地质灾害发育特征
1. 地质灾害发育特征
特殊的自然环境和岩土条件,决定了调查区地质灾害的发育特征。概括起来,调查区地质灾害发育特征主要表现为:①数量多、密度高、变形模数大,规模以中小型为主;②滑坡平面形态典型、剪出口高,基本力学模式简单;③崩塌规模小、危害大、变形模式多样;④不稳定斜坡坡度跨度大,坡形以直线型为主,潜在危害严重;⑤诱发因素清楚,宏观前兆相对明显,可预防性较强。现就滑坡、崩塌和不稳定斜坡灾害或灾害隐患的形态与规模特征、边界特征、表部特征、内部特征和变形活动特征等分述如下:
一、滑坡
(一)形态与规模特征
1.平面形态
调查区滑坡均属黄土滑坡,无论是实地抑或在遥感影像上,其形态特征明显,容易识别。滑坡后壁平面形态多呈典型的圈椅状,形态明显,后壁多处于黄土梁峁斜坡中上部,坡度60°~90°。滑坡前缘表现为舌状或长舌状,古滑坡和老滑坡前缘多遭受侵蚀,甚至连滑体大部或全部被冲蚀殆尽,仅保留后缘圈椅形态和因侵蚀坍塌而残留的坡面较陡的少量滑体。在老滑坡坡脚可见发育有高漫滩乃至一级阶地沙砾石层堆积。滑坡平面形态有半椭圆形,窄三角形,宽三角形及不规则形等(图3-6)。
图3-6 滑坡平面形态类型示意图
2.长度、宽度与厚度
据293处实地详细滑坡调查资料,对相关数据进行分区和统计,得出长度、宽度和厚度主要集中分布区间,以及最集中分布区。
长度:滑坡体长度跨度范围较大,多为40~500m,但主要集中在90~250m间,有210处,占实地调查滑坡总数的72%;特别是在90~150m间的有124处,占42%,约占半数;≤90m的有54处,占18%;>250m的有29处,占10%(表3-10)。
表3-10 滑坡体长度统计表
宽度:滑坡体宽度跨度范围亦比较大,在40~1000m间(表3-11)。近60%主要集中在100~300m间,有173处;特别是在101~200m间有101处,占实地调查滑坡总数的34%;≤90m的有30处,占10%;91~100m有21处,占7%;>400m的有31处,占11%;301~400m 间有38处,占13%。
表3-11 滑坡体宽度统计表
滑坡体长度L和宽度B之间存在一定关系(图3-7),即滑坡体的长度越长,其宽度也越宽。经回归分析,二者之间大体上呈直线关系,其关系式为:
B=1.07 L +60
相关系数:
R=0.67
图3-7 滑坡体长度与宽度相关关系图
滑坡体宽度与长度之比与滑坡发育数量亦具有一定关系(图3-8)。
厚度:滑坡体厚度范围为2~30m,主要集中在2~15m间,有270处,占实际调查滑坡总数的92%;其中6~10m间的有142处,占48%;2~10m间的有235处,占80%;>15m的有23处,占8%(表3-12)。
图3-8 滑坡体长宽比与滑坡发育数量关系图
表3-12 滑坡体厚度分布区间统计表
3.面积和体积
从以上分析,滑坡体长度主要集中在90~250m之间,宽度主要集中在100~300m之间,厚度主要集中在2~15m之间。宽度最大,长度居中,厚度最小。从滑坡规模看,其大小主要是取决于面积的变化,而面积的变化又主要取决于宽度的变化,故宽度与滑坡规模具有很大关系。规模小的滑坡多偏窄,规模大的滑坡多较宽。就以上统计资料的长度、宽度和厚度数据,求得滑坡面积为(0.9~7.5)×104m2,体积为(1.8~112.5)×104m3。
(二)边界特征
1.滑坡后壁
滑坡后壁是滑坡体最为显著的特征之一,其位置较高,平面形态多呈弧形。后壁坡度一般较大,在50°~90°间,坡向与原坡向基本一致,坡度明显大于原坡面;顶部与原斜坡坡面相交,形成明显的坡度转折棱坎,滑坡越新转折越清晰。后壁中部坡高最大,向两侧弧形弯曲并降低,高度多在数米至十数米间,大者可达数十米。
壁面总体上较平直。受自然界风化侵蚀,滑坡由老至新,壁面则由破碎趋于完整。破碎的壁面为古滑坡,仅能从整体上显示出滑坡后壁的形态,多发育有小冲沟,以及以草丛为主的植被。在后壁破碎严重时,甚至不易发现,与周边斜坡接近。完整壁面多为老滑坡和新滑坡,特别是新滑坡,壁面黄土裸露,表面略显凹凸不平,其上植被不发育,与周边斜坡可明显区别开来。
2.滑坡侧界
滑坡侧界分两部分:上部为侧壁,与后壁特征相近;下部为滑体边界,在滑动中滑体堆积于下方,向两侧扩展。滑坡下滑后,坡面坡度减缓,在斜坡上形成一凹地,凹地两侧即为上部侧界。随着滑坡发生时间早晚不同,侧界保留的清晰程度也不同。大多古滑坡和老滑坡侧界已不甚清晰,林木草丛覆盖,与原坡面呈渐变过度;由于滑体大多后倾,中部凸起稍高,两侧边界地势最低,可见发育有同源冲沟。下部滑体顺坡向突出,向两侧扩展。新滑坡和老滑坡还可见到明显的台坎。由于黄土强度低,其边界在长期风化作用下,与原始坡面渐混为一体,古老滑坡下部侧边界不易与原坡面区分,呈过渡关系。
3.滑坡前缘
(1)出露位置
滑坡前缘出露于河流或沟谷斜坡坡脚。古滑坡和部分老滑坡的前缘基本没有保存,在长期地质历史中遭受流水侵蚀,已不存在,仅存滑坡体中后部;老滑坡和新滑坡前缘尚存在,滑坡在下滑时多冲向彼岸,堵塞河道,迫使河流弯曲,在地貌上多表现为河流凸岸。前缘是滑坡体的堆积区,坡度平缓,多小于30°。
(2)临空面
受流水侵蚀,处于斜坡坡脚的古滑坡和老滑坡前缘多形成滑坡临空面,其高度一般在数米至十数米,临空面坡度陡,多在45°以上,甚至直立。表面新鲜地层裸露,可见有滑动挤压形成的致密纹理。
(3)剪出口
剪出口出露的地层因地质结构和河谷所处地段不同而异,剪出口可见四种类型:
黄土层内型:滑坡自黄土层内剪出,滑面或在马兰黄土中,或切穿数层古土壤,剪出口位置在黄土中,所见出口位置有高有低,在数米至数十米间。
黄土-古土壤型:滑坡自黄土与倾斜古土壤界面剪出,剪出口位置相对其他类型较高,距沟底十数米(少数在数米),上覆黄土滑体厚度则较薄,在数米至十数米间,少有数十米的。
黄土-红粘土型:由于红粘土分布稀少,仅在部分沟谷上游分水岭两侧可见,滑坡体沿红粘土面剪出,剪出部分土体混杂,受强烈挤压形成黄土-红粘土混合挤压带,剪出口位置相对较低。
黄土-基岩型:是区内较常见的剪出口类型。黄土直接与基岩接触,滑坡体沿基岩面剪出。由于二者工程地质性质差异明显,上覆黄土厚度大,沟谷切割深,坡体临空面大,常见滑坡沿此剪出。
(三)表部特征
1.微地貌
滑坡表面微地貌形态多样。后缘是滑坡体的最高点,由于滑体下滑后形成反倾坡面,较陡后壁与反倾后缘间形成封闭的洼地,降雨在洼地汇集,积水较多时,向滑体两侧排泄,形成“双沟同源”现象。洼地内潜蚀发育,特别当滑坡体有复活运动趋向时,坡体中结构疏松,落水洞发育,直径数十厘米左右,深1m左右,并向两侧延伸。
调查区滑坡主要为牵引式滑动,其地貌特征表现为,自前缘到后壁分别逐级滑落,在滑坡体表面自上而下可见逐级错降的台坎。坎高多为1~3m,坡度陡峭,近于直立或直立。台坎宽2~5m,顺坡向下倾,坡度10°左右或近于水平。
古滑坡体上冲沟发育,完整性差。冲沟规模随滑坡体的大小不同而异,大型滑坡体上冲沟宽十米至二三十米,沟深可达三四十米,将滑坡体分割成独立的若干部分;特别是滑坡体中部较两侧更为凹陷;老滑坡和新滑坡完整性较好,冲沟浅且少,深和宽均在数米上下,总体上中部凹陷也不明显。由于滑坡体在总体上较周边斜坡凹陷,易于汇集降水,植被发育较好,不仅草丛茂盛,而且还多形成小规模的森林。植被发育明显优于周边斜坡。
近代发生的新滑坡保留着典型的滑坡特征。不仅后壁和侧壁黄土裸露,壁面新鲜明晰,且滑坡体基本没有被侵蚀。在滑体前缘,滑体前行受阻,形成前缘鼓胀,两侧并发育有数厘米宽的张性裂缝。滑体冲出至沟底,向两侧扩散,形似田陇地埂。受谷底流水侵蚀,陇埂多不易保存,只留下略显凸起的地形。
2.裂缝
古滑坡和老滑坡时代久远,滑体上裂缝早已彻底充填,现今没有迹象可寻。但新滑坡,特别是近期发生的滑坡,其上裂缝清晰可见。滑体两侧有张性裂缝,裂缝宽数厘米,近似平行排列,间距随滑坡规模而不等,从数厘米到数米都有。2006年5月发生的杨崖新滑坡,顺同斜坡走向发育有多条张张扭性裂缝,长由数米到数十米,最大张扭裂缝宽近1m,并伴有0.5m左右的正向错落,致其上新建的楼房错裂,被迫废弃。古滑坡和老滑坡在遭受长期的外动力改造后,形成新的临空面,产生大小不等的裂缝,如虎头峁滑坡。由于滑坡冲蚀及“双沟同源”现象,在滑坡体上部产生大量的张性裂缝,长度由数米到数十米,最大张扭裂缝宽近1.5m。
