4个地震活动期内强震的空白地段。3级以上地震发生频率为23年/次,大部分的强震都集中在断裂带交会的部位。根据本区新构造运动非常活跃的特点,推测本区地震今后仍会频繁发生。

根据国家质量技术监督局发布的GB18306—2001《中国地震动参数区划图》,评估区内地震动峰值加速度为0.20 g,评估区内地震基本烈度为Ⅷ度。

表1 鄄城、范县及附近地震部分记录一览表Table1 The partial earthquake records in Juancheng,Fan county and nearby regions

6 场地液化势宏观判别

场地液化势宏观判别主要考虑下列3个因素:地基土质条件、区域地震条件和场地条件。

6.1 地基土质条件

(1)砂土类型:从唐山和海城地震地表喷砂的粒度分析,七度区液化砂土主要为粉、细砂及部分亚粘土,其平均粒径D50介于0.021~0.170mm之间,不均匀系数Uc介于1.9~3.4之间,而粒径D50小于0.005mm的粘粒含量不大于10%。评估区内粉土的粘粒(粒径小于0.005mm的颗粒)含量百分率小于7%,不均匀系数Uc介于2.0~3.6之间,具备砂土液化形成条件。

(2)砂土密实度:地震时,松散、饱水的砂土比密实状态下的砂土更易液化。因为饱和砂土受震动作用时产生的孔隙水压力与土的密度有密切的关系,土的密度越小,自由水越多,孔隙水压力就越大。因此,砂土的相对密度是判别是否产生地震液化的定性指标之一。从海城、唐山地震经验来看,砂的相对密度如大于0.55,七度区可不发生液化;由于标贯值N63.5值越小,表示土越松,其沉降液化量也越大,所以实际工程中,砂土的相对密度一般可根据所得实际土层的标准贯入锤击数N63.5查得相对密度。评估区内标贯击数为3~13击,砂土的相对密度在0.28~0.58之间。

6.2 区域地震条件

地震强度和历时是产生液化的一个必要条件。研究表明,在一定条件下,地震强度越大,震动历时越长,砂土越容易液化。据宏观经验,液体一般出现在地震烈度大于Ⅵ度地区;按海城、唐山和国外一些震例调查结果,一般可液化区的烈度为Ⅶ度。评估区区域新构造运动强烈,处于范县、鄄城、菏泽地震构造带内,国家地震局将该地区列为地震重点监视区;评估区内地震基本烈度为Ⅷ度,正处于可液化区的烈度值之内。

6.3 场地条件

(1)地质地貌特征:砂土液化的发生与一定的地质地貌特征有着内在联系。据唐山地震时76个液化点和15个非液化点的工程地质资料统计:砂土液化分布较多的地貌单元分别为冲积平原区,Ⅰ级阶地、河漫滩,地层时代为Q4-新两种。国外学者Youd和Perkins的研究结果表明:饱和松散的水力冲填土差不多总会液化。评估区为全新统,位于黄河中下游,地处黄河冲积平原,由现代河床、Ⅰ级阶地及河漫滩地貌单元组成,具备容易液化的地质地貌特点。

(2)埋基深度及地下水位情况:砂土埋藏深度多数在地表30m范围内,少数大于30m,地下水埋深极浅(0.00~3.00m),根据海城、唐山地震的统计资料表明,地下水位深度3m以内地区易发生液化,因而当地下水位高于液化层层顶或较为接近时,孔隙水动水压力容易产生作用,形成足够的水压,使砂土颗粒处于悬浮状态达到完全液化。

综上所述砂土液化判别结果:评估区区域新构造运动强烈,处于地震构造带内,地震基本烈度为Ⅷ度;区内为全新统,地处黄河冲积平原,由现代河床、Ⅰ级阶地及河漫滩地貌单元组成;粘粒(粒径小于0.005mm的颗粒)含量百分率小于7%,不均匀系数Uc介于2.0~3.6之间,相对密度在0.28~0.58之间,地下水埋深极浅(0.00~3.00m),具备砂土液化形成的区域地震条件、地基土质条件以及场地条件。

7 场地液化势微观判别

有关液化判别的微观方法很多,笔者主要采用标准贯入试验法、剪切波速法和静力触探法对场地的液化势进行判别。

7.1 标准贯入试验法评判

当饱和土标准贯入锤击数(未经杆长修正)小于液化判别标准贯入锤击数临界值时,则判为液化,否则不液化。在地面以下15m深度范围内,液化判别标准贯入锤击数临界值按下式(建筑抗震设计规范GB50011—2001,2001)计算:

Ncr=N0[0.9+0.1(ds-dw)](3/ρc1/2

在地面以下15~20m深度范围内,液化判别标准贯入锤击数临界值按下式(建筑抗震设计规范GB50011—2001,2001)计算:

Ncr=N0(2.4-0.1dw)(3/ρc1/2

将计算结果按

计算液化等级,式中符号意义见文献:建筑抗震设计规范GB50011—2001,2001。

应用该法对场地内6个孔共28个计算点进行液化判别(表2,式中原始数据见文献:河南省交通规划勘察设计院,2005),除埋深在18~20m的4个试验点不液化外,其余各点均液化。该工程液化指数平均值为23.83,判别结果为严重液化。

表2 鄄城黄河大桥饱和砂土液化计算结果(建筑抗震设计规范法)Table2 The result of saturated sand liquefaction at Yellow River Bridge of Juancheng(Regulations on Seismic Design of Building)

7.2 剪切波速法评判

波速法评判即依据土层剪切波速的观测数值,按下列公式(岩土工程勘察规范GB50021—2001,2002)进行计算判别:

当实测剪切波速Vs大于按下式计算的临界剪切波速时,可判别为不液化。

环境·生态·水文·岩土:理论探讨与应用实践

将计算结果按

计算液化等级,式中符号意义见文献:岩土工程勘察规范GB50021—2001,2002。

此方法仅适用于判别地下15m范围内饱和砂土和粉土的地震液化。根据现有的宏观震害调查资料,地震液化主要发生在浅层,深度超过15m的实例极少,故本方法仍有其积极的现实意义。

本次对评估区内进行剪切波速值测试的钻孔共计3个,结果见表3,液化指数平均值为31.83,判别结果为严重液化。

表3 鄄城黄河大桥剪切波速孔饱和砂土液化计算结果Table3 The result of saturated sand liquefaction of shear wave velocity hole at Yellow River Bridge of Juancheng

7.3 静力触探法评判

静力触探法评判是当实测计算比贯入阻力Ps或实测计算锥尖阻力qc小于液化比贯入阻力临界值Pscr或液化锥尖阻力临界值qccr时,应判别为液化土。参数值按下式(岩土工程勘察规范GB50021—2001,2002)确定:

Pscr=Ps0·α·αu·αp

qccr=qc0·αw·αu·αp

αw=1-0.065(dw-2)

αu=1-0.05(du-2)

将计算结果按

计算液化等级,式中符号意义见文献:岩土工程勘察规范GB50021—2001,2002。

应用该法对场地内4个孔共19个计算点进行液化判别,除埋深在17~20m的两个试验点不液化外,其余各点均液化。该工程液化指数平均值为29.76,判别结果为严重液化。

8 综合评价

通过上述评判,显然可以看出,由于不同规范的要求和评判方法的不同,得出的结果存在一定的差异,但判别结果宏观相近。综合上述宏观和微观判定,评估区可产生砂土液化现象是客观的趋势,其主要液化特点:

(1)该场地在Ⅷ度地震烈度时具有液化趋势,液化程度为严重。

(2)可液化层以埋深较浅的亚砂土、细砂和粉砂夹层为主,埋深为2.0~17.0m,主要分布于现代河床和两岸上部砂类土层。

9 几点认识

(1)上述经验法都是结合地震液化的影响因素建立的公式,但考虑的范围和侧重点各不相同,对不同场地的适用程度也不同,且各种方法均有误判,因而有必要采用多种方法进行综合判别,以提高判别结果的可靠性。

(2)上覆非液化土层厚度是影响液化的主要因素,覆盖层越薄越易液化(杨健等,2003),评估区内粉土覆盖层较薄,标准贯入法仅考虑埋深,未考虑上覆地层的岩性和厚度,静力触探则很好地考虑了这一点。

(3)对土质的考虑,标贯法与波速法均是以粒度成分(粘粒含量)考虑粘粒对场地液化影响的,静力触探法则是以反映土的固有特性的Ip对场地液化影响的。因为对土体性质起决定作用的是粘土矿物颗粒含量,液塑限主要反映粘土矿物的成分和含量,而粘粒(<0.005mm)含量仅反映土中细颗粒的含量(尹兴科等,2004)。从这一点上来说,静力触探法比标准贯入法和波速法更适用于粉土场地液化的判别。

(4)采用标准贯入试验虽然是一个比较简单且适用的现场原位测试方法,但在工程地质勘探中受到多种因素的控制:如钻进方法、标准贯入设备、操作的熟练程度和准确性等;而静探试验人为因素少,试验精度高,结果稳定。为此建议在粉土液化判别时,以静力触探方法为主,综合考虑宏观判别和标贯等方法的判别结果,将液化级别适当调整后,作为粉土液化判别的最终结果。

参考文献

中华人民共和国建设部.2001.GB50011—2001,建筑抗震设计规范.北京:中国建筑工业出版社.

中华人民共和国建设部.2002.GB50021—2001,岩土工程勘察规范.北京:中国建筑工业出版社.

河南省国土资源科学研究院.2005.鄄城黄河公路特大桥工程建设场地地质灾害危险性评估报告.郑州:河南省国土资源科学研究院.

河南省交通规划勘察设计院.2005.鄄城黄河公路大桥初步设计.郑州:河南省交通规划勘察设计院.

刘艳华,尹兴科,席满惠.2004.粘粒和粘土矿物对砂土液化影响的探讨.勘察科学技术,(3):6~8,26.

杨健,路学忠,陈庆寿.2003.砂土液化影响因素及其判别方法.岩土工程界,6(9):51~53.

Estimation of Sand Liquefaction about the Foundation of the Yellow River-Bridge in the Project of De-Shang Expressway in Juan County

Xing Yong-qiang

(Scientific Academy of Land and Resources of Henan,Zhengzhou 450053)

Abstract:The research region of yellow river-bridge in the project of De-Shang expressway in Juan county lies in Yellow River flooded area,where earthquakes are active frequently,and the ground developed with saturated silt and fine sand beds.Through the macro and microcosmic discriminating method,we analyses the synthetic discrimination of the foundation,and give the index and level of sand liquefaction.We also suggest that sand liquefaction must be synthetic evaluation by using many methods to improve the dependability of evaluation of liquefaction potential.