(四)内部特征
1.滑坡体
受黄土斜坡地质结构制约,滑坡体主要由黄土状土组成,土体组成单一。滑体在滑动时松动解体,稳定后在重力作用下,又重新压密固结。在钻孔内和冲沟中,可以见到固结混杂的土体。仅在滑坡前缘,出现下部基岩风化壳被错动,可见土石混杂体。由于降水稀少,水土流失严重,滑坡体内一般不含地下水,在滑坡前缘一般亦无地下水溢出。
2.结构面与滑带
斜坡结构面主要有节理面与层面两大类。节理面包括原生的垂直节理、构造节理、风化节理、卸荷节理、湿陷节理以及滑坡与崩塌节理面等,主要表现为黄土的垂直节理和卸荷节理。对滑坡而言,节理面主要控制滑坡的后壁拉裂位置,与滑动面关系不大。层面主要有黄土与基岩接触层面,与红粘土接触层面,与古土壤接触面三种,层面控制着滑动面的位置,其在黄土中的位置越高,所形成滑坡的规模就越小。
滑带埋藏于滑体之下,调查中仅在一些滑坡前缘断面处可见其露头。滑带是整体移动的滑体与稳定的滑床间形成的一个错动的滑动空间,据野外所见,在黄土中大多数表现为一个面,较为平直或微显弯曲,滑动面光滑。
另据凤凰山滑坡勘查揭露,滑坡主滑面土体挤压破碎,次级错动面发育,节理密集成带。主滑带发育密集剪切裂隙夹黄土碎片,带宽0.1~0.2m。滑带附近滑体发育有与滑面平行或斜交的多组裂缝,结构破碎。滑带附近滑床为浅黄色黄土,土质均一,致密坚硬,稍湿,发育有与滑带平行的剪裂缝,裂面平直,缝宽0.1~0.3m。
东馨家园滑坡勘查资料显示,滑带土岩性相对复杂,厚0.3~0.5m。前缘滑带形成于基岩面上,岩性为碎石土,为砂泥岩强风化带在上部巨大的推滑作用下形成。土体呈似层状,颜色为黄绿-灰绿色,细粒矿物有定向排列趋势,多出现镜面、擦痕;中后部滑带形成于黄土中,滑带土为黄土状土,多呈黄褐色,挤压错动迹象明显。
3.滑床
黄土滑床埋藏于滑体之下,两侧冲沟多未切穿,野外露头不明显,仅在前缘侵蚀断面上可见有部分露头。滑床土体部分多呈强烈挤压状,土体结构致密,具明显排列一致的挤压纹理。在周边压力减缓后,纹理张裂,土体破碎,形成可见厚数十厘米至数米的挤压带。
(五)滑动特征
调查区新滑坡较少,调查的滑动特征信息不多。滑坡的滑动方向同斜坡的坡向,区内沟壑纵横,滑动方向各个方向均有。据30处典型滑坡调查资料,最大滑距为128m,最小滑距为35m,平均71.6m。从已有滑坡特征分析,滑动速度一般较高,属高速滑坡。处于蠕滑阶段的虎头峁滑坡、杨崖滑坡目前属于中速滑动。由于滑坡多属于坡脚遭受流水侵蚀或人工开挖斩坡引起,滑坡的形成机制比较简单,主要为牵引式。
二、崩塌
(一)崩塌数量多,规模小,堆积体不易保存
本次实地调查52处崩塌,其中崩塌隐患41处,既成崩塌11处。调查的崩塌点数很少,其原因一是崩塌体多坠落破碎,不易长期保存;二是黄土垂直节理发育,直立性好,陡壁分布广泛,小型崩塌比比皆是,调查中没有一一填卡调查。
(二)崩塌发生速度快,危害大
崩塌规模虽无大型,但是由于瞬间发生,速度快,其危害性并不亚于滑坡。据调查资料,仅2001~2005年五年中,共发生有记载的崩塌16处,死亡2人,经济损失30万元。
(三)崩塌发生的坡度陡,变形破坏模式多样
本次调查52处崩塌,除2处为基岩崩塌外,其余50处皆为黄土崩塌。据11处既成崩塌资料统计,产生崩塌的坡型一般为凸型或直线型,坡顶高程在1050~1235m,坡高8~50m,坡度多为50°~70°,71°~90°次之(表3-13)。黄土崩塌变形模式存在倾倒式、鼓胀式、滑移式和错断式等四种,基岩崩塌主要存在倾倒式和拉裂式等两种变形模式。
表3-13 崩塌原始坡度分布统计表
三、不稳定斜坡
不稳定斜坡指目前正处于或将来数年至数十年内有可能处于变形阶段,进一步发展可形成崩塌或滑坡灾害的沟谷斜坡,是一种潜在地质灾害。不稳定斜坡既有基岩斜坡,也有黄土斜坡,以及黄土基岩斜坡,在调查区广泛分布。调查中只是针对坡下多有城镇、居民点,工矿及基础设施等,威胁人民生命财产安全的不稳定斜坡作了调查。区内不稳定斜坡具有坡度跨度大、坡形以直线型为主,潜在危害严重,以及诱发因素清楚、宏观前兆相对明显、可预防性较强的基本特征。
(一)不稳定斜坡的坡度分布区间大
坡度是影响黄土斜坡稳定性的最主要因素。据调查资料统计,不稳定斜坡坡度分布区间较大,在35°~88°之间。在这一区间内,斜坡均有失稳(或滑坡或崩塌)形成地质灾害的可能。这一斜坡坡度分布范围,在调查区非常普遍,无论是延河两岸,抑或是各次级支沟的斜坡,大多都在这一坡度范围。因此,这就决定了不稳定斜坡在调查区的普遍性。通过对调查资料的统计(表3-14),66.7%的不稳定稳斜坡坡度主要集中在61°~80°之间,92.2%的主要集中在40°~80°之间。
表3-14 不稳定斜坡坡度分布统计表
在<45°的缓坡中也仍然存在不稳定情况,这与坡体的内部结构和变形模式有关。如坡体顺坡向结构面、节理裂隙的发育、坡脚开挖等,成为降低坡体稳定性或坡体变形破坏的潜在因素,致使坡体逐渐发展为灾害隐患。
(二)发展趋势不确定
不稳定斜坡只是对斜坡的稳定性做出不稳定的基本判断,对其变形破坏的模式并没有给出确定的结论。由于控制和诱发斜坡变形与破坏的因素很多,而且这些因素具有不确定性,所以,斜坡是否一定就发生破坏及其破坏的方式也是不确定的。结合实际调查情况,不稳定斜坡的发展趋势一般有两种:其一是斜坡失稳,发生崩塌或滑坡;其二是较长时间维持不稳定状态。
1.斜坡失稳
斜坡失稳,主要破坏形式是发生崩塌和滑坡。据调查统计,滑坡或崩塌的形成与斜坡原始坡度有关。滑坡的形成一般原始坡度小于崩塌的原始坡度,崩塌的形成坡度较大(表3-15)。
表3-15 滑坡与崩塌原始坡度分布对比统计表
由表知,<50°没有崩塌形成,31°~60°滑坡发育,61°~70°滑坡偶有发生,>70°没有滑坡形成。据此,可以对不稳定斜坡做出初步预测:对于<50°的不稳定斜坡,其破坏模式主要是滑坡;51°~70°的不稳定斜坡破坏模式以滑坡为主,并伴有崩塌;当斜坡>70°时,基本不发生滑坡,主要破坏模式为崩塌。
2.维持不稳定状态
斜坡在演变过程中,会出现不同形式,不同规模的变形与破坏,斜坡的稳定和不稳定状态是斜坡动态平衡的阶段性表现,稳定是相对的,不稳定是绝对的。调查区目前所见的斜坡大多都经历了较长时间的考验,处于动态平衡中。斜坡的演变过程,是一个地质历史过程,与人类的历史特别是人类社会中的某一个时期相比,要漫长得多。因此,绝大多数的地质现象对于我们当前某一时期而言,也就处于相对平衡和静止的状态。但并不是所有的斜坡都处于这样的时期,其中有一部分处于临界平衡状态,在诱发因素尚未达到一定程度前,这种临界平衡还可以继续保持较长时间;如遇特大暴雨、强烈人类干扰或者其他诱发因素,很难确定在什么时候和什么地方,斜坡失稳的事件就会发生。一旦发生在人类活动区域,也就产生了地质灾害,造成人员伤亡或财产损毁。
如延安市委党校西不稳定斜坡(图3-9),位于延河左岸一级支沟沟头,坡面呈凸型,为自然斜坡,坡体由第四纪中更新世黄土(Qp2)组成,颜色灰黄,结构致密,具垂直节理,直立性好。在降雨冲刷下,斜坡自上而下呈尖顶状,似黄土墙,坡面发育有冲蚀沟。土体干燥,未见有地下水渗出,植被覆盖度低,不足20%。基岩未出露,尚未发现明显变形迹象。坡下分布有4孔窑居住10人,总资产1万~2万元。
图3-9 市委党校西不稳定斜坡地质剖面图
1—第四系中更新统黄土;2—中侏罗统延安组砂泥岩
(三)分布广、监测难度大、危害严重
1.分布广泛
调查区地处黄土丘陵沟壑,沟谷密布,延河及汾川河各级支流纵横交错,宏观地形极为破碎。每一条沟谷的形成和存在,都必然伴随着斜坡的出现,由此决定了斜坡在区内广泛分布的特点。区内斜坡多为基岩—黄土,或黄土斜坡。基岩中相交垂直—近于垂直节理裂隙十分发育,并与层面相交,致基岩整体性很差;黄土质地疏松,工程地质性质软弱,垂直节理发育;在这样的岩性构成条件下,不稳定斜坡大量存在,特别是在黄土沟谷源头,沟谷上游,基岩高陡斜坡,滑坡后缘,沟谷侵蚀岸等地带,广泛分布。