Key words:sand liquefaction;liquefaction tendency of site;synthetic discrimination

5. 粘土化蚀变软岩的工程地质特性

一、蒙脱石化蚀变岩的发育特征

我们在滇藏铁路滇西北段野外地质调查过程中,发现了多处工程性质极差的火成岩和玄武岩的蚀变岩,它们主要分布在洱海东侧的禾洛山隧道、大墓坪隧道及公路边坡的露头上;在洱海东、鹤庆北衙等地还发现了多处蚀变岩脉遭受侵蚀后形成的深切沟槽,它们很可能标志着蚀变岩的分布。

1.蚀变岩的宏观地质特征

(1)康廊村蚀变岩带

在洱海东岸康廊村一带,沿D1k白云质灰岩中的裂隙带发育闪长岩脉,岩脉宽达4.5 m,走向80°,近直立,岩脉与灰岩交界处形成钟乳状的方解石,在后期的构造活动和热液作用下闪长岩脉发生蚀变,呈软弱泥状(图12-1)。

(2)禾洛山隧道的蚀变岩

在禾洛山隧道一带,发育近SN向的断裂带,二叠系玄武岩常沿断裂带遭受热液作用、产生蚀变。在隧道北口西侧,玄武岩挤压破碎明显,蚀变程度不同的深褐色蚀变岩与褐黄色蚀变岩交替出现,构成宽达15 m的蚀变带(图12-2)。由于蚀变岩体与隧道近于平行,隧道断面不得不扩挖并采用弧形板支护。在山体西侧,施工便道开挖的边坡在半年内即风化成砂,覆盖于母岩之上,厚达3~5 cm,这显然与玄武岩蚀变作用引起的性质蜕化有关。

(3)康海村蚀变岩带

位于双廊镇康海村北的山体主要由二叠系灰色石灰岩构成,沿断裂带间断出现玄武岩。受蚀变作用影响,玄武岩风化程度高。二叠系石灰岩常沿断层方向或岩脉产生溶蚀,出现岩溶裂隙或宽大裂缝。铁路从该蚀变带附近以边坡形式通过,在断裂带和玄武岩复合部位的边坡易于风化剥落。

(4)大墓坪隧道的蚀变岩带

大墓坪隧道围岩为层状玄武岩,产状290°∠30°,隧道轴走向340°,围岩中发育较多的NE向构造节理,且有煌斑岩侵入迹象。玄武岩沿节理蚀变现象明显,蚀变后呈紫红色、灰绿色、米黄色等,且性质软弱。

图12-1 洱海东岸康廊村一带蚀变岩特征

图12-2 禾洛山隧道北口蚀变岩特征

(5)奔子栏西北的蚀变岩

在德钦奔子栏西北,214国道边坡由玄武岩构成,节理密集发育,属断层影响带,斜坡表层蚀变风化现象明显,玄武岩成为浅黄绿色泥砾质蚀变物,其中夹杂石膏脉和黄铁矿斑点,说明它们遭受过低温热液矿化作用。蚀变岩风化后呈豆腐渣状,在蚀变岩分布区出现多处边坡滑塌现象。

2.粘土化蚀变岩的物质组成

经蚀变的岩体多呈松散状,经后期错动或风化后呈土状。在不少情况下,蚀变物与原岩或围岩交错镶嵌在一起。通过野外系统取样进行粒度分析,蚀变岩的粒度组成因蚀变程度的不同而有所差异,不少蚀变岩<5 μm粘粒含量达50%以上,最高达71.84%(表12-1),这也是蚀变后的岩石极易风化的原因之一。

表12-1 滇藏铁路滇西北段蚀变岩的粒度分析结果

粘土矿物含量和组成是决定蚀变岩工程地质特性的物质基础。本次研究中,分别对<2 μm样品采用3种处理方法(悬液制成的定向片、乙二醇饱和处理的定向片、550℃条件下加热2小时的定向片)进行粘土矿物XRD定量测定。测试结果表明,滇西北强烈粘土化的土状蚀变岩的粘土矿物成分全部为单矿物蒙脱石,蒙脱石相对含量达100%;蚀变程度较低的斑块状蚀变岩的粘土矿物成分由蒙脱石、伊利石、高岭石和绿泥石组成,但蒙脱石相对含量也达到35%~82%(表12-2,图12-3)。值得一提的是,组成蚀变岩粘土矿物的蒙脱石是以单矿物形式出现的,而不以混层矿物形式出现。采用SnCl2容量法测得的有效蒙脱石含量(绝对含量)多数在50%以上。这说明所研究的蚀变岩类型全部为蒙脱石化蚀变岩。

表12-2 蚀变带粘土矿物组成定量测试结果

图12-3 蚀变岩<5 μm粘粒的XRD定量测试结果

二、蒙脱石化蚀变岩的工程地质特性

1.物理性质和物理化学活性

室内测试表明,由于大量蒙脱石的存在,蒙脱石化蚀变岩在天然状态下可保持较高的含水量(达40%以上),而干燥后在水中崩解成泥状、碎屑泥状(表12-3)。蚀变岩的比表面积通常很高,一般在200 m2/g以上,有的高达507.66 m2/g,具有蚀变程度越高、比表面积越大的特点,这说明蚀变岩通常具有较高-很高的物理化学活性,在环境变化的条件下,极易诱发工程问题。

表12-3 蒙脱石化蚀变岩的物性指标和工程特性测试结果

2.膨胀势

蒙脱石化蚀变岩属于膨胀岩的一种地质成因类型,国外虽有现场膨胀势的快速判别方法,但没有定量指标。目前国内尚无统一的膨胀岩判别标准,多采用曲永新(1992)提出的不规则岩块干燥饱和吸水率指标进行判别,吸水率的大小反映膨胀势的强弱。测试表明,多数样品为强膨胀性的,少数为微膨胀性的(图12-4)。为了揭示蚀变作用的工程效应和环境效应,张永双等(2007)认为可以采用“蚀变系数”来反映蚀变岩的蚀变程度,其值为岩块干燥饱和吸水率与<0.5 mm岩粉吸水率的比值,表达式为:

滇藏铁路沿线地壳稳定性及重大工程地质问题

式中,ζ——蚀变系数;

图12-4 蚀变岩的蚀变程度和膨胀势判别图

Wb——岩块干燥饱和吸水率/%;

Wp——岩粉干燥饱和吸水率/%。

蚀变系数反映岩石的蚀变程度,值越大蚀变程度越高,蚀变岩的膨胀性越强。

三、粘土化蚀变岩的形成条件及其分布规律

1.岩石蒙脱石化作用的形成条件

大面积区域蚀变岩的形成,常受控于区域内重大地质事件和地质作用,尤其是区域蚀变带常与区域深断裂的构造岩浆活动有关。因此,岩石类型、活动断裂和流体作用是产生区域蚀变带的前提,具有一定规模且稳定的热源是促使岩石蚀变的动力条件。从工程地质的角度,蒙脱石化、伊利石化、高岭石化尤其是蒙脱石化蚀变作用对工程的危害最严重,常成为工程地质研究中最受关注的对象。

大量研究表明,虽然硅酸盐岩经过热液作用都可以形成蒙皂石(蒙脱石),但不同岩石形成蒙脱石所需要的条件是不同的。由于蒙脱石硅氧四面体和铝氧八面体晶层中普遍存在着Mg2+和Al3+的同晶置换作用,Mg2+是蒙脱石矿物晶格中不可缺少的化学成分,因此蒙脱石的形成必须有足够的Mg2+参与。Mg2+的来源一般有3种途径:①富含Mg的火成岩体本身,如辉绿岩、辉长岩、玄武岩等基性岩;②富Mg的围岩,如白云岩、白云质灰岩、白云质大理岩;③存在富含Mg2+的地下热水作用。在对侵入体蒙脱石化工程地质预报中,不仅要充分注意侵入体和围岩的矿物化学成分,还必须分析是否出现过热液作用。通常,对后者的宏观判别并不容易,可行的判别办法主要有2个,一是调查热液矿床和热液蚀变岩带的分布,二是调查温泉和地下热水的分布。横断山区是我国地热活动高异常区,有大量温泉分布,其中大理至德钦所经地区已发现温泉(群)达69个之多,为围岩蚀变提供了极为充分的条件。

2.滇藏铁路滇西北段的主要蚀变岩类型

前人成果和野外实地调查表明,滇藏铁路滇西北段的粘土化蚀变岩主要属于岩浆期后的热液蚀变岩,少量为火山岩的热液蚀变。岩浆期后的热液蚀变作用通常伴随着浅成(次火山岩)的岩浆活动,由残余热液和挥发分的作用而发生的蚀变作用。一般遭受碱性-微碱性热液作用的火成岩侵入体均可以发生蒙脱石化作用。岩浆期后的热液蚀变岩按照母岩的岩性大致可划分为:①辉绿岩、辉长岩脉的蚀变岩;②安山玢岩、闪长玢岩脉的蚀变岩;③酸性和碱性岩脉的蚀变岩。在某些火山岩分布区,火山岩的蚀变通常是在碱性-微碱性富Mg热水的作用下形成的。遭受蒙脱石化蚀变作用的岩体,其工程性质迅速蜕化,成为容易诱发工程问题的特殊岩土体。

根据蚀变岩的全岩XRD测定结果推测,洱海东侧康海一带蚀变岩的母岩可能为辉绿岩,禾洛山隧道北口为蚀变玄武岩,奔子栏北和康廊村蚀变岩的母岩可能为闪长玢岩,蚀变岩样品中黄铁矿和石膏的存在,表明它们为低温热液蚀变的产物(表12-4)。

表12-4 蚀变岩的全岩矿物组成的XRD测试结果

6. 软弱夹层的工程地质意义~

位于地壳岩体中的软弱夹层,是工程地质性质1最差的不连续面,也是控制岩体稳定专性的重要边1界 .软弱夹属层的工程地质性质既与岩体应力、1地下水等环境条件有关,也与其成因性质、粘粒含量和粘土矿物成分等有关.在软弱夹层形成后的地质1历史中,地应力使其压密、固结,且延缓地下水的渗1流,从而改善其工程地质性质.因此,研究软弱夹层1的工程地质性质时,应充分考虑地应力这一环境因1素.但对于成因相同、粘土矿物成分一致、粘粒含量1变化不大的软弱层带而言,在受到不同压应力作用1时,其物理力学参数必然与之有一定的对应关系.1而受降雨和水文地质条件的影响,软弱夹层的饱水1状态是不一样的.在非雨季,地下水位线低,软弱夹1层常处于非饱和状态;在雨季,地下水位线升高,地1下水渗流加剧,软弱夹层多处于饱和状态.

7. 工程建设引发或加剧地质灾害危险性的预测

主要有崩塌、滑坡、泥石流、崩岸和特殊土地面变形等灾害。以下分灾种论述。

(一)工程建设引发崩滑灾害危险性的预测

管线穿越丘陵山区时,管道或从沟底穿行,或于沟坡穿越,依地势而敷设,需开挖深度约2m的沟槽。丘陵山区为坚硬或较坚硬岩体,风化带厚10~15m,构造线走向为北西西—北西或北北东,大部分地段与管线走向形成45°~90°夹角,一般不会形成顺向坡的开挖,因此大部分地段管道敷设开挖不会引发规模较大的滑坡。但因风化带厚,风化土体凝聚力低,呈松散砂状,开挖过程中引发小规模坍滑是有可能的。这种小型坍滑危害有限,一般只发生在沟槽开挖过程中,当管道埋置稳定并恢复原坡形态后,边坡便失去了坍滑的临空条件,预测危险性小。

管线穿越岗坡粘土分布区段时,展布高程40~70m,地形起伏小,施工过程中将开挖数米的深沟,挖方弃土就近堆积于线路边,这些弃土多座落于粘土层之上,加之原始地形具有一定的坡度,弃土置于其上,两者力学强度差异较大,界面处又往往是地下水富集、迳流的场所,若弃土边坡过陡或就近置于开挖深沟边,沿上述界面易形成软弱带,因此,在久雨或暴雨渗透下,这类弃土易产生滑移。开挖沟坡若由具膨胀性的粘土组成,在天然状态下,干湿反复交替,产生膨胀裂缝,致使水分更易进入土体,导致土体含水量逐渐增大而变软,强度降低。在降雨入渗等诱发因素的影响下,可能产生沟坡失稳滑移。通过上述分析,形成滑坡的规模有限,所以,地质灾害危险性小。

管线经过的湖北省大悟县大新店—大悟县城以南,出露地层是中上元古界红安群,由片岩、片麻岩、混合岩等坚硬或较坚硬岩体组成。地形坡角15°~250,坡体上植被发育。线路紧邻大悟河右岸边侧延伸,边岸上第四系冲洪积物堆积较厚,工程切坡后,在久雨、暴雨及河水的涨落浸泡冲刷下,易导致松散堆积物的崩滑。在基岩边坡中,由于岩层软硬相间,各种构造结构面又较为发育,岩石的风化程度也较高(片岩多呈强风化状态),当形成顺层切坡时,也容易导致边坡的失稳滑移。所以,本段地质灾害的预测评估为中等。

管线经过的湖南省汩罗向家镇、弼时镇南部一带,即长沙末站到湘潭支线0~15km和长沙末站至丁字镇油库支线的0~9km段,出露地层有上元古界板溪群变质砂岩、千枚状板岩等,以变质砂岩为主,风化程度较高,呈强风化状态,地形坡度较陡,工程切坡较大,预测风化层产生崩滑的可能性较高,地质灾害危险性中等。

管线经过的湖南省浏阳河南岸长沙末站—湘潭支线的53~60km、76~92km段,为丘陵陡坡区,坡角20°~30°,出露地层岩性由上元古界板溪群变质砂岩、千枚状板岩及泥盆系石英砂岩、粉细砂岩、白云岩、灰岩组成,工程地质岩组软硬相间,软质岩多呈全—强风化状态,硬质岩呈弱~微风化状态,变质岩为中等风化。由于岩层软硬相间,地形坡度较陡,地质构造发育,人类经济工程活动强烈,工程切坡后,在久雨或暴雨下,易形成崩滑灾害,所以,地质灾害危险性预测为中等。

(二)工程建设引发泥石流危险性的预测

管道敷设时的沟槽开挖,将产生土石渣,部分土石渣将用于沟道回填埋管,但由于管道空间占据,仍将产生0.3m3/m的弃渣。管道经过丘陵山区长247km,在此段将留下74100m3的弃渣。这些弃渣将沿线就地堆填于地势低洼的冲沟、坡脚、山洼等地,将成为泥石流发生的部分固体物质来源。但由于弃渣并非集中堆放,一般多是危害不大的小型泥石流,预测危险性小。

(三)工程建设引发或加剧河流崩岸危险性的预测

管道工程将穿越13条主要的大中型河流,其中长江和大悟河流量最大,岸坡不甚稳定,历史上发生过较大崩岸。管道穿越河流采用大开挖、定向钻、盾构和隧道等施工方法(见表8-1)。

定向钻和盾构法的施工办法从河床底部侵蚀深度以下穿过。由于扰动了河岸、河槽的地质结构,地表、地下水流场均衡可能被打破,势必会引起河岸、河槽的侵蚀再造,以求新的平衡稳定。是否能够发生大的崩岸,这要看岸坡土体工程地质条件、河势变化、流量大小、人工防护等情况。现按由北向南的次序,对将穿越的10条主要大中型河流逐一预测。

1.大悟河

该河属长江一级支流,地貌属丘陵山区岗状地带,本工程首先在大悟县城南穿越大悟河,顺大悟河右岸穿行至孝昌县小河镇再次穿越大悟河,穿越处河道顺直,河床呈“U”型。河岸由上至下土体依次为粘土、细砂、粉质粘土,下部为砂卵石层,土体松散松软,强度低,但人工植被发育。洪水时最大流量3276m3/s,最大流速1.8m/s,最大冲刷深度2.5m。

预测大悟河管道穿越处,由于已有潜在岸崩段存在,在河水冲刷侧蚀及工程扰动下,施工引发河岸崩塌的可能性大,在洪水汛期施工可能引发两岸大规模崩塌产生。预测地质灾害的危险性为中等。

2.县河

位于孝昌县扬店,地处岗坡平原区,地势平缓,河谷两岸坡角5°~15°,河流水深通常2m左右,河谷呈“U”型,岸坡较陡,高 1.5~2.5m,河岸土体上部为粘土、下部为粉细砂、底部是砂卵石层。由于管线工程采用大开挖法穿越河道,在施工扰动作用下,岸坡可能产生小规模岸崩。在河道中施工时,因松散土体处于饱水状态,也易产生滑塌,因此,施工过程中开挖断面不宜过高过长,应逐段进行施工,也免产生大规模的崩滑,对工程本身和施工人员、机械设备造成威胁。只要安全措施采取得当,预测岸坡和开挖边坡产生崩滑的规模有限。所以,地质灾害的危险性中等。

3.滠水

滠水是长江一级支流,发源于大别山,全长142.14km,流域面积2317km2。本工程于黄陂区叶家河东约100m穿越滠水。管道穿越处为岗状河谷平原,河床及其岸坡平缓,由粘性土、砂土构成,土层较厚。河流顺直,冲淤平衡,河岸稳定。洪水时最大流量4560m3/s,多年平均枯水流量0.88m3/s,属于季节性河流。

由于穿越河流采用定向钻法,在穿越河道时将进行基坑开挖,两岸开挖的基坑深度不大,虽然本区地下水位埋深较浅,在地下水渗流潜蚀作用下,基坑四周边坡可能产生规模有限的滑塌,定向钻施工工程扰动小,预测工程管道在河道穿越段基本不会引发两岸崩塌发生,危险性小。

4.倒水

倒水是长江一级支流,发源于大别山,全长158.14km,流域面积2432km2。本工程于黄陂区周铺南约8 km穿越倒水。管道穿越处为河湖低洼区平原,河床及其岸坡平缓,由粘性土、砂土构成,土层较厚。河流顺直,冲淤平衡,河岸稳定。河水宽5.5~7.5m,河道宽约300m,洪水时最大流量4713m3/s,多年平均枯水流量1.34m3/s。

由于穿越河流采用定向钻法,在穿越河道时将进行基坑开挖,两岸开挖的基坑深度较大,本区地处湖泊边缘,地下水位埋深浅,在地下水渗流潜蚀作用下,机坑四周边坡可能产生规模较大的滑塌,在定向钻施工工程扰动小,预测工程管道在河道穿越段可能引发两岸崩塌发生,危险性大。

5.长江

是本工程穿越的最大河流。穿越点位于武汉市白浒镇,水面宽1000m左右,两岸场地开阔,交通便利。管道穿越处为一河湾,其上游河道急剧变化,形成向南东凸出的“Ω”形急弯。北岸岸坡土体由上而下为素填土、粘土、淤泥质粉质粘土、粉细砂。汛期洪流最71100m3/s,冲刷深度45m。

由于在南岸白浒镇紧邻江边出露有C—D系的灰岩、砂岩形成的天然矶头,自上而下径流的江水经矶头阻挡后,水流主流线随即改变方向向北岸偏转,从而增强了水流对北岸的冲刷侧蚀作用,在不断冲刷侧蚀作用下,已形成了长江北岸的潜在岸崩段,岸坡土体结构松散、松软,在工程施工扰动下,随时都有产生崩滑的可能。此外,在穿越河道时采用的盾构法施工将进行基坑开挖,由于河道深。两岸开挖的基坑必然较深较大,因本区地下水位埋深较浅,仅有1~2m,基坑开探过程中或开挖好后,必然要进行基坑降水,在降水过程中将导致渗流潜蚀作用下,极易导致基坑四周边坡产生滑塌,进而危及到施工人员,机械设备的安全。所以,工程施工过程中的危险性较大。

根据穿越处岸坡工程地质条件和河势的演变趋势,预测长江管道穿越枯水季节施工北岸可能引发较大规模崩塌,南岸可能引发小规模的崩塌;洪水汛期施工可能两岸均引发较大规模的崩塌,危险性大。

6.陆水河

穿越点位于赤壁市北霞落港,为长江一级支流,穿越处河流较为顺直,河面宽度约260m,河堤间宽约350m,河堤高约8~10m。其上游约9km为陆水水库,水位波动不大,近30年洪水均未漫过两岸河堤,目前河道内有采砂现象。

穿越河流采用定向钻法,预测工程管道在穿越河道时不会引发两岸崩塌发生。由于河道内有采砂现象,因此,在管道设计时,应适当加大其埋藏深度以免将来因河道采砂导到管道的损毁,危险性小。

7.新墙河

新墙河(又称微水),是直接注入东洞庭湖的较大支流,源出平江宝贝岭,流域似桑叶状,平均流量52.60m3/s,天然落差400m,坡降7.18‰。管道在岳阳新墙乡处穿越新墙河,穿越两岸地形平坦,河岸两侧有碎石护坡,河水宽约80m,河道宽300~400m,水深2~3m,属于季节性河流,水清。据区域地质及现场观察,穿越地层为粉土,粘粒含量高,层厚3~4m,其下为细砂,建议围堰导流大开挖,具体开挖深度建议经初步勘察后再定。

由于管线工程采用大开挖法穿越河道,在施工扰动作用下,岸坡可能产生小规模岸滑。在河道中施工时,因松散土体处于饱水状态,也易产生滑塌,因此,施工过程中开挖断面不宜过高过长,应逐段进行施工,也免产生大规模的崩滑,对工程本身和施工人员、机械设备造成威胁。只要安全措施采取得当,预测岸坡和开挖边坡产生崩滑的规模有限。所以,地质灾害的危险性中等。