2.监测难度大
由于不稳定斜坡分布广泛,给监测工作带来一定的困难。难以对每一处高陡斜坡都进行监测,即便确立一部分监测点,也很有可能出现监测的未出现问题,而没有监测的由于轻视反倒发生了地质灾害。不稳定斜坡的变形破坏受到多种不确定因素的影响,要做出准确的判断和预测,目前尚有困难。因此,不稳定斜坡就成为危险程度最大的潜在地质灾害。
(四)变形破坏模式多样
1.不稳定斜坡岩土结构类型
(1)黄土斜坡
整个斜坡由中-晚更新世黄土组成,坡高数十米,坡度60°~90°,特别是接近于90°的常见。坡面上黄土裸露,没有植被或植被稀疏。坡面冲沟、悬沟发育,将坡面切割成数米至数十米宽度不等的坡段。该类斜坡位置大多处于沟谷的中上游,特别是上游及源头。沟谷切深未达基岩,坡脚继续受到流水的侵蚀切割。由于坡度大,便于开挖窑洞,其下多见有窑洞群分布,一般无集镇和重要工程设施。
黄土中发育的古土壤对黄土斜坡的稳定性具有较大影响,特别是与坡向较为接近的倾斜古土壤,常常成为黄土中的软弱结构面,对斜坡的稳定性影响较大。
(2)岩土斜坡
斜坡上部为中-晚更新世黄土,下部为砂泥岩,坡高数十米至百米。所处位置多处于沟谷的中游、中下游,沟谷切入基岩,基岩坡近于直立,其上黄土60°~90°。受基岩保护,黄土坡脚一般不再受到流水侧向侵蚀,自然滑坡或崩塌较少发生。
(3)基岩斜坡
斜坡整个由基岩组成,主要为砂岩泥岩互层。砂岩中近于垂直层面的构造节理发育,多被切割成方形或其他形状,整体性差。主要分布于延河及其较大一二级支流下游两岸斜坡的下部。整个斜坡坡度大,近于垂直或垂直。人类工程活动特别是公路建设,多形成基岩边坡,由于砂、泥岩的差异风化,以及卸荷裂隙、风化裂隙的不断发育,形成不稳定的基岩边坡,如延(安)—(安)塞公路河庄坪段就是典型的基岩不稳定斜坡段。
2.变形破坏的力学模式
(1)滑移(蠕滑)-拉裂模式
滑移-拉裂模式是区内斜坡变形破坏最普遍的模式。黄土斜坡和岩土斜坡,在坡脚遭受破坏时,斜坡土体向坡前临空方向发生剪切蠕滑,斜坡后缘自上而下发生拉裂,破坏模式一般形成黄土滑坡。天然状态下斜坡的内部应力已达基本平衡状态,坡脚是多种应力集中和整个斜坡最为敏感的部位,坡脚受到破坏,对整个斜坡的稳定性影响最大。沟谷内流水冲刷侧蚀、人类斩坡、筑窑等工程经济活动都会对坡脚产生破坏,引起斜坡产生滑移-拉裂变形,轻则引起崩塌,重则产生滑坡。
(2)滑移-压致拉裂模式
滑移-压致拉裂模式也是区内斜坡变形破坏较为普遍的模式之一,这种变形模式是由斜坡内部软弱结构面处自下而上发展,不同于滑移-拉裂模式的自上而下发生。出现的情形主要有以下几个方面:一是降雨在地表汇集,沿落水洞、宽大节理裂隙贯入,在基岩或古土壤层上形成局部地下水,降低了弱透水层之上黄土的强度。在重力作用下,坡体沿下部层面向坡前临空方向产生缓慢的蠕变形滑移,沿平缓层面形成滑移面,沿上部黄土垂直裂隙形成拉裂面,形成黄土滑坡或崩塌。二是水库近区的黄土斜坡,水库长期渗漏,导致基岩面之上黄土含水量增高甚至饱和,形成滑移-压致拉裂变形破坏模式,一般形成黄土滑坡。三是砂、泥岩斜坡,尤其是砂、泥岩边坡,人工开挖后,首先表现为差异性卸荷回弹,沿砂、泥岩层面形成滑移面,随着变形的发展,压致拉裂面自下而上不断扩展,滑移面贯通,一般形成基岩崩塌。
(3)弯曲-拉裂模式
黄土特性之一就是垂直节理发育,特别是在高陡斜坡的边缘,临空面大,局部土体极易沿垂直节理呈柱状或墙状与斜坡分离。在风化作用下,发生弯曲-拉裂变形,节理面日益加深扩大,分离的土体与斜坡的联系越来越弱。当重心偏离到一定程度时,最终导致斜坡破坏,形成倾倒式崩塌。当分离土体与斜坡的联结不足以支撑其重量时,沿垂向错断崩落就形成错断式崩塌;沿斜面滑下就形成滑移式崩塌,当然,其变形破坏模式也发生了转化或复合。
对基岩不稳定斜坡来讲,调查区基岩主要为砂泥岩互层,砂岩与泥岩在强度上有较大差异,砂岩抗风化能力强,泥岩抗风化能力弱。由于差异性风化作用,砂岩之下的泥岩常常被先行侵蚀剥落,致使砂岩悬空,悬空后的砂岩在重力作用下多产生弯曲-拉裂变形,从而形成崩塌。
2. 我国地质灾害发育的基本特点
与世界其他国家和地区相比,我国地质灾害具有以下几个方面的特点:
1.类型多、分布广、危害大
我国地质灾害类型多、灾种全、危害大,这是我国地质灾害发育的基本特点之一,也是世界上任何国家难以比拟的。根据我国地质灾害已有案例和地质灾害的物质组成、动力作用、破坏形式及破坏速率,将我国地质灾害初步分为十大类38种(见表13-1),全国31个省、区、市,几乎无一不受到地质灾害的危害和生态环境恶化的威胁,每年灾害造成的直接经济损失达200亿元。
2.具有区域性和群发性
我国地质灾害的分布受地形地貌、地质条件、纬度分带的制约,我国地质灾害具有明显的地域特征和区域变化规律:在我国西部山区是崩塌、滑坡、泥石流等突发性地质灾害的高发区;黄土高原及大片红层丘陵地区,水土流失和滑坡相当严重;西部内陆盆地与内蒙古高原,沙漠化、盐碱化十分突出;地面沉降、地裂缝、海水入侵、海岸侵蚀与淤积主要分布于在我国东部平原及沿海地带;岩溶塌陷主要分布在西南山区和部分北部山地丘陵区。
表13-1我国地质灾害类型表
许多地质灾害不是孤立发生或存在的,往往以点、群形式发生,形成灾害体系或灾害链。前一种灾害的结果可能是后一种灾害的诱因,或是灾害体系或灾害链的某一环节。如斜坡岩土位移灾害大都与降雨有关,先崩塌或滑坡,后形成泥石流,待能量消失后,才达到新的平衡。因此任何孤立的单灾种调查评价都难以准确地反映灾害的实际危害程度。
3.具有持久性和周期性
地质灾害一旦形成便难以恢复其原貌,其发展过程是不可逆转的。我国沿海城市和东部平原,地下水超量开采,诱发了大面积的地面沉降、地裂缝、水质污染,许多地区深层地下水均已降至80m左右,比海平面低70多m,这一环境演化将是持久的。此外,滑坡、泥石流具有一年到几百年不同尺度的活动周期。
4.具有与社会的同步性
受人口增长、经济发展的双重压力,我国地质灾害有灾种增多、频度增高,危害性增大的趋势。50年代初期,地面沉降、地裂缝仅在个别省、区和城市发现,至90年代,已遍及20多个省区,且范围逐步扩大,速率明显加快。据统计,四川省建国以来,人口翻了一番,而崩滑流山地灾害翻了三番多。人口增长、经济发展、受灾因素增多,小灾酿成大灾,这是我国地质灾害的重要发展趋势。
5.缓变型地质灾害日益加剧
缓变性地质灾害主要指地面沉降、水土流失与土地沙化等,这些灾害的发展,使生态环境日益恶化,人类赖依生存的资源逐渐减少或枯竭。内蒙古据近30年统计,全区土地沙漠化面积扩大了近10.66万km2,每年以3000km2的速度不断向外扩展。我国黄土高原水土流失面积达43万km2,年侵蚀模数8000t/(km2·a)。全国严重的水土流失已波及25个省区市。
深入研究并掌握我国地质灾害的发育特点和活动规律有助于地质灾害勘察研究工作的部署及防灾、减灾、环境保护政策和规划的制定。
3. 衢江区地质灾害发育特征
一、地质灾害发育类型
根据浙江省小流域调查,共发现地质灾害(隐患)点51处,灾害类型有滑坡、崩塌、泥石流及塌陷(开采沉陷、岩溶塌陷)等四种,其中以滑坡为主,共31处,占60.8%;次为崩塌和泥石流,各有8处,各占15.7%(表7-4)。
表7-4 地质灾害类型统计表
已发生的地质灾害点30处,占58.8%;地质灾害隐患点21处,占41.2%(表7-5):
表7-5 已发生地质灾害点及地质灾害隐患点统计表
根据地质灾害规模级别划分标准(表7-6),区内地质灾害(隐患)点规模以小型为主,共44处,占86.3%;次为中型,共7处,占13.7%(表7-7)。
表7-6 地质灾害规模级别划分标准表
表7-7 地质灾害(隐患)点规模统计表
二、地质灾害基本特征
(一)滑坡(隐患)
滑坡是衢江区地质灾害的主要类型,共31处,占60.8%;规模以小型为主,为28处,中型3处;已发生点19处,隐患点12处;稳定性较差11处,稳定性差20处。
滑坡大多发生在20°~40°的斜坡上,平面上呈半圆或舌形,剖面上以直线型或阶状为主。一般长20~70m,宽20~60m,厚1~3m;最大长300m(长大于100m的5处),宽250m(宽大于100m的3处),厚10m。一般方量500~6000m3,最大33万m3(大于10万m3的三处)。
滑坡所处的工程地质岩组多为坚硬较坚硬其他沉积岩岩组、坚硬块状上侏罗系火山岩岩组、坚硬块状燕山晚期花岗岩岩组,以土质滑坡为主,滑体由含碎石粉粘土、碎石土等残坡积土体组成,结构松散,抗剪强度低,滑动面一般为(较完整)基岩面。滑坡以牵引式和推移式滑动形式较为常见,具蠕动期长、多期次发育等特点,受大气降水影响较大,常为暴雨引发。
滑坡实例:湖南镇里村胡家滑坡
该滑坡位于湖南镇里村胡家自然村东北山坡,低山地貌,出露地层为中侏罗统马涧组地层。该滑坡始发于1955年,从1998年起,每逢雨季,后缘均出现裂缝,现后缘裂缝长10m,宽0.1~0.3m,可测深度0.3~0.5m,2002年前缘出现小规模崩滑,毁坏房屋一间。滑坡平面形态呈半圆形,长28m,宽22m,厚3~4m,体积2200m3。主滑方向240°(图7-3)。
图7-3 湖南镇里村胡家滑坡隐患平面、剖面示意图
滑动面为基岩面,滑体为残坡积碎石土,结构松散;下伏基岩为中侏罗统马涧组含砾粗砂岩,厚层状构造,较完整。雨季,松散土体饱和,重量增加,抗剪强度降低,雨水沿基岩面渗流,易诱发土体失稳。该滑坡稳定性差,对前缘住户(23人)构成较大的威胁。
(二)崩塌(隐患)
衢江区内发现崩塌8处,占15.7%,均为小型规模,已发生点6处,隐患点2处,稳定性较差3处,稳定性差5处。一般方量小于2000m3,最大39000m3。
崩塌多发生在大于40°的陡坡上,一般坡高8~15m,崩落体多为残坡积物和风化破碎基岩,崩塌处基岩层理、节理裂隙较发育,岩石被切割成大小不等的块体;部分结构面(或结构面组合)倾向坡外;前缘修路、建房削坡破坏了原有地质体的应力平衡,增大了临空面。种种因素为崩塌发生提供了有利条件。
崩塌实例:峡川镇失母湾村崩塌
该崩塌位于上方镇-衢州公路旁(峡川镇失母湾村),丘陵地貌,出露地层为上侏罗统劳村组地层。2001年6月初次发生崩塌,2002年8月崩塌三次,随即后缘出现一条裂缝,长80m,宽0.4~1m,垂直位移0.5~0.8m。该崩塌平面形态呈半圆形,长60m,宽90m,厚2~4m,方量16200m3,崩落体为残坡积碎石土和松散破碎基岩(图7-4)。
图7-4 峡川镇失母湾村崩塌平面、剖面示意图
出露地层为上侏罗统劳村组砂岩,中薄层构造,岩石风化较强,层理发育,产状15°∠14°、30°∠15°、50°∠19°,近倾向坡外,属不利结构面;斜坡原始地形坡度约40°,开挖后,增大了前缘临空面;受放炮影响,基岩更加破碎。受降雨等因素影响,发生崩塌。该崩塌稳定性差,对过往车辆和行人构成一定的威胁。
(三)泥石流(隐患)
衢江区内发现泥石流8处,占15.7%;小型、中型规模各4处;已发生点2处,隐患点6处;稳定性较差2处,稳定性差6处。一般厚0.5~1.5m,最小方量800m3,最大18万m3。
从泥石流发育的地形地貌条件看,衢江区主要为沟谷型泥石流,沟谷较顺直,坡降较大,沟中或山坡上有较多的松散物质(部分为人为堆积);暴雨是引发泥石流的主要条件,泥石流基本发生在7、8月份,与降雨的集中季节相一致,如2002年8月15日特大暴雨就引发了5处泥石流(隐患);泥石流发生时来势凶猛,破坏力极强,所造成的危害往往是巨大的(双桥乡黄蒙沟泥石流毁坏房屋200多间)。
泥石流实例:双桥乡田蓬至坞口泥石流隐患
受“8·15”特大洪灾影响,在沟中堆积了大量的碎块石松散物,厚0.5~1.5m,体积约45000m3,属中型泥石流隐患。主沟长约2.0km,纵坡5°~15°。泥石流综合评分为83分,泥石流易发程度属低易发,威胁60余人生命财产安全,危害程度属较大级。逢雨季,可能进一步发展,属较危险级。建议加强监测,沟旁及沟口住户适当搬迁避让。
(四)地面塌陷(隐患)
衢江区内发现地面塌陷4处,均为小型规模;已发生点3处,隐患点1处;稳定性较差点4处。塌陷面积100~5000m2。两处为岩溶塌陷,塌坑1~3个,单个塌坑基本呈圆形,直径5~7m;一处是已闭坑的矿坑塌陷,规模小,距村庄较远,已趋向于基本稳定;另一处为矿坑塌陷隐患,正在开采,位于村庄的斜下方,危害程度为较大级,应引起重视。
三、地质灾害分布规律
(一)时间分布规律
灾害活动时间有两个特点:
其一,2002年发生的灾害最多,共30处,占灾害点总数的58.8%,这与两次大暴雨有较大的关系。
其二,灾害主要发生在6~8月,该期间发生地质灾害37处,占灾害点总数的72.5%(表7-8),与这一期间连续降雨、丰富的降雨量密不可分。
表7-8 地质灾害发生月份统计表
注:其余11处灾害发生月份不详。
(二)地域分布规律
地质灾害(隐患)点主要分布于境内南、北部中低山及丘陵区,在15个乡镇均有分布,其中以双桥、太真、湖南、上方四个乡镇数量最多,共33处,占灾害点总数的64.7%。境内各乡镇灾害点具体分布见表7-9。
表7-9 地质灾害点地域分布统计表
(三)空间分布规律
从标高分布来看(表7-10),地质灾害大多发生在海拔600m高程以下,共47处,占灾害点总数的92.2%。这一带地势相对较平缓,残坡积物相对较厚,人类工程活动(修路、建房削坡,开垦种植等)较多,破坏了山坡的平衡状态,易诱发地质灾害。
表7-10 地质灾害标高分布统计表
(四)与地形坡度的关系
从地质灾害地形坡度分布统计(表7-11)来看,滑坡多发生在20°~40°的斜坡上,崩塌一般发生在大于40°的高陡人工边坡或陡崖,而泥石流、地面塌陷受地形坡度的影响相对小一些。
表7-11 地质灾害地形坡度分布统计表
4. 福建南部沿海地区地质灾害发育特点及孕灾环境分析
施文耀
(福建省地质工程勘察院,福州350002)
摘要:本文通过对福建南部沿海地区的地质灾害的现状调查与分析,阐述该地区地质灾害的发育特点,分析各种地质灾害的成灾因素,并从自然地理气候条件、地质环境条件、人类工程经济活动三方面对区域孕灾环境进行分析,提出地貌单元、地质单元的形态、结构、功能不同,区域气候环境的特征,对区域地质灾害的形成产生明显的影响。
关键词:地质灾害;特点;成灾因素;孕灾环境
地质灾害是岩石圈表部在内力作用和外力作用相互影响下,或地壳内部动力地质作用下,使地质环境产生变化,出现的对人类生命财产和精神遭受损害的地质现象和事件,地质灾害的孕育与发展受区域自然条件、区域地质环境条件、人类活动等的支配。
1 地质灾害的现状与区域特征
区域的自然地理条件、地质环境条件和人类工程活动的程度的特征,使得测区局部地区地质灾害比较发育,目前已有资料表明测区主要的地质灾害有4类,共206处,包括崩塌、滑坡、泥石流、地面沉降。其中崩塌95处,占地质灾害总数的46.12%;滑坡76处,占地质灾害总数的36.89%;泥石流2处,占地质灾害总数的0.97%;地面沉降33处,占地质灾害总数的16.02%。测区地质灾害详见附表,从地质灾害的统计资料看,测区地质灾害具有福建省地质灾害的普遍特征,即点多、面广、规模小、频率高、危害较大,受人类活动和降雨影响大[1]。
2 地质灾害的分布规模、特征与成灾因素
区内地质灾害具有明显的分布规律,崩塌、滑坡、泥石流分布于测区中西、西北部的低山、丘陵地带,崩塌、滑坡多沿公路、房前屋后的人工开挖形成的高陡斜坡分布;地面沉降分布于沿海的冲海积平原中,也有少量分布于未压实的松散素填土区;泥石流分布于丘陵沟尾斜坡地带,各类地质灾害又有其自身的特点与成灾因素。
2.1 滑坡与崩塌
2.1.1 滑坡[2]
滑坡为斜坡变形破坏的一种形式,是指斜坡上岩土体在河流冲刷、降雨等因素影响下,沿着一定的软弱结构面(带),整体或分散地、顺坡向下滑移的自然地质现象,滑坡体通常被分割成块体,滑坡经滑移后处于相对稳定阶段后,在降雨等其他因素的作用下有可能再次激活而滑动[3]。
根据滑坡物质组成、滑体厚度,形成原因,规模对测区滑坡进行划分统计,并对滑坡前斜坡坡度进行统计,统计结果分别见图1和表1。