8.汩罗江

穿越点位于汨罗市新市镇附近,两岸堤高约6~8m,河岸间宽约260m,大约1983年出现过河水漫过两岸堤坝的现象。穿越处上游河段有采砂现象,拟利用已建忠武线长沙支线输气管道汨罗江隧道通过,危险性小。

9.捞刀河(湘潭支线)

穿越点位于长沙县果园乡南瞿家塅附近,为湘江一级支流,穿越处河流较曲折,属河道下游,河流坡降较小,河水宽约50m,河岸间宽约250m。由于管线工程采用大开挖法穿越河道,在施工扰动作用下,岸坡可能产生小规模岸滑。在河道中施工时,因松散土体处于饱水状态,也易产生滑塌,因此,施工过程中开挖断面不宜过高过长,应逐段进行施工,以免产生大规模的崩滑,对工程本身和施工人员、机械设备造成威胁。只要安全措施采取得当,预测岸坡和开挖边坡产生崩滑的规模有限。所以,地质灾害的危险性小。

10.浏阳河

穿越点位于长沙县塱梨镇东南渡头附近,为湘江一级支流,穿越处河流较曲折,属河道下游,河水宽约150~180m,河岸间宽约270m。河床及其岸坡较平缓,由粘性土、砂土构成,土层较厚。河流顺直,冲淤平衡,河岸稳定。穿越河流采用定向钻法,地下水位埋较深,预测工程管道在穿越河道时不会引发两岸大规模崩塌发生,危险性小。

(四)工程建设引发或加剧特殊土变形危险性的预测

1.软土

管道经过的湖北长江、大悟河、倒水、滠水及湖南的汩罗江、浏阳河冲湖积低平原地区,位于河流与湖泊边缘,有较大范围的软土分布,软土压缩变形垂直压力在100k Pa左右,容许承载力为20~98k Pa。由于该区段内河流深切,地形较平缓,坡角较小,在河流两侧,低洼湖泊、水田、藕田两侧分布有淤泥、淤泥质粘土及饱和粘土,其孔隙比大、压缩性高,且厚度变化大,垂向剖面上可能出现由结构密实的粘土与饱水粉细砂层、淤泥质土类呈间互成层的现象,这些地段土体岩性差异大,力学强度各异,若工程开挖或加载,一方面易导致不均匀沉降变形,另一方面若工程边坡形成后,易导致软土的压缩挤出坍滑,引起建筑物损坏。但本工程无论是管道,还是分输站,都是轻荷载构建,一般不会引发软土的变形,如果有个别重载设备和加压震动设备的安装,则有可能引起淤泥土地段小规模的压缩变形、压缩挤出坍滑。所以,建设过程中应对强度较低的软弱土进行清理,采取夯实压密措施,以改良土体、提高地基强度。

2.膨胀土

管道经过的丘陵山前垅岗平原和长江冲洪积波状平原(二、三级阶地)地区,有大范围的第四系中、上更新统粘性土构成的膨胀土分布。膨胀土中矿物成分以蒙脱石、水云母为主,化学成分以 SiO2、A12O3、Fe203为主。具有失水收缩,遇水膨胀的特点,自由膨胀率 Fs=30%~70%,膨胀力Pp=17~46kPa,有荷载膨胀率 VHa=0.025%~0.805%,属于弱胀缩性土。水分变化对膨胀土影响深度一般为4m左右,急剧影响层深度一般为1.8m~2.25m左右。

本工程在膨胀土区的施工方法主要为大开挖—沟底垫层—埋管压实的办法,埋置深度为1.2m,管道设计管径355.6mm。也就是说管道埋置位置一般在1.5~2.5m,正好是急剧影响层,膨胀土的胀缩变形活动正好作用于管道,不利于管道的稳定运行,这是不利的一面。另一方面人工开沟铺设垫层后,人为在管道沿线形成了孔隙潜水的含水通道,易接受降雨入渗,上层滞水广泛存在,在一定深度内降雨入渗与蒸发量大,为膨胀土体遇水膨胀、失水收缩创造了较好的环境条件。同时土体开挖后由于膨胀性,雨水浸入风化带内发育的裂隙中,使粒间联结力被削弱,土粒易于吸水膨胀。在平行坡面方向,吸水作用使土体横向膨胀势能显著增加,膨胀土坡上的土体沿坡面向坡脚方向产生位移,坡脚处较大的位移使该处抗剪强度首先越过峰值而逐渐降到残余值,在土体重力及大气降水入渗产生的静水压力作用下产生坍滑。

综上所述,本工程会加剧膨胀土的胀缩变形,但胀缩变形的规模有限,而且经过简单的施工工艺改良,还可以大大减弱膨胀土的胀缩变形,从而减少对工程的危害。所以,建设过程中应对强度较高的胀缩土进行处理,

需要指出的是,在现状评估中,地质灾害危险性大的岩溶地面塌陷和采空地面塌陷不会因工程建设而引发或加剧灾害。

8. 水库堤坝岩土工程勘察

一、深圳水利工程建设现状

深圳市自建市后,水利事业蓬勃发展,特别自1992年以来,新建扩建了一大批水利工程,引东江上游水入深、全市供水体系形成网络、兴建调蓄水库和战略储备水库、开展雨洪利用、整治河道提高河道防洪和景观功能等等,为深圳市的可持续发展提供了水资源保障。

深圳市常见的水利工程主要有:水库、枢纽建筑物、输水或泄水隧洞、堤防、泵站、水闸、渡槽和输排水管等。水库大坝依其材料不同可分为混凝土坝、砌石坝、堆石坝和土坝等。

截至2007年底,全市共有172座水库,其中在建的公明水库总库容1.5×108m3,为大(二)型水库,坝体总长4.6km,最大坝高54m;正在勘察拟建的清林径水库,总库容为1.8×108m3,总坝长1.8km,最大坝高44.2m;已建的东部供水水源工程,全长56.3km,其中7.2km为隧洞;已建供水网络干线工程,全长472km,其中80%为隧洞。

在建设和使用这些水利工程的过程中,曾遇到了大量的工程地质问题,它们大多与地表水、地下水有很大关系,这是水利工程地质专业的主要特点。由于有了水,岩土体饱和软化,抗剪强度降低,水头压力抬高,渗流作用加强;由于有了水,水工建筑物岩土设计计算变得复杂,运用工况多样化;由于有了水,岩土工程勘察需采用综合勘探方法,各类试验项目繁多,地质参数的取值和地质评价结论需要综合判断确定。对于水利工程,由于勘察水平不高而导致相关工程地质问题未查明,其后果是严重的,要么导致整个工程失败(如溃坝、决堤、水库无法蓄水);要么工程建成后问题很多,影响正常运行;或者由于相关地质参数和评价结论过于保守而导致大量的投资浪费。

因此,水利岩土工程勘察是一项复杂而重要的专业性较强的地质工作,在具体实施过程中,除了严格执行行业规程规范之外,地区性工作经验亦很重要,尤其在项目建议书、可行性研究阶段或者勘探工作量不足的一些中、小型工程显得尤为突出。

二、水利水电工程常见工程地质问题

根据深圳地区所处的地质背景和水文气象条件,修建水利工程后常见的工程地质问题有:

1.区域构造稳定性

深圳地区地震基本烈度为Ⅶ度,区域构造稳定性相对较好,各工程研究对象主要指活动性断裂对水工建筑物长期运行的影响。以深圳断裂带为代表,重点关注水库诱发地震、地应力集中、断裂构造的年位移量等。

2.水库库区渗漏

蓄水水库产生永久性的过量的渗漏,不仅影响水库的效益,同时还会因渗漏引起其他一些不良后果。罗屋田水库的岩溶渗漏是一典型例子,由于水库渗漏严重,水库始终无法正常蓄水。

3.库岸稳定性

水库蓄水后,库岸自然地质环境发生急剧变化,岩土体饱水及强度降低,库水涨落引起地下水位波动变化,波浪冲刷作用加剧变化等,使得原来处于平衡状态的岸坡发生破坏,达到新的平衡,其破坏形式包括:崩塌、滑坡、塌岸等。库岸失稳破坏的后果将直接危及滨岸地带居民及建筑物安全,淤塞库区,高位能的快速崩滑体还可以造成巨大涌浪,危及大坝及坝下游安全。

4.水库浸没

水库蓄水后,引起库岸周围一定范围内地下水水位抬升(壅高),当壅高后的地下水位接近或引出地面时,将可能导致农田沼泽化、土地盐碱化、建筑物地基饱和恶化等不良后果。深圳地区一般多为山区性水库,库容面积有限,水库浸没问题不严重。

5.坝区渗漏

坝区渗漏包括坝基渗漏和绕坝渗漏,分别产生于坝基和坝肩。坝基渗漏是现有水库大坝普遍的地质现象,渗透量过大将影响水库的效益,或者渗透水流作用危及坝体的安全。深圳地区常见的坝区渗漏方式有建基面渗漏(接触面渗漏)、浅层风化岩渗漏、断裂构造带渗漏、冲洪积砂砾层渗漏和岩脉带渗漏等。

6.坝基岩土体的压缩变形与承载力

不同类型的坝对坝基压缩变形与承载力要求不同,其共同点均要求建坝后不致产生过大的沉降变形和不均匀沉降变形,以免引起坝体开裂或剪切滑移而导致的破坏。对中低土石坝而言,深圳地区常见的高压缩地层主要包括人工松散填土、软黏土、淤泥和泥炭等。

7.坝基(肩)岩土体的抗滑稳定

对于土石坝而言,坝基如有抗剪强度低的软弱地层(如软黏土、淤泥、松散填土等),则坝基不仅存在沉降变形问题,亦有沿软弱层滑动问题;对混凝土坝、砌石坝而言,根据滑动破坏面位置的不同,坝基岩体滑动分为表层滑动(通常指混凝土与岩石接触面)、浅层滑动和深层滑动(软弱结构面滑动);对于坝肩抗滑稳定主要体现陡地形状况下的结构面滑动问题。

8.水工隧洞围岩稳定与变形

地下隧洞开挖以后,洞壁围岩由于失去了原有的岩体的支撑而向洞内松张变形,如果变形超过围岩本身所承受的能力,围岩将产生破坏。围岩的变形破坏程度常取决于围岩应力状态、岩体结构及洞室断面形状等。竣工后的水工隧洞往往要承受内外水压力的长期作用。深圳地区隧洞浅埋段较多,断裂构造发育,岩性岩相多变,地下水位高,隧洞施工遇塌方、冒顶现象相对较多,施工后纵向与横向裂缝也时有所见。

9.隧洞涌水

隧洞涌水问题包括隧洞段涌水量预测、掌子面突水、突泥预测和地面沉降预测等,因其影响因素多,各项参数准确取值较难,隧洞涌水预测大多带有经验性质。尽管如此,隧洞涌水仍是一项重要而复杂的水文地质工作内容。以往的工程实例表明,隧洞涌水预测不可靠,施工措施不到位,往往会导致严重的人员伤亡、经济损失甚至一定范围的社会安定问题。