松动、粘性差、易崩解的土体易产生崩塌,节理裂隙发育的斜坡也易产生崩塌。测区土质崩塌中,全为残积土型崩塌,且多为侵入岩类地区,主要由于侵入岩风化的残积土粘土粒含量低,粘聚力差,含砾高,土质结构松散,易湿化崩解,在遭雨降水作用下,也就易产生崩塌。而节理裂隙发育给地下水的入渗,径流提供了良好通道,加之破碎岩体块体间的结合力差,降雨入渗作用下也就易诱发崩塌。
2.1.3.3 地质构造
地质构造对斜坡产生滑坡的影响表现为强烈的改变岩土体的结构构造,使岩土体变形破碎,岩土体风化程度加大,在岩土体中形成良好的构造软弱面,岩土体力学强度下降。构造运动也使斜坡坡度、坡形了产生变化,对斜坡变形破坏起间接作用。地质构造在斜坡岩土体中形成的软弱结构面为滑坡产生提供了良好的基础条件。一旦的外界因素触发,斜坡极易沿构造的软弱面产生滑移、崩落,形成滑坡、崩塌。测区76处滑坡中有8处与断裂构造密切相关,占滑坡数的10.53%。
2.1.3.4 降雨
降雨是滑坡、崩塌的成灾因素中最为敏感、最为积极的因素,几乎所有的崩塌均与降雨密切相关。降雨通过改变斜坡岩土体的力学性质,降低抗变能力,改变斜坡岩土体的应力状况的途经来诱发斜坡产生灾害。在高强度降雨作用下,部分汇水条件较好的滑坡还有可能进一步转化为滑坡—泥石流型的地质灾害。
另外,滑坡的产生与降雨量密切相关,几乎所有滑坡其产生均与降雨有关。大部分滑坡分布于多年均降雨量>1200mm的地区。资料显示,过程降雨时大于100mm的地区可能诱发产生滑坡,但经过长期阴雨,土体基本饱和后,又经过程降雨量大于50mm,也可能产生滑坡,当过程降雨量超过200mm时,则会普遍产生滑坡灾害现象。
2.1.3.5 人类工程活动
在区内滑坡中与人类工程活动有关的滑坡达64处占85.53%。人类工程活动对斜坡的影响表现为切坡、填方等。切坡使斜坡的坡高和坡度产生改变,极大地改变了坡形,使原来处于应力相对平衡的斜坡失去支撑而临空,斜坡应力平衡遭受破坏,坡高增大,斜坡内应力随之呈线性增加,坡度变大,坡面附近张应力随之增强。范围随之扩大,而坡脚应力集中带的最大剪力也随之增强,因此,随着切坡坡度增大,坡高增大,斜坡变形产生滑坡的条件越充分,产生滑坡的机会也随之增大。另一方面,人类工程活动又使斜坡岩土体结构遭受扰动破坏,降低局部岩土体的强度,又为产生滑坡提供了条件。人类工程活动中又有不合理的堆填方,形成高陡斜坡,原本填方岩土体结构已遭受破坏,加之堆填成高陡斜坡,极易诱发产生滑坡。
人类工程活动是崩塌成灾因素中较为积极的因素。人类工程活动表现为改变斜坡的外形,实际上是改变了斜坡的临空状况及应力场,强烈的切坡活动,使处于应力平衡的斜坡失去临空支撑,形成临空面,相应地斜坡应力均随之改变。切坡坡度越陡,坡顶拉张力越强,在重力作用下也越能促进崩塌的产生,统计表明,由孕灾环境为人类工程活动引起的崩塌达71.58%
测区调查表明,区内由爆破震动引起的崩塌仅3处,分布于采石场区域,主要由于爆破使部分岩土体开裂松动,其斜坡已开挖成陡坡悬崖状,爆破产生的弹性波使松动岩土体产生附加应力,松动斜坡岩土体的结构,造成破裂面,反复作用造成累积,促使岩土体变形破坏而崩落。
2.2 地面沉降
区内地面沉降表现为在软土区的建筑物不均匀沉降。软土区地面沉降分布于泉州、厦门、漳州冲海积平原区,共有32处。
由于组成软土的粘土矿物为高岭石、伊利石、绿泥石,其化学成分为SiO2、Al2O3、Fe2O3等。其物理力学性质指标主要有以下特征,天然含水量大(W>36%),呈软塑-流塑状,仅局部为可塑状;孔隙比大(e>1),高液限(W1>45.9%),低渗透性,高饱和度,高压缩性(a1-2>0.7MPa-1),强度低(fk=100kPa),抗剪强度低(C=2~4kPa,φ=0~14.5°)。大部分呈欠固结状态,具有流变性和触变性的特点。当建筑基坑排水抽取地下水后,随着地下水位的下降,土层有效应力增加,促使软土固结而产生沉降。而建筑物置于软土区,土层中的附加应力大增,引起高压缩性的软土由于压缩固结而产生沉降,测区软土沉降多分布于全新统的海积软土中,建筑物常由于软土不均匀压缩固结而出现不均匀沉降现象,致使建筑物产生倾斜、开裂、破坏。
2.3 泥石流
区内目前仅发现有2处泥石流,其规模均很小,土方量<1.0万m3,均为暴雨型、沟坡型泥石流。其实际模式为滑坡-泥石流。泥石流的物质组成以残坡积粘性土为主,夹含少量的强风化岩体。物源区处于坡度30°~35°的凹形斜坡。泥石流的流通距离比较短促。物源区也没有常年性沟谷水流,均为自然状态下产生的泥石流。
区内泥石流物源区处于凹形斜坡,有利于地表水的汇积。地表汇水的冲蚀能力较强。物源区处于残坡地层较厚,残坡积土遇水易饱和,易崩解。而散体状的强风化岩强度较低,这为泥石流的形成提供了良好的物质来源条件,两处均由于长历时高强度的降水引起。斜坡岩土体首先出现崩滑现象,而后崩滑体在地表水流的携带下向坡下方向流动而形成。两处泥石流均处于人类活动微弱区域,对人类的影响不大。
3 区域孕灾环境分析[4]
地质灾害的分布、发生与发展与自然地理条件、地质环境条件和人类工程经济活动密切相关,测区地处南亚热带海洋性季风湿润气候区,地处福建东南沿海地区地质环境条件较为复杂,人类工程经济活动强烈。由于地貌单元、地质单元的形态、结构、功能不同,区域气候环境的特征,导致测区孕灾环境对区域灾害的形成产生明显的影响。
3.1 自然地理气候条件
区内虽然均处于南亚热带海洋性季风湿润气候区,但测区地貌形态却多种多样,从滨海的平原、台地到中西北部的丘陵、山地,使得测区的降雨量分布不均。滨海平原、台地的多年平均降雨量900~1100mm,而丘陵,山地的多年平均降雨量却可达1500~1700mm,而沿海岛屿、半岛处局部蒸发量与降雨量大致相当,并且测区地处太平洋沿岸,受热带暖湿气流的影响,每年均会遭遇不同次数和强度的台风暴雨的影响,台风过程降雨量在200~350mm之间。充沛而分布不均的降雨量与短时间的台风暴雨的降雨量,强烈地促进测区地质灾害的发育。温暖湿润的气候条件使测区岩石的风化过程加快,给地质灾害的产生与发展提供了良好的自然环境孕灾条件。从测区前述地质灾害的成因分析中,过程降雨量和暴雨对测区地质灾害的发育影响异常明显,几乎所有的斜坡变形破坏均与降雨相关。这说明测区区域气候环境条件是地质灾害分布、产生与发展最为直接,最为敏感的影响因素。
3.2 地质环境条件
从地貌上看,区内沿海海岸附近,遭受海潮、风暴潮的影响,局部土质海岸蚀退明显,如厦门岛东海岸,而区内大部分地区为山地丘陵地带,河谷冲沟发育,地形形态不一,地形坡度20°~40°不等,局部更陡,高程100~1000m,变化较大,有利的地形条件给地质灾害的发育提供了良好的孕灾环境。
从地质构造上看,区内处于闽东南滨海断隆带和闽东火山断拗带之间,整体处于间歇性上升地区,地质构造活跃,断裂构造发育,深受长乐-南澳等活动断裂构造影响,地质构造较为复杂,岩石较为破碎;地震设防烈度为Ⅶ、Ⅷ度地区。地质构造的复杂性为测区地质灾害的发育又提供了良好的孕灾环境。
从地质条件上看,滨海地区的平原区分布广泛和厚度不同的高压缩性、低强度的软土和饱和液化砂土,从而使这些区域易产生软土沉降、震陷和饱和砂土液化现象。而台地、丘陵、山地却分布有厚薄不一的残坡积土以及各种母岩,地层岩性复杂,强度不一,复杂的岩土体条件又为地质灾害的发育提供了较好的孕灾环境,特别是测区丘陵台地残坡积土层较为深厚,却又深受降雨影响,使得测区地质灾害较发育。
3.3 人类工程经济活动
测区为厦-漳-泉闽南金三角地区,区域经济异常活跃,人口密度大,工程活动强烈,各级别的公路星罗密布,在测区范围分布有泉厦高速公路、厦漳高速公路、漳诏高速公路、漳龙高速公路、鹰厦铁路、漳泉铁路、324国道以及九龙江引水、晋江引水工程、后石电厂、集杏海堤、高集海堤等。各重大工程、各种省道、县道工程建设对地质环境的改变程度较大。测区经济活动强烈,人均国民生产总值多在10000元以上。而且测区人口密度大,沿海地区人口密度800~1800人/km2,山区也有200~700人/km2。山区可利用土地少,造成人多地少的局面,进行房屋建设中迫使居民挖山切坡,从而形成大量的房屋高陡后边坡。密集的人口分布,强烈的工程经济活动,极大地改变了局部的地质环境,森林植被覆盖率下降,局部水土流失加剧,地质灾害频繁发生,测区活跃而强烈的人类工程经济活动对地质灾害的发育又提供了一个很好的孕灾环境。
4 结束语
区内地质灾害类型主要有崩塌、滑坡、泥石流、地面沉降等几种,具有点多、面广、规模小、频率高、危害较大、受人类活动和降雨影响大的普遍特征。由于区内的区域地理位置,也就有测区地质灾害的孕灾环境。充沛的降水、台风影响强烈、不利的地形条件、地质构造的复杂性、复杂的岩土体条件、活跃而强烈的人类工程经济活动都在加剧着地质灾害的发育。
参考文献
[1]何永金.福建地质灾害的特点、成因及其对策.福建地质,1995(4)
[2]晏同珍,杨顺安,方云.滑坡学.武汉:中国地质大学出版社,2003
[3]高天钧,何永金.福建沿海及海域地质灾害与防治.福建地质,2000(2)
[4]陈亚宁.新亚欧大陆桥新疆段环境地质研究.北京:地质出版社,2001
The Development Characteristic and Formation Principle of Geologic Hazards in the Coast of Southern Fujian
Shi Wenyao
(Geological Engineering Exploration Faculty of Fujian Province, Fuzhou 350002)
Abstract: According to the investigation and analysis of geologic hazards, the paper expatiates the characters of geologic hazards and analyses formation factors of geologic hazards from three aspects, geographic and climatic condition, geologic environment condition. The conclusion is that geologic cell, the modality, structure and function of physiognomy cell and the characteristic of climate clearly influence the formation of geologic hazards.
Key words: Geologic hazards; Characteristic formation factors of geologic hazards; Environment of formation geologic hazards
5. 中国地质灾害主要成灾特点
地质灾害是自然灾害中的一个重要类型。它与干旱、洪水、台风、风暴潮、地震等自然灾害相比,虽然具有许多共同之处,但由于形成条件、活动过程、破坏方式等的不同,使之具有独特的成灾特点。认识这些特点,对于分析地质灾害灾情构成,进行灾情评估是非常必要的。
一、地质灾害数量特别多,但单点灾害的危害范围都比较小,因此是属于漫布的“星点状”灾害
如前所述,经调查确认,我国大陆发生过活动或具有明显潜在活动危险的各种地质灾害体数以万计,如果加上那些发育在人口比较稀少的偏僻边远地区的地质灾害体,则可能达几十万,甚至几百万处。
这些灾害虽然并非每年全都活动,但它们广泛分布在各个地区,每年至少有几千或上万处活动,其中对人类生命财产造成比较严重破坏的达几百处到上千处。同其它自然灾害相比,地质灾害的数量占有优势。
虽然地质灾害的数量多,但其影响的范围和成灾规模一般都比较小,在众多种类的地质灾害中,只有地面沉降等少数环境型灾害的影响面积可达几百平方公里以上,其它如崩塌、滑坡、泥石流、岩溶塌陷、地裂缝等地质灾害的规模都比较小。据一些地区调查结果,最大规模的崩塌、滑坡体体积为几千万立方米。它们的破坏范围一般在1km2以下,最大不超过10km2。一般泥石流主沟长度为几公里到十几公里,泥石流总量为几万到几十万立方米,除大规模群发性泥石流外,一般破坏范围不超过几十平方公里。岩溶塌陷和地裂缝灾害分布的局限性更大,其破坏范围一般在1km2以下。从成灾的行政范围看,一般单点灾害仅危害几个村镇,一般群发性灾害危害十几个乡镇,大规模群发性灾害危害几个县(市)。这与其它自然灾害相比,成灾范围要小得多。特别是洪涝、干旱、台风等灾害,一般危害范围达几个县(市),大规模灾害危害范围达几个省或十几个省,更是地质灾害难以对比的。
基于这一成灾特点,在进行灾情评估时,深入分析灾害活动的危险性,根据灾害规模确定危害区是十分重要的。具体途径是:在对单一的或局部的地质灾害灾情进行点评估时,在确定灾害危害区后,就可以比较准确地调查统计受灾体数量和受灾体价值,进而核算期望损失;在对一个地区或区域地质灾害灾情进行面评估或区域评估时,采用抽样调查方法,根据评估区灾害点数量、单点平均危害范围、平均受灾体价值密度以及灾害平均活动概率等参数,就可核算地区地质灾害的年均期望损失。
二、在一定条件下,某些地质灾害与其它自然灾害同时或连续发生,形成破坏比较严重的灾害群或灾害链
崩塌、滑坡、泥石流、地裂缝灾害的这一特征表现得最为突出。这几种灾害的诱发因素主要是地震和暴雨,因此在强烈的地震或暴雨的同时,常常引发大量的崩塌、滑坡、泥石流和地裂缝灾害。例如1976年5月29日云南龙陵7.3级、7.4级地震诱发的大规模滑坡活动,造成了2万人伤亡,毁坏房屋9间,耕地12000多亩、森林5000多亩。1988年11月6日云南澜沧-耿马7.6级地震导致严重的地裂缝、崩塌、滑坡等灾害,在极震区出现长达几十公里,宽几厘米到几米的地裂缝和大量的崩塌、滑坡体,因此4.8万公顷农田和上千亩森林以及大量水利工程被毁坏,175个村庄、5032户居民因受危岩、滑坡的严重威胁而被迫搬迁。1976年7月23日,北京市密云县东北部地区因暴雨促使23条沟谷暴发泥石流,造成104人死亡、20491亩耕地和3574间房屋被冲毁。
地质灾害除了受地震、暴雨洪水等自然灾害控制,与之相联发生外,不同的地质灾害也有时因具有密切的成生联系而相联发生。其中比较经常出现的现象是在泥石流沟谷流域内,通常还发育有大量的崩塌(危岩)体、滑坡体,暴雨后首先发生严重的崩塌、滑坡活动,而后由此形成的大量碎屑物融入洪流,转化成泥石流灾害。这种类型的灾害,在我国西南的川、滇等地区非常普遍。本项目中作为典型实例的四川省汉源县、重庆市北碚区醪糟坪滑坡-泥石流灾害都是这种类型的灾害。
在灾情评估时注意地质灾害的这一特征是非常必要的。因为首先关系到灾情的界定。例如,我国大部分泥石流灾害是由暴雨洪水造成的,所以其活动过程常常和山区洪水同步发生,在绝大多数灾情报告中,对洪水灾害和泥石流灾害没有界定区分,笼统归于泥石流灾害;甚至还有的把只含有少量泥砂碎屑固体物质,但尚没有达到泥石流标准的洪水灾害也作为泥石流灾害。这些偏差,显然扩大了泥石流灾害的灾情。此外,在进行地质灾害灾情评估分析某种地质灾害危险性的时候,需要充分分析某一灾害在灾害链中的位置,这对于确定灾害的发生概率及规模是十分必要的。
三、地质灾害分布广泛,但不同地区地质灾害发育水平和成灾规模不同
不同类型、不同规模的地质灾害几乎覆盖了中国大陆的所有区域。但由于地质自然条件和社会经济条件的差异,使不同地区地质灾害的发育程度和破坏程度显著不同。
从全国范围看,地质灾害的区域变化具有比较明显的方向性:从西向东、从北向南——从内陆向沿海,地质灾害不断趋于严重。这种变化把中国陆地分成特点显著不同的两大地质灾害区域,大致以长白山、燕山、贺兰山、巴颜喀拉山、念青唐古拉山一带为界,其西北部区域地质灾害轻微,东南部区域地质灾害严重。