10.天然建筑材料

深圳地区水库一般适合建当地材料坝,以土石坝最多,黏性土料和坝壳料用量也最为庞大。例如公明水库大坝实际用量达1100×104m 3,勘察储量为其2~3倍。既要不破坏当地生态环境并尽量减少征地费用。又要寻找足够储量的、质量好的、开采方便的、运距近的料场,是水库工程建设期突出的工程地质问题,也是一大前期勘察难点。

11.深基坑支护

深圳地区地下式泵站较多,大多涉及深基坑问题,有的基坑深达30~40 m,这些泵站一般建在地势低洼处,软土层和砂砾层较厚,地下水丰富,地下水位普遍较高,工程地质水文地质条件复杂,基坑支护体系需要考虑隔水、浅层支护、深层支护、上下水工建筑物平面布置及基坑内方便输水隧洞施工等要素。

其他的一些工程地质问题,如隧洞施工岩爆问题,放射性污染问题,闸、坝建筑物的抗冲刷问题等等,因一般不常见这里不单独列出。

三、水库库区岩土工程勘察评价工作经验

限于自然条件,深圳地区拟建和已建水库规模有限,绝大部分为中、小型水库,坝高15~50m,水库周边区域以花岗岩类和砂页岩类为主,地形地貌多为低丘陵和台地,植被覆盖良好,岩体风化一般较深厚,断裂构造较发育,物理地质现象不发育,工程地质条件一般属于中等复杂。

水库库区岩土工程勘察与评价工作一般应注意:

1.勘察工作

勘察工作应以水文地质、测绘、调查访问、资料收集为主,勘探工作为辅。注意研究地形地貌特点,河床变迁历史,泉水露头情况,区域性自然边坡和人工边坡失稳现象,周边水库群常见的水库地质问题等。当基岩露头较好时,重点调查断层和裂隙发育特点;当基岩露头不好时,重点调查风化土和覆盖层的工程特性与分布状况。

2.勘察方法

针对水库渗漏问题,首先根据水文地质成果确定可能的渗漏形式,然后根据不同的渗漏形式采用适当的勘察方法。单薄分水岭渗漏一般较为常见,分水岭岸坡一般分布有一定厚度的残坡积土和全风化土,勘察工作以调查上部土层作为天然防渗铺盖的厚度、平面范围和渗透特性为重点,均衡布置浅钻孔或探坑,并进行注水和试坑渗水试验。对于下部基岩的渗透特征,需选择代表性位置布置勘探剖面,各勘探点进行分段压水、注水、抽水(提水)试验。对于断层或裂隙密集带渗漏问题,可先布置物探工作,再布置钻探与现场试验工作。此外有些水库发现也有风化岩中岩脉带渗漏问题,在花岗岩类地区应重视。从目前已建水库的运行情况来看,大多数水库渗漏问题并不严重,未超过水库设计渗漏量,这与深圳地区岩土层的弱透水性有关,也与库水深度较浅、断裂构造的密闭性较好等有关。但应注意的几点是:

1)库外未见有渗水溢出点并不代表水库没有渗漏,从有些水库常年观测资料来看,仍有相当一部分渗流量是通过潜流作用形成的。

2)强风化岩全段、弱风化岩上段部分试验段渗透系数较大,钻孔钻进中常有涌水或失水现象,但大部分试验段渗透系数为弱透水,将这两层视为相对隔水层或相对透水层时应慎重,需根据渗透系数大值的平面位置、埋深、上部地层渗透性、地下水的径流排泄方式以及水库防渗级别等综合确定。

3)峡谷区和台地区水库渗漏评价方法有区别。

4)水库渗漏除了定性评价外,还要尽量进行定量计算评价。

5)在可能渗漏部位布置水文地质长期观测孔,可有效判断水库渗漏情况。

6)龙岗岩溶地区水库渗漏问题很复杂,评价结论需特别慎重。

3.边坡勘察

深圳地区库岸坡度一般较平缓,库岸稳定问题常表现为浅层滑坡或滑塌,主要产生于残坡积层中,方量有限,一般为数十立方米至数百立方米,对水库运行安全不会有太大的影响。但有些供水水库在某些时段可能取水量很大,存在库水位骤降的情况,应注意大面积浅层边坡稳定问题。另外在深圳东部沿海地区所建水库存在高陡岩质边坡问题。边坡勘察工作仍以地质测绘为主,在初步确定有问题的地段才布置勘探工作量。边坡勘察与评价应注意的事项:

1)定性与定量评价互为补充,且有侧重点,对于小规模的对水库安全影响不大的边坡问题应以定性评价为主,反之,则以定量评价为主。

2)砂页岩地区常有浅层滑塌现象,坡积层偏厚,颗粒组成多为粗粒,易降水入渗和导水,也易浸水软化,岸坡较陡时常有边坡稳定问题。

3)计算边坡稳定性,应有正常运行、库水位骤降、地震作用等多个工况的组合计算。

4)对于环库公路的边坡问题,因其位于库水位以上,一般按公路勘察设计规范进行评价,但应注意高位能的不稳定体坍塌,可能产生大的涌浪问题。

5)对于库盆内开采建坝材料的水库,需有合理的开挖断面和坡度。

4.地下水勘察

现有水库正常蓄水位水边线周边大多为斜坡地形,库内无农田,少居民,少建筑物,鉴于广东地区的气候条件,一般不存在浸没现象。对于库外水位雍高引起的浸没问题,主要根据水库防渗条件,可能浸没区的水文地质条件和危害性质进行评估。地质勘察工作应重点置于库水沿单薄分水岭和断裂构造带径流排泄方式和渗流量评价,注意可能浸没区地形地貌特征和地下水位,是否有较低的排水条件差的洼地地形,必要时布置勘探剖面,并进行地下水雍高值和地下水临界深度的试验和计算。

5.判定标志

水库诱发地震的形成机理十分复杂,目前的判定方法往往根据工程实例进行类比,一般采用的判定标志有:

1)坝高大于100m,库容大于10×108m3

2)库坝区存在构造断裂带,活动断裂呈张(扭)性或张(压)扭性。

3)库坝区为中、新生代断陷盆地或其边缘升降明显。

4)深部存在重力梯度异常或磁异常。

5)岩体深部张裂隙发育,透水性强。

6)库坝区有温泉。

7)库坝区历史上曾有地震发生。

深圳地区没有修建高坝大库的条件,区域地质地震条件表明,一般产生破坏性地震(M s>4.7级)的可能性不大,但不排除产生小震的可能。已有工程实例显示,有些中低坝水库也会产生诱发地震,因此一般对大、中型水库的诱发地震问题亦要进行评价。工作方法以搜集分析区域地质地震资料为主,适当布置一些专门性勘探工作(常采用地球物理勘探和深钻孔),必要时需委托地震研究单位在进行地震危险性评估的同时,对水库诱发地震问题进行专门论证。

四、堤坝勘察方法、经验与工程地质条件评价

深圳地区堤坝类型大多为土石坝,有少量混凝土坝和堆石坝。不论哪种坝型,坝体、坝基均存在稳定、变形、渗流三大问题。其中土石坝出现问题的最多,一般以坝体或坝基渗漏与不均匀沉降最为常见,个别堤坝也曾产生坝后坡严重滑坡,而渗透稳定问题多见于水闸。

因大坝产生破坏性质是灾难性的,因此水库工程勘察的重点在于坝址,前期勘察工作标准要求高,历时长。限于篇幅,这里仅介绍新建坝坝址的一些勘察方法与经验。

1)对于坝址区(含附属建筑物)勘察方法,水利水电工程地质勘察规范(GB50287-1999)和中、小型水利水电工程地质勘察规范(SL55-2005)各章节有明确规定,内容涵盖规划、可行性研究、初步设计和技施设计各个阶段,包括不同坝型、不同坝基以及不同建筑物。总体来讲,水利行业勘察规范比较简明宽泛,具体实施过程中需要地质人员充分发挥主观能动性,根据场地地质条件,灵活掌握规范精神,既要达到“查明”的精度,又不浪费勘探工作量,也不能死搬硬套规范。

2)在工作开展之前,需要编制勘察工作大纲,内容尽量详尽,必要时还可编制单项作业指导书。勘察工作大纲首先应根据前期勘察成果确定该工程可能存在的主要工程地质问题,或应重点查明的地质要素,然后围绕这些工程地质问题或地质要素布置适用的勘探工作,确定勘探工作的重点、要点、难点。

3)工作当中需根据实际地质条件变化,及时调整计划的工作方法和工作布置,这就要求地质人员随工程进度及时跟进分析,以免野外作业结束后才发现问题,导致关键地质问题未查明,需要进行补充勘察。

4)坝址常用的勘探方法有钻探、物探、坑探、现场试验和室内试验,其中关于岩土渗透试验的方法种类较多,精确度不一,如何较准确地确定各地层渗透系数并划分相对隔水层、相对透水层是技术人员的一大难点,这些参数的可靠性关系到工程安全,亦关系到大量的工程投资。例如公明水库坝基防渗工程,设与不设混凝土防渗墙相差工程投资达1.5亿元人民币。弱、微风化岩一般进行压水试验,按压水试验规范操作即可。强风化岩一般难于进行压水试验,深圳地区的经验是:当地下水较高时,选择抽水试验或提水试验;当地下水位较低时选择注水试验,并注意钻进中回水量的变化;当需要初步确定灌浆效果时,应设法进行压水试验,可将栓塞置于先期预设的混凝土孔壁即可,但成本较高。强透水的砂砾石层常用抽水试验。对于中-弱透水的残坡积土层、全风化岩(土),常根据注水、提水、试坑渗水、室内渗透试验成果综合确定渗透系数值,前3种方法的计算公式为近似性质,测值有一定误差,但可反映整个试验段的透水性,室内试验测值虽较准确,但反映某一点的渗透性,代表性具局限性。

5)评价地基的工程地质条件,除了有足够数量的试验数据支持外,尚需根据地区经验,岩心鉴别、地质测绘成果综合给出定性评价结论和定量地质参数。例如,对于花岗岩残积土或全风化岩(土),室内试验往往显示其为高压缩性土,对于土石坝需要进行大面积的坝基处理,而根据工程经验,该类土一般为黏土质砂砾,属中压缩性土,可不进行处理。再如,如何看待总体弱透水性地层中渗透试验渗透系数大值(i×10-4cm/s或i×10-3cm/s)问题,是关系到划分为相对透水层还是相对隔水层的大问题,仅凭试验数据是难以给出准确结论的,需要根据其上、下地层的渗透特征与分布情况,以及蓄水后地下水的渗透形式等因素综合判定。