我国西北部地区主要由高山、高原和一些大型内陆盆地组成,气候寒冷干燥,人类活动微弱。该地区主要地质灾害为土地沙漠化、冻融等。虽然地质灾害分布十分广泛,但大部分地区发育种类单一,加上人口密度和经济密度低,所以破坏程度低。
东南部地区主要由沿海平原、低山丘陵及其与西北部高山、高原过渡的山地组成。区域的气候冷暖和降水丰枯变化剧烈,历史时期和近年来人类活动也相对频繁而强烈,大部分地区发育有三种以上比较严重的地质灾害。与此同时,该区域人口稠密,城镇和大型企业及骨干工程密布,所以地质灾害破坏强烈。受地质自然条件的影响,该区内地质灾害亦有一定的地区性差异。地质灾害特别严重的地区除分布在台湾岛外,还集中分布在黄淮海平原、黄土高原和川滇山地地区,斜贯中国东南区域,成为中国大陆内地质灾害发育种类最多,发生频度最高,危害最严重的地区。
这一特点通过中国区域地质灾害风险分析与区划,得到明显反映。
四、地质灾害时间分布具有不规则的周期性和不断严重化趋向
地质灾害的时间分布亦很不均匀,不同类型地质灾害时间变化特点不一。
我国崩滑流灾害具有比较明显的周期性变化特点。45年来,形成了1951~1962年、1963~1975年、1976~1987年和1988年以后的4个周期性变化过程。每个周期延续时间为11~13a。前3个周期的灾害峰值分别出现在1957~1958年、1971~1972年、1981年。其它类型地质灾害的周期性变化不突出。
除一些灾害具有周期性变化规律外,大部分地质灾害十分突出的共同特点是在不同形式的反复消长变化中不断发展而日趋严重。其具体表现就是灾害发生的频次越来越高,强度越来越大,造成的损失越来越重。
崩滑流灾害虽然发生周期性消长,但各周期并不是等强度的交替,而是以一波高于一波的逐期高涨的形式不断发展。在以10a为单位的不同时段中,自50年代到80年代,其发生频次以3.3~4.8的速率呈阶梯状增加。地面沉降灾害的日益严重化趋向更加突出。在中国地面沉降发展历史中,50年代属于初始阶段,60年代属于发展阶段,70年代以后进入急剧发展阶段。全国约70个地面沉降城市中,有80%是70年代中期以后才形成的。地面塌陷和地裂缝也是在70年代以后在我国迅速发展,并成为影响广泛的重要地质灾害;在此之前虽然也有发生,但多属于局部性活动,并没有形成严重危害。滨海地区的海水入侵也是在70年代以后才迅速发展成灾的。
地质灾害日趋严重的原因除自然条件影响外,主要是由于近年来我国人口不断增长,资源开发和工程建设等活动迅速发展,对地质自然环境的破坏日益严重所造成的。
根据地质灾害的这一特点,在进行预测评估时,需要将历史分析与趋势分析结合起来,才能得出可靠结论。
五、中国地质灾害具有比较严重的潜在危险性
今后时期,尽管一些局部地区的地质灾害可望得到一定程度的控制和治理,但就全国范围的地质灾害发展趋势看,将继续延袭几十年来的发展势头,进一步趋于广泛化和严重化。这种形势是地质自然条件和社会经济条件的进一步变化所决定的。从地质自然条件看,国内外许多科学家从不同角度预测了未来全球环境的发展趋势。大部分专家认为,在今后一个时期,地球以至更大系统的天体运动有可能进入一个更加复杂的变异阶段。在这种形势下,地壳运动可能更加活跃,全球气候可能出现更加强烈的异常,因此人类面临着环境进一步恶化的严重挑战。从我国社会经济条件看,今后一个时期,人口将进一步增长,城市化进程将进一步加剧,更大规模的资源开发和工程建设活动,不仅在沿海地区继续进行,而且将逐步向中、西部地区发展。在这种情况下,中国大部分地区地质灾害的发育程度和破坏程度均将不断提高,从而使我国地质灾害达到前所未有的严重程度。
根据控制我国地质灾害发展的各方面条件分析,未来几十年内,在全国性地质灾害普遍发展的背景下,一些地区有可能急剧发展。这些地质灾害急剧发展地区主要分布在长江、黄河等大江、大河中上游的黄土高原、川滇山地以及海南和闽粤沿海的部分地区,其次在天山、青藏高原的局部地区。目前这些地区的地质灾害比较严重,但由于人口和经济密度较低,所以造成的危害尚不十分突出,今后一旦进行大规模经济开发,就会出现严重的地质灾害威胁。
根据地质灾害的这一特点,在进行地质灾害灾情评估时,要有充分的前瞻性,就是既要深入认识历史灾害过程,又要充分考虑地质灾害的潜在危险。
六、人类活动和社会经济条件是地质灾害系统的重要组成部分
各种地质灾害并不是孤立存在的。不同灾害之间以及地质灾害与其它多种相关因素之间密切相联,构成复杂的地质灾害系统。这个由多方面变量组成的复杂系统,具有相对完整的独立性。从更广阔领域看,它是自然灾害系统的一个重要组成部分。从地质灾害系统的内部组成看,其主体系列由各种地质灾害组成;相关系列由有关的地质自然条件和社会经济条件组成。所有这些内容组成地质灾害系统内部的不同子系统或不同层次。
社会经济条件之所以是地质灾害系统中的重要内容,是由于社会经济条件与地质灾害具有十分密切的相互作用机制:一方面人类的各种社会经济活动,直接或间接地影响了地质环境演化和地质灾害的形成与发展;另一方面地质环境和地质灾害直接或间接地制约了社会经济的发展。综观中国几十年地质灾害的发育情况,其范围、频度、强度和破坏程度等与我国人口和经济发展具有大致同步消长的正相关关系。因此几十年来中国地质灾害的发展史,实质上是地质自然历史与社会经济历史的综合反映。未来时期,随着各项事业的发展,社会经济条件与地质灾害的相互影响还将进一步加强,因此社会经济条件在地质灾害系统中的地位将会显得更加重要。
基于这一特点,在进行地质灾害灾情评估时,应充分考虑人类活动和社会经济条件对灾情的影响。具体而言,在分析地质灾害活动危险性时,要研究人类资源开发、工程建设和防灾活动的作用;在分析地质灾害的破坏效应和损失程度时,要研究受灾体价值密度和不同受灾体对灾害的抗御能力;在地质灾害防治分析时,要研究地区防治能力和可能效益。
6. 地质灾害特点与发育规律研究
山东半岛城市群地区地质灾害的分布特点反映了其形成机制的差异性和普遍性,表现在动力来源、与形成动力的关联度、形成时间、形成过程、成灾的关联性与可控性、危害程度等方面。
一、地面变形灾害
地面变形灾害是指发生在近地表且以变形为主的地质灾害,包括地面沉降、地裂缝、地面塌陷。
1.地面沉降
工作区内地面沉降主要发生于鲁北平原,即东营市,主要形成原因是深层地下水开采和油气开采。
在1985年国家地震局地球物理研究所和山东省地震局进行现代形变测量时就已发现东营市地面沉降,东营-垦利地面沉降量最大为80mm。2000年,地震部门对该区部分高程点进行了高程复测,高程点地面沉降量为248~397mm。
2002~2003年,有关部门通过对东营地区地面沉降观测点共43个点的监测结果分析发现,沉降量在30mm及30mm以上的有7个点,20mm~29mm的有14个点,10mm及以下的有5个点,其余在11~19mm之间。
上述地面沉降监测资料表明,鲁北平原区处于整体沉降中,局部的深层地下水强采区和油田集中区地面沉降已具有一定规模,应尽快建立工作区地面沉降监测体系。
2.地裂缝
地裂缝多分布在环渤海平原区、矿区、烟台、青岛、威海城区及震区。有的地裂缝系抽排水所致,有的与地面沉降伴生,有的是地震等内动力作用的结果。2005年1月18日发生在山东乳山的4.3级地震在宏观震中梅家形成了3条长达20m以上的地裂缝。地裂缝属于衍生地质灾害,当发育明显时具有潜在的危害性,并具突发性、群发性、不可控制性。
日照五莲市于里镇—管帅镇—汪湖镇一带发育一个地裂缝,走向北东,全长25km,宽约2km,总面积约100km2。目前已有3个乡镇28个村庄受到不同程度的影响,约2万人受灾,13875间房屋产生裂缝,其中无法居住的危房达10410间,坍塌房屋达500间;206国道多处产生横向裂缝;2座大坝及部分渠道产生变形及裂缝。其经济损失巨大,灾害隐患严重。初步勘查结果表明,其产生的主要原因为构造活动地震及附近采矿等人为因素影响造成的。
3.地面塌陷
山东半岛地区地面塌陷有两种。一种是采空塌陷,在矿山开采过程中,由于未对采空区进行填充或永久性支护,上方岩层在自重的作用下发生下沉,造成地面大范围塌陷。另一种是岩溶塌陷,在碳酸盐岩类地层分布地区,由于无节制超量开采岩溶地下水,或矿山排水不当,造成地下水动力条件改变引起地面塌陷。山东半岛城市群地区岩溶塌陷主要分布于淄博辛店水源地附近(尹建中,1996)。