五、天然建筑材料勘察方法与评价

深圳乃至华南地区土石坝建筑材料大多采用风化岩料,主要利用残积土、全风化岩和强风化岩,其中前二者一般作为黏性土料,后者作为坝壳料使用。工程实践表明,风化料易于压实,具有较高的压实度、抗剪强度和较低的渗透性,非常适合于修建中低坝。但风化料也有其缺点,由于岩性相变、地形起伏和地质构造等原因,风化料往往颗粒组成不均一,含水率等物理力学性质差异较大,压实控制指标选择较难,针对风化料的这些特点,前期勘察阶段应注意:

1)勘察方法宜选择钻孔、探坑(井)、洛阳铲,勘探密度除执行规程规范要求的以外,应切实结合地形地貌特征布置勘探点,坡顶、斜坡、坡脚和台地均应有足够的勘探点控制。选择每个微地貌代表性位置连续取原状样,主要测其含水率和粘粒含量等基本物理指标。选择每个微地貌代表性位置取击实样(结合未来立面开采的深度)进行击实和击实后试验,每个勘探点均应测静止地下水位。

2)室内试验类别应齐全,勿漏项。原状样主要测含水率、天然密度、土粒密度、塑液限、颗粒分析(至小于0.005mm);击实样主要测最大干密度、最优含水率、水溶盐含量、倍半氧化物含量、有机质含量、pH值、自由膨胀率和烧失量等;击实后试验控制压实度为0.96~0.98(与工程等级有关),试验项目有渗透系数(水平和垂直)、剪切试验(饱和与非饱和)、压缩固结试验(饱和与非饱和),剪切试验具体类别应根据设计计算工况具体确定,一般应进行三轴剪切试验,直剪试验可作为参考,新建坝应测不固结不排水剪、固结不排水剪、固结排水剪,同时测孔隙水压力系数。

3)根据风化料原岩变化情况和试验成果进行料场分区,主要依据颗分、塑性指数与压实特征进行划分。不同类型的风化料如果不分区,往往难以确定土坝控制指标,难以选择碾压设备和碾压参数,并使大坝处于不安全状态或渗漏量过大。

4)风化料地质参数应在充分统计分析的基础上慎重选择,对其质量评价根据大坝不同填筑部位的具体要求区别对待,一般分均质坝土料、防渗体土料和坝壳料3种类型。具体分析的项目有:含水率变化规律分析、粘粒含量变化规律分析、击实曲线特征分析(宽或窄级配)、渗透系数特征分析和剪切试验成果分析(不同类型剪切试验成果对比分析)等。针对料源的特征,提出建议开采的季节、开采设备、开采方式和碾压试验与上坝填筑的一些注意事项。根据已建水库的勘察资料,深圳地区上坝风化料原岩大部分为花岗岩和砂页岩,风化料的主要工程特性指标较好,但pH值往往偏低,倍半氧化物含量不能满足规程要求,经分析认为,对于深圳地区中低坝而言,这两个指标对工程影响不大,上坝料质量评价可不作为控制性指标。鉴于水库大坝的重要性,风化料室内击实和击实后试验宜选择两家以上试验单位进行平行试验。

5)料场储量计算应采用平均厚度法、平行断面法和三角形法,选择一种方法计算,取另一种方法校核。

六、水工隧洞勘察方法、经验与工程地质条件评价

1.前期勘察工作布置方法和原则

水工隧洞常用的勘察方法有卫星遥感、地质测绘、物探、钻探、水文地质试验、原位测试和室内试验等方法相互印证的综合勘探方法,勘察工作主要布置于浅埋段、过沟段、断层位置、岩层分界位置及洞口位置,具体做法为:

1)洞口位置布置纵向勘探剖面,重要洞口还布置横向勘探剖面。

2)埋深小于50 m洞段大体等间距布置勘探钻孔,兼顾沟谷负地形位置、正地形丘顶位置、断层位置、岩性界线位置、隧洞拐弯和交叉位置。

3)埋深大于50 m洞段有选择性布置勘探点,主要布置于深切沟谷、断裂构造、岩性分界和其他用途段:埋深大于100 m钻孔,当下部岩心完整段较长时可不要求钻孔打到洞身,这种钻孔常见于花岗岩地区。一般隧洞埋深大于100 m地段重型勘探工作量布置很少。

4)断裂构造位置、沟谷地段、傍山地段宜布置地震法和电法物探,一些重要钻孔进行声波测井,这些工作可大体给出不同深度、不同地貌单元各种波速值和物性参数,利于围岩分类和地质参数的提出。

5)水文地质工作方面,关注水位变化和钻进用水量变化,有选择地在富水孔段进行抽水(提水)试验,大部分钻孔在洞身附近进行压水(注水)试验。

6)重视轻型勘探工作,包括地质测绘、槽探等;重视收集资料和研究已有资料,特别关注区域地貌发展史和第四纪地质。这些工作花钱不多,但往往可得到事半功倍的效果,此外对跨城市区域隧洞,因原始地貌已遭破坏,应特别注意收集旧的地形图和地貌图。

7)其他方面,如地应力水平和放射性测试等,可先初判,根据初判结果确定是否进行野外测试工作。按《水利水电工程地质勘察规范》(GB50287-99)和《中小型水利水电工程地质勘察规范》(SL55-93)灵活运用。

8)对于长距离引调水工程,因其穿越地貌类型多,勘察工期紧,野外施工困难,不同的业主对勘察的工作的重视程度不一,有些业主对前期勘察工作经费投入不足,针对这些特点,在规范中应强调前期勘察工作抓关键地质问题,不要求每个工程段都达到查明精度。现在许多隧洞采用新奥法施工,边掘进施工边设计支护形式,充分利用围岩拱的作用,施工单位也多采用单价合同,但其前期条件是对关键性地质问题要查明,如大断层、地应力总体状态、放射性、膨胀岩、易溶岩、松散体、软弱岩、喀斯特化岩层等,此外施工过程中要有选择地进行超前预报。

2.关于围岩类别划分与评价

对于围岩类别的划分,不同部门不同规范有不同的划分方法,根据深圳地区工程经验,提出如下建议:

1)对于预测可研究勘察阶段或勘探资料不足的隧洞,应主要采用《工程岩体分级标准》(GB50218-1998),因该规范划分的方法既有定量指标,亦有定性指标,易于操作。

2)对于可研究-初设勘察阶段,各种勘察资料比较丰富,可分别采用《水利水电工程勘察规范》(GB50287-1999)、《工程岩体分级标准》(GB50218-1998)、地质力学分类法(RMR法)、Q系统分类法进行分类,综合判定围岩类别;所依据的地质要素不同,所以分类结果有差别。对于涉外工程,岩体分类最好用后两种方法;对于国内工程,采用前两种方法较好,对于土洞,按《土工试验规程》(SL237-1999)分类法。

3)对于施工地质阶段,围岩划分最适宜用《水利水电工程勘察规范》(GB50287-1999),此阶段地下水状态、结构面状态、主要结构面产状均比较清楚,岩体强度和完整性状态可取样试验和波速测试进行确定,工作性质较简便。

4)目前的水利水电工程勘察规范围岩分类采用五级制,这样的分法在围岩状态较差时,不利于支护形式的确定。例如,同为V类围岩,有些自稳时间较长,有些自稳时间很短,有些用普通钢拱架支护,有些要用加强的钢拱架支护,甚至还有其他的加强措施。因此,建议在Ⅲ类、Ⅳ类和V类围岩中增加细分的内容,可定根据工程需要具体确定,初拟各类围岩分两级,分别为Ⅲ-1、Ⅲ-2、Ⅳ-1、Ⅳ-2、V小V -2。深圳地区中小型水工隧洞围岩类别与主要物理力学参数见表2-3-40。

表2-3-40 中小型隧洞(直径<5m)围岩主要物理力学参数

9. 红粘土的工程地质特性

红粘土是热带、亚热带地区碳酸盐岩类和玄武岩强烈化学风化作用的产物,在成因类型上属于残坡积粘土,是一种区域性特殊土。滇藏铁路沿线的红粘土主要分布于滇西北碳酸盐岩分布区,是上新世以来古红土化作用形成的红色风化壳。在工程上,这些残存的红色风化壳可以构成铁路路基和路堑边坡,在雨季常产生滑坡、坍塌等地质灾害,不仅导致交通中断、威胁人身安全,而且在工程开挖或植被破坏的条件下,地表水作用往往导致严重的水土流失现象,因此常增加巨额的维修费用,铁路工程建设中对该类问题必须给予足够的重视。现以滇西北地区由碳酸盐岩(石灰岩、白云岩)化学风化而成的红粘土为例,阐述其一般工程地质特性。

一、滇西北红粘土的宏观特征

滇西北红粘土主要以残坡积成因为主,其厚度变化大,通常在地形舒缓地带较厚。母岩成分以碳酸盐岩(石灰岩、白云岩)为主。滇西北红粘土的宏观特征主要表现在以下方面:

(1)一般为红褐、棕红色。

(2)表层呈坚硬或硬塑状态,具有干燥收缩现象,粘土呈碎裂、碎屑状。

(3)厚度一般小于7~8 m,个别地段厚度可达10~20 m,土层厚度变化很大,往往一尺之遥,厚度相差数米。在有植被覆盖的地区,红粘土通常是连续分布的。

二、红粘土的物质组成

红粘土的成因决定了其通常具有极高的分散性,高分散性也是红粘土高塑性的原因之一。采用移液管全分散法对滇西北红粘土进行粒度分析,结果表明滇西北红粘土的主要粒度组成为粘粒,其中d<5 μm的粘粒含量最低为49.84%,最高为82.08%;d<2 μm的粘粒含量最低为48.6%,最高为81.52%(表12-11)。粘粒含量多少与红土化程度有关,强红土化的红粘土(如鹤庆北衙、公鸡石一带),因强铁铝质胶结作用,粘土含量偏低。

表12-11 滇西北红粘土的粒度组成测试结果

粘粒是滇西北红粘土最主要的组成部分,而粘粒中的粘土矿物的成分和含量是影响其工程地质特性的主要因素。利用现代X-射线衍射法对滇西北红粘土中的粘土矿物进行定量测试发现,红粘土的粘土矿物组成取决于红土化程度,即脱硅富铝化程度。红土化程度高的红粘土以高岭石为主,普遍含较多的蛭石,并伴生伊利石和绿泥石;红土化程度低的红粘土以伊/蒙混层矿物(I/S)为主,且为中低混层比,伴生高岭石、伊利石(表12-12,图12-16)。

表12-12 滇西北红粘土矿物成分定量测试结果

图12-16 红粘土的粘土矿物组成定量测试结果

通常,红粘土的红土化程度越低,其I/S混层矿物含量越高,因而其胀缩性越强,工程性质越差。在丽江以南,红粘土中的粘土矿物主要以K为主,同时V含量也比较高,说明其红土化程度较高;而丽江以北则以I/S混层矿物为主,说明其红土化程度较低。这主要是由于丽江以南海拔比北部低、纬度也低,较为湿热的北亚热带气候环境为红土化提供了有利的条件。可见,气候条件是导致红土化程度不一的主控因素。

值得指出,在红土化程度高的红粘土中普遍含有蛭石,这是由于随着红土化程度增高,伊利石、伊/蒙混层矿物逐渐破坏或转化,除了形成高岭石外,还转化为蛭石。以往认为红粘土中蛭石是伊利石转化的认识是不全面的。

三、红粘土的工程地质特性

(1)物理性质和物理化学活性

室内土工试验结果表明,滇西北红粘土的物理和物理化学性质主要表现在以下方面:① 含水量较高,一般为30%~50%(表12-13)。② 干重度低,一般低于17.6 kN/m3,反映了红粘土具有高孔隙性。③ 高塑性,液限在69.22%~78.25%之间,塑性指数为33.90~34.78,为典型的高塑性粘土。④ 红粘土的液性指数范围位于0.11~0.24之间,含水比位于0.55~0.67,说明滇西北红粘土在天然状态下呈坚硬-硬塑态。⑤ 红粘土的比表面积较大,一般为177.6~235.6 m2/g,与有效蒙脱石含量较高(10%~20%)和高分散性是一致的;红粘土的pH值为6.53~6.96,属微酸性。

表12-13 滇西北红粘土的基本物性指标

(2)红粘土的膨胀性和收缩性

以往对我国红粘土膨胀性判别研究发现,有些红粘土(如云南蒙自红粘土)具有显著的膨胀性,但也确实有不少红粘土的自由膨胀率小于40%,其主要原因在于粘土矿物组成的不同。滇西北以伊/蒙混层矿物为主的红粘土属于膨胀性红粘土,以中甸上吉沙红粘土为代表,自由膨胀率达48%;以高岭石为主的红粘土属于非膨胀性红粘土,以丽江北沟罗红粘土为代表,自由膨胀率为38%。

(3)红粘土的力学性质

室内采用直剪仪对红粘土样品进行了不同状态的直剪试验(表12-14),并根据试验结果得到了不同含水量条件下红粘土样品的剪应力τ与位移Δl的关系曲线(图12-17)。从图12-17可以看出:随着含水量的增加,红粘土的抗剪强度下降,特别是当其含水量超过其液限时,抗剪强度急剧下降,即使围压很大,其抗剪强度仍然很弱。

表12-14 滇西北红粘土在不同状态下的直剪试验结果

图12-17 滇西北红粘土的剪应力(τ)与位移(Δl)关系曲线

综上所述,红粘土的成因决定了其高孔隙性、高塑性,不良工程性质决定其在开挖暴露和裸露环境下将产生强烈的体积收缩变形,相应地出现红粘土碎裂化现象。在雨季特别是暴雨作用下,常造成地表冲刷、冲沟形成和石漠化现象,成为重要的环境问题。红粘土的上述工程地质特性也可以充分说明红粘土边坡在雨季易于产生滑坡的原因。

10. 湖相粘土的工程地质特性

一、洱海软粘土

近年来,随着我国沿海和内陆软土地区工程建设的迅速发展,饱和软粘土的物理力学特性研究受到了工程地质和岩土工程界的极大关注,并取得了不少进展。滇藏铁路沿线的软弱湖相粘土地基主要分布在数个第四纪盆地中,例如洱海盆地、鹤庆盆地、丽江盆地、拉市海盆地、小中甸盆地、中甸盆地、林芝盆地等。由于上述盆地中湖相粘土的形成时代、沉积物形成的古气候、古环境和物质组成不同,其工程性质是极其复杂的,既有流塑态现代粘土、又有早全新世软塑态粘土、还有次稳定的晚更新世小中甸粘土及硬塑态鹤庆粘土等。此外,在安久拉山口大熊错、白衣错一带,土壤坡面中发育有暗黑色泥炭层,属山地沼泽化土;在宽谷江河的水网地带,如雅鲁藏布江和拉萨河谷,也有河漫滩沼泽相软土发育。因此,滇藏铁路规划和建设中必须对上述不同地质时代和不同性质的湖相粘土开展专门的研究,以便进行有效的工程评价和工程设计。现以洱海第四系软粘土为例,阐述湖相软粘土工程地质研究的理论和方法。

1.洱海东缘软粘土的分布特征

洱海是滇西最大的断陷湖泊,湖水面积约249.8 km2,湖面海拔1974 m,属澜沧江水系。洱海西邻由寒武系板岩和大理岩构成的点苍山,东部为上古生界的石灰岩低山丘陵,北侧为入口,向南为西洱河,是一个开放的湖泊水系(图12-18)。

图12-18 洱海周缘软土分布示意图

根据前人研究(吴根耀,1992),洱海盆地自始新世开始断陷并接受沉积。晚更新世时气候寒冷,大理冰期来临,来自西侧点苍山的山岳冰川产生强烈刨蚀作用,造成河流堵塞。进入早全新世时气候发生变化、温度上升,洱海水泛滥,平均水位达海拔2160 m,形成大量河湖相或河湖-沼泽相沉积。全新世中期,全区温度持续上升,湖水大面积干涸或范围缩小,水位下降到海拔2000 m左右(段彦学,1987)。全新世晚期,区内湖泊进一步缩小或干涸,洱海目前的水位是1974 m。随着洱海水位不断下降,湖泊面积逐渐缩小,原湖泊近岸水下的沉积地层出露水面。经孢粉分析和14C年龄测定,洱海东缘的软粘土主要是早全新世以来的沉积物。

2.洱海东缘软粘土的物质组成和物化性质

(1)粒度组成

根据移液管全分散法粒度分析结果(表12-15),洱海东缘软粘土具有高分散性,砂粒含量极低,主要由粉粒和粘粒组成,d<5 μm的粘粒含量大部分在35%以上,最高达60.32%。

表12-15 洱海东缘软粘土物质组成及物理化学活性测试结果

(2)粘土矿物

粘土矿物XRD定量测试结果表明,洱海东缘软粘土的主要粘土矿物成分为单矿物蒙脱石(S)(图12-19),占粘土矿物总量的80~81%,次要粘土矿物为高岭石(K),占16~17%,伊利石(I)仅占2~4%(表12-16)。洱海富Mg2+的水体环境和周边大量蒙脱石化蚀变岩的分布是形成大量蒙脱石的原因。

表12-16 洱海东缘软粘土矿物成分定量测试结果

(3)软粘土的物理化学活性及孔隙溶液的化学成分

比表面积指标可以较好地反映粘性土的物理化学活性。采用乙二醇乙醚吸附法测定结果表明,洱海软粘土的比表面积为176.78~448.23 m2/g,平均值299.32 m2/g,巨大的比表面积决定了其物理活性很高。采用土水比1∶5水提取液测得样品的pH值为6.23~7.9(表12-17),基本属中性。洱海软粘土的含盐量通常小于100 mg/100 g,个别地点因有机质大量聚集,引起局部含盐量升高(主要为。孔隙溶液的主要阳离子及粘土矿物表面可交换性阳离子都是以Ca2+为主,交换性Ca2+引起的粘土颗粒絮凝作用和双电层压缩明显,造成粘土结构强度高、粘聚力增大、压缩性降低。

图12-19 洱海东缘软粘土<2 μm粒组X-射线衍射曲线

表12-17 洱海东缘软粘土水提取液化学分析结果

3.洱海东缘软粘土的工程地质特性

根据洱海东缘软粘土的大量土工试验结果(表12-18),软粘土的工程特性主要表现在以下方面:

(1)含水量较高。含水量一般在40%~65%之间,最高可达104%,平均值为57.08%,接近于液限,几乎处于饱和状态。

(2)天然孔隙比大。孔隙比一般在0.64~2.63之间,平均值为1.49。

(3)特殊的稠度状态。稠度即液性指数,是软粘土判别和分类最重要的指标。在国际上通常将液性指数IL≥0.75或不排水抗剪强度≤40 kPa的粘性土称为软粘土(Brand et al.,1981)。中国软土的判别一般把天然孔隙比e≥1.0且天然含水量w大于液限wL的细粒土称为软土。测试结果表明,洱海早全新世软粘土的液性指数IL介于0.47~1.51之间,平均值为0.79(表12-18,图12-20)。无论是分布概率还是平均值都说明它们处于软塑态,液性指数IL降低还导致压缩性减少、抗剪强度增大,这一特点与其形成的地质时代有关。

(4)高塑性。液限多在45%以上,最高达101.3%,平均值为58.17%;塑限多大于25%,最高达61%,平均值31.4%;塑性指数的平均值绝大多数大于20%。总体上,洱海早全新世软粘土属于高塑性粘土。

(5)压缩性大。软粘土压缩系数为0.23~2.21 MPa-1,平均值0.88 MPa-1;压缩模量一般为1.45~5.63 MPa,平均值3.14 MPa。数据统计表明,有14%的软粘土为中等压缩性,86%为高压缩性,说明洱海软粘土以高压缩性为主,同时中压缩性仍占有一定比例,说明这部分软粘土已经发生了一定程度的固结。

(6)强度低:直剪(快剪)试验测定结果,内摩擦角最低2.1°,最高23.3°,平均一般为11°;粘聚力c值1.7~39.8 kPa,一般值8~16 kPa,表明洱海湖相软粘土的抗剪强度较低,与一般软粘土并没有明显的差异。

表12-18 洱海东缘软粘土的工程特性统计结果

(7)固结系数小。该区软粘土固结系数一般在0.11~4.42 cm2/s之间,平均值为1.08 cm2/s,说明该区软土完成固结沉降需要较长时间,这对施工工期影响很大。

(8)透水性弱。低渗透性是软粘土的共同属性,其渗透性大小随粘粒含量和塑性指数的增高而降低,洱海软粘土渗透系数最低0.04×10-7 cm/s,高者达4.17×10-7 cm/s,一般为0.30~0.60×10-7 cm/s,平均值0.39×10-7 cm/s;表明软土的排水固结不好,对排水固结不利。

4.洱海东缘软粘土的固结性分析

洱海东缘软粘土沉积时间较短、固结程度低,淤泥及淤泥质粘土呈絮状结构,孔隙发育,因而压缩性大。鉴别天然粘土沉积是否属于正常固结的方法有很多种,Skempton(1970)建议采用以下两种方法:①用Casagrande图解法从压缩实验求得先期固结压力σ′vo,即延长e-logσ′v曲线的原始直线部分与通过原位孔隙比е0的水平线相交得出下限σ′vc(min),如果σ′vo夹在σ′vc和σ′vc(min)之间,则粘土是正常固结的。②根据Su/σ′vo与深度的关系判断,Su是不排水抗剪强度,可根据粘聚力和内摩擦角由公式τ=c+σtanθ计算而得。如果各点近似落在一条直线上,即如果不排水抗剪强度随着有效覆盖压力成比例增加,则认为粘土是正常固结的。

对洱海东缘软粘土固结性采用上述第二种方法进行分析。根据室内试验结果,抗剪强度与有效应力之比(Su/σ′vo)随深度出现2种不同的变化规律(图12-20)。从地表到大致10 m左右的深度,Su/σ′vo随深度呈现对数变化规律,对其进行回归分析,可以看出有明显的相关性,相关系数为0.91。相关关系可以表示为:

滇藏铁路沿线地壳稳定性及重大工程地质问题

根据Skempton建议采用的方法判断,表明表层软粘土并非正常固结,而是出现超固结现象。从图12-20中含水量、容重、不排水抗剪强度随深度变化情况也可以证明这一点。在表层(约0~10 m)天然含水量随深度而增大,容重、不排水抗剪强度随深度而降低。初步分析认为,出现这种现象主要是由于滇西北高原的隆升造成地表抬升,降水量减少、湖水位退缩,早全新世软粘土上部抬升到湖水位以上,致使上部土层干燥硬化,孔隙比减小,产生超固结,从而出现并非仅在自身重力作用下的固结作用。地表土经过雨水的淋滤及有机质的氧化分解作用,形成与下部土层呈渐变的硬壳层,这个硬壳层表现出液性指数与含水量小、抗剪强度大的工程特性。

图12-20 洱海东缘早全新世软粘土工程特性指标与深度关系曲线图

5.洱海东缘软粘土物理力学指标的相关性分析

实际工程中经常建立土体物理力学性质指标之间的相互关系式,从而根据容易测定的物理性质指标估算难以准确测定且费时费力的力学性质指标,以供工程应用参考。统计分析表明,洱海东缘软粘土的物理力学参数之间具有较好的相关性(图12-21)。其中,软粘土含水量w与孔隙比e、塑性指数IP与液限wL、孔隙比e与压缩系数av、含水量w与压缩系数av具有显著正相关性;液性指数IL与粘聚力c、含水量w与内摩擦角φ、塑性指数IP与压缩系数av之间存在较明显的负相关性。

图12-21 指标参数之间关系散点图

综上所述,可以得到以下认识:

(1)洱海东缘早全新世湖相粘土属于软塑态的软粘土,而不属于现国家标准规定的液性指数IL≥1.0的流塑态的软土。按照国际流行的软土定义,它们仍然属于软粘土,并且具有高压缩性、低强度等不良工程特性,因此路基、桥基等需进行地基处理成采用适宜的桩基基础。

(2)滇藏铁路沿线广泛分布的湖相、湖沼相沉积粘土,因形成的地质时代、物质成分各不相同,因此软粘土的工程性质及其相关的工程问题也有很大差异,尤其是晚更新世以来形成的湖相粘土,从工程地质角度都属于性质不良的软弱地基,对其静力学和动力学性质都要加以深入研究。

二、小中甸盆地湖相硬粘土

前已叙及,滇西北小中甸盆地是上新世末期以来在青藏高原强烈隆起过程中形成的NNW向第四纪断陷湖盆地,从深切的小中甸河谷剖面可见盆地上部发育中晚更新世湖相粘土(图2-11,图2-12)。规划中的滇藏铁路约有50 km的线路沿着小中甸盆地走向建设,作为滇藏铁路路基、边坡和填筑材料的小中甸湖相粘土,对铁路工程的设计、施工和安全有重要影响。

1.小中甸粘土的物质组成和物理化学活性

根据移液管全分散法的粒度分析结果,小中甸湖相粘土具有高分散性,砂粒含量极低,主要由粉粒和粘粒组成,d<5 μm的粘粒含量大部分在40%以上,最高达69.54%,小中甸湖相粘土中所夹粉质粘土层的粘粒含量较低,但也在7.88%~47.74%(表12-19)。

表12-19 小中甸湖相粘土物质组成及物理化学活性测试结果

对样品采用3种方法(天然样品、乙二醇处理样品和550℃加热处理样品)进行了粘土矿物X-射线衍射定量测试,测试结果表明,湖相粘土的矿物组成为伊利石、伊利石/蒙脱石混层矿物、高岭石、绿泥石、绿泥石/蒙脱石混层矿物的共生组合,但以伊利石为主(表12-20,图12-22),其相对含量54%~70%,绝对含量10.82%~32.09%。

表12-20 小中甸湖相粘土矿物成分定量测试结果

由乙二醇乙醚吸附法测得的小中甸粘土比表面积为49.47~112.82 m2/g,平均值为81.27 m2/g(纯伊利石表面积67~100 m2/g,高岭石7~30 m2/g)。活动性系数A介于0.51~0.83之间(表12-19),活性指数综合反映了土的塑性与粘粒含量和粘土矿物亲水性的关系,该套粘土的A<0.83,表明粘土含水量变化时,土颗粒的体积变化不大。

根据单高地剖面8个样品土水比1∶5悬浮液测得样品的pH值为7.01~8.10(表12-19),属微碱性。林业局浅表层边坡剖面样品pH值变化较大,为6.69~7.77。试验测得单高地剖面CaCO3 含量为8.30%~12.83%,而浅表层林业局剖面CaCO3 含量较低,为1.08%~5.23%,用重铬酸钾氧化法测得的有机质含量为0.16%~0.85%。5个样品土水比1∶5水提取液水化学分析结果表明该处粘土水化学类型以HCO3--Ca2+型为主(表12-21),个别青灰色粘土为型,且水提取液含盐量很低,为53.16~80.22 mg/100 g。表明小中甸粘土沉积时的古湖为湿润环境下具有弱还原环境和具有一定封闭性的高原深水淡水湖。在这种湖水环境下形成的湖相粘土不但分选良好,颗粒细腻,而且具有较高的结构强度。但是,目前处于浅表层或遭受雨水溶滤改造的湖相粘土pH值和CaCO3 含量明显降低。

图12-22 小中甸湖相粘土<2 μm粒组X-射线衍射曲线

表12-21 小中甸盆地单高地粘土水提取液化学分析结果

2.小中甸粘土的物理性质

对分别采集于浅表层的小中甸林业局东北214国道边坡剖面和单高地村深切沟谷剖面的湖相粘土样品进行物理和水理性质测试,前者因遭受大气干湿交替作用、雨水和坡面水流淋溶作用,在物理水理力学性质上与后者有所不同。根据测试结果,林业局边坡粘土天然含水量24.44%~32.51%,干容重1.43~1.61 g/cm3,孔隙比0.72~0.92,液限46.61%~53.80%,塑限27.15%~29.53%,塑性指数19.46~24.27,液性指数0.12~0.14(表12-22),表明位于浅表层的小中甸粘土具有高塑性硬粘土的特性。单高地深切沟谷小中甸粘土单高地村8个粘土样品含水量在35.46%~48.49%,平均为41.13%,这是一般硬塑粘土所没有的,高含水性还表现在天然含水量远远大于此粘土的塑限,表明处于潜塑态。腊封法测得的样品容重为1.71~1.83 g/cm3,平均1.78 g/cm3,其干容重1.19~1.32 g/cm3,平均1.26 g/cm3,孔隙比1.05~1.31,平均1.18。可见,单高地小中甸粘土具有高孔隙性低密度的特点,这与小中甸粘土形成地质时代相对较新、固结程度低、粘土的钙质和有机质胶结作用较强密切相关,也与深切沟谷两侧粘土遭受后期表生改造轻微有关,可代表小中甸粘土真实物理特性。

表12-22 小中甸湖相粘土基本物性指标测试结果

采用锥式液限仪和搓条法测得的液限为43.11%~63.99%、塑限30.50%~37.84%,塑性指数12.61~30.43,表明小中甸粘土属于高塑性粘土。8个样品液性指数0.05~0.55,平均为0.35,按照液性指数的稠度分级,单高地小中甸粘土多数属可塑态,仅个别为硬塑态。这与天然小中甸粘土的实际状态表现(野外调查所见为硬塑态)极不相符。分析认为,液限、塑限指标测定是样品在结构充分扰动水化状态条件下测定的,而不代表天然结构状态,二者之间的不一致说明了天然小中甸粘土的结构性,即CaCO3和有机质对粘土的胶结作用。这一事实表明小中甸粘土在机械扰动结构破坏条件下粘土将发生显著的塑性变形。

3.工程特性

(1)胀缩性分析

采用国际流行的Williams 和Donadson 粘土膨胀势判别法,对小中甸粘土进行膨胀势判别表明,小中甸粘土以中等膨胀-强膨胀为主(图12-23),相当于国内弱、中等膨胀粘土。小中甸粘土的膨胀性主要与粘粒含量高密切相关,这是与我国中东部地区膨胀土的不同之处。另外,小中甸湖相粘土的天然含水率高,基本上位于40%~50%之间,具有干燥收缩特性,易导致开挖暴露引起地面开裂、边坡风化剥落。而野外观测该粘土表现为外观性状好,这与该剖面长期受水浸润作用有关。

图12-23 小中甸湖相粘土膨胀势判别图

(2)力学强度特性

为了进一步揭示小中甸粘土的强度特性,我们对采集的原状样品进行了直剪试验和三轴压缩试验。直剪试验结果表明,该粘土的粘聚力c值较大,为38.8~50.3 kPa,内摩擦角φ为17.2°~23.0°(表12-23),三轴(UU)抗剪强度值c值为44.0 kPa,φ值为13.1°,较高的粘聚力与粘粒含量高、较高的钙质和有机质胶结作用有关。在CaCO3和有机质胶结作用下粘土的工程特性良好,在遭受淋滤后CaCO3和有机质含量减少,引起c值降低,由此可见小中甸粘土为结构性土。边坡开挖易引起结构破坏、土体含水量降低引起土体收缩变形,降雨引起φ值降低,在此种情况下该粘土组成的边坡将发生破坏。

表12-23 小中甸单高地湖相粘土物理力学指标测试结果

综上所述,可以得到以下认识:① 小中甸盆地湖相粘土粘粒含量高,矿物组成以伊利石为主,伴生有伊利石/蒙脱石混层矿物、高岭石、绿泥石、绿泥石/蒙脱石混层矿物,形成于高原温带湿润气候的古气候环境和较弱的化学风化作用。② 小中甸粘土具有高含水量、高孔隙性和高塑性、显著结构性等特点,具有较高的结构强度和较高的地基承载力。在干湿交替和浅表部粘土遭受水的淋滤后粘土的力学性质变差。③ 粘土粘聚力较大,与粘粒含量高、CaCO3胶结作用密切相关,处于浅表层的粘土边坡在水和人类活动等外部因素的影响下易发生滑坡灾害。建议在今后研究中对小中甸湖相粘土的固结程度、变形性质和微观结构特征进行专门研究,以进一步揭示在振动荷载作用下该湖相粘土作为地基的结构稳定性和变形量。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864