二、斜坡环境变异灾害
斜坡环境变异灾害是指发生在沿海山坡和海底斜坡地带,由于重力失衡形成的岩石、土壤和泥沙的整体化塌落现象,包括滑坡、崩塌和泥(石)流,具有成因复杂、衍生性、潜在危害性、分布广、突发性、群发性,多数可控。
崩塌、滑坡、泥石流多发生于变质岩、侵入岩、寒武系石灰岩组成的中低山丘陵区,具有突发性强和一定的隐蔽性等特点,一旦发生常造成较大的经济损失和人员伤亡事故。工作区内济南、淄博、烟台、青岛均有崩、滑、流地质灾害发生。
重力地质灾害的主要表现形式为渣石流、崩塌等。近年来,此类事故时有发生,招远金矿玲珑选矿厂因连降大雨,尾矿库因山洪造成尾矿砂顺流而下,冲毁果园10余亩、庄稼地25亩,淤塞小型水库1座,此次事故还使3km长的河道淤积,经济损失35万元。
崩、滑、流的形成与地形地貌、气候的关系均比较密切,鲁中南低山丘陵区和鲁东丘陵区均有发育,工作区内则在济南、淄博、烟台、青岛较发育,各城市崩塌、滑坡、泥石流发生情况详见综述部分表32。
由综述部分表32可以看出,工作区内已发崩塌138处、滑坡67处、泥石流74处。调查得知区内泥石流灾害多为矿产开采的废渣堆形成的渣石流。
三、流体灾害
流体灾害是指山各种流体引起的各种地质灾害,包括海岸侵蚀、海水入侵、风暴潮、海啸、黄河尾闾摆动、坑道突水、港口淤积等。内、外动力对于这些地质灾害的形成均有贡献,其成因复杂。上述地质灾害多具有潜在的危害性、不可控性、群发性(个别灾种也可单独发生),其中的风暴潮、海啸和坑道突水还具有突发性。
1.海(咸)水入侵
(1)海水入侵的演化历史和重点入侵地段现状分布
1976年在工作区内的寿光、寒亭、莱州等地的地下水动态长期监测井中首先发现水质变咸、Cl-浓度增高等海(咸)水入侵现象,当时仅为几处孤立的点状入侵,整个70年代末至80年代初发展比较缓慢,入侵面积小,为发生阶段。80年代中后期,入侵面积迅速扩大,入侵速度达最大,整个莱州湾东、南沿岸连为一片,为快速发展阶段。90年代以来,海水入侵速度减慢,局部地段有减弱趋势,为缓慢发展阶段。
据调查统计,现阶段山东半岛地区海水入侵总面积1351.7km2(表8-1)。
表8-1 山东半岛地区海(咸)水入侵统计
(2)海水入侵的演化趋势
环渤海山东地区海(咸)水入侵发展经历了3个阶段:①20世纪70年代的初始阶段;②80年代的快速发展阶段;③90年代以来由于降水量有所增加,各地对海(咸)水入侵的危害有了足够的认识,并采取了一定的限采措施,海水入侵总体处于减缓阶段。
莱州湾东岸海水入侵主要以第四系地层为入侵通道,由于下伏基岩岩性为变质岩、花岗岩,透水性极弱,所以该区以海平面与基岩顶面交线作为最大入侵线。根据这一原则可确定海水入侵最大线位置。莱州湾东岸龙口平原区如不采取切实有效的地下水限采措施,地下水位将持续下降,海水入侵将最终危及整个龙口平原,最大入侵距离将达14.2km。其他地区入侵线已接近最大入侵线,不会再有大幅扩展。莱州湾南岸尽管第四系厚度较大,但咸水入侵并不会无限度地向内陆入侵,而是与地下水位负值漏斗规模、漏斗中轴线位置有关,最大入侵线位于负值漏斗南侧水力坡度恰为原始水力坡度时的位置,根据目前莱州湾南岸地下水开采布局、开采程度分析,地下水负值漏斗位置和规模不会再有较大变化,所以可依据现状漏斗情况确定最大入侵线。今后咸-卤水入侵的发展主要集中于广饶、寿光西部和昌邑市,未来将向内陆入侵3~15km,其他地区已接近入侵终止线,面积不会有太大扩展。
环渤海山东地区除莱州湾沿岸外,其他地区海水入侵均发生于主要河流入海口平原,入侵区附近第四系展布范围相对较小,第四系基底岩性致密,裂隙不发育,使得海水入侵的范围受到一定限制,且当地政府对入侵区地下水采取了一系列的限采措施,海水入侵得到遏制,有些地区入侵范围有缩小趋势。所以近期上述地区海水入侵总体上将维持现状,不会有较大变化。
2.风暴潮
山东沿海风暴潮的空分布有一定规律性,在莱州湾南岸,以风潮型春季风暴为主;在黄海沿岸以台风风暴型为主,主要发生在夏季。渤海南岸1993年11月初发生的一次大风暴,将黄河海港两侧的大部分护岸坝掏空,部分油田勘探坝被冲断成几段。
风暴潮向内地入侵少则5~10km,多则20~30km。1938年7月17日渤海南岸的风暴潮向陆地入侵达30km。1964年4月5日的风暴潮位达4.77m,使25个村5305户2.33万人受灾,3万亩农田谷物不生。风暴潮过后常瘟疫流行,海水入侵使大片农田盐碱化,淡水资源受污染,生态环境恶化,其产生的副作用常是几年难已消除,特别是对农业生产的影响常常是长期的。
3.海岸侵蚀
山东半岛陆地海岸线长3121km,主要为基岩海岸(占2/3,主要分布在山东半岛的东部、东南部、东北岸)、淤泥质海岸和沙质海岸(主要分布在鲁北沿海、莱州湾沿岸、胶州湾沿岸)。海岸侵蚀普遍存在,形式多样,程度不一,是一种灾害性的海岸地质现象。山东半岛的海岸侵蚀已给沿岸居民带来了严重的经济损失,对沿岸经济发展造成严重威胁。
工作区内海岸侵蚀较严重的地区有蓬莱—屺姆岛和黄河三角洲海岸。
4.港口、水库、海湾的淤积
港口、水库及海湾的淤积通常是由两方面造成的,其一是由于相邻陆区水土流失给海区带来大量的泥沙;其二是不合理的海岸工程布局改变海水流场而发生淤积。前者如胶州湾,对比1980年与1935年的面积发现,胶州湾总面积减少了112km2(高振华,1985;王文海,1985),年平均减少2.8km2,每年减少滩涂2.5km2。烟台、威海两市9条大河每年流入大海的泥沙达577.7×104m2。威海市远遥船坞是1963年投入80万元建成的,仅仅使用了10年,就被淤平报废。关于不合理海岸工程布局造成的海区侵蚀与沉积发生变化的实例更多,如青岛市第一和第二海水浴场前沿不合理的海岸工程改变了流场,造成两个浴场的沙子被不同程度地带走。
5.其他流体灾害
黄河尾闾摆动主要分布于黄河三角洲地区。自1855年以来,山东河段共决口45次,山于黄河含沙量高,易淤、易决、易徙。作为地上悬河的黄河河道的疏通与河堤的加固对于防御与减少其危害性至关重要。
坑道突水主要分布于招掖金矿井分布区。坑道突水是山东省近年来频发且较为严重的地质灾害,主要源于越界开采、乱开滥采、排水不当。
四、水土环境变异灾害
所有水质和土质的恶化现象均属于水土质变异,包括地下水污染、水土流失、沙土液化和土地盐碱化。这些地质灾害多数由外动力作用引起,均表现为潜在的危害性。除地下水污染外,其余均为衍生地质灾害;除沙土液化外,均可控制;沙土液化具有突发性。
五、其他地质灾害
1.潜在地质灾害
潜在地质灾害主要是指本来可以避免但由于不合理的规划而造成的灾害。其中最主要的是把工程建在断裂带上,这种建筑如同在建筑物下埋了一颗炸弹。此种情况在许多城市都可以见到。
2.古河道、古潮沟
古河道主要分布于渤海沿海地区、莱州湾、黄海近海地区。(海底)古河道岩相的多变性和结构的不稳定性是妨碍沿岸与海底工程的制约性地质灾害因素。
古潮沟主要分布于莱州湾、黄海西部浅海区。由于古潮沟内部与周边岩性的差异性,决定了其工程地质环境的亚稳定性。
3.海底隆起、底辟
海底隆起主要分布于莱州湾、黄海地区。无论是构造成因还是重力或冲刷侵蚀作用所致的海底隆起,均构成了横向失稳性地貌单元,是工程施工的妨碍因素。
底辟主要分布于莱州湾、黄海地区。底辟是由于构造活动性或密度的差异所形成的海底隆起形象,其以不稳定性为主要特点,是海底工程应予以避让和重点防御的限制性地质灾害因素。
4.气相灾害
气相灾害是指由地下天然气等气体所引发的各种地质灾害,主要为海底浅层气。成因复杂,具有潜在危害性、突发性、单发性和不可控性。
海底浅层气主要分布于渤海湾、莱州湾、黄海近海海底。海底松散沉积物中的天然气在构造、钻探等外力作用下形成喷沙和泥山,可颠覆海上钻井平台,是海底工程的潜在危害源。
7. 我国地质灾害的发育及危害特征
我国是世界上地质灾害特别严重的国家之一,地质灾害种类多、频度高、强度大、连续性强、分布面积广、危害程度大。已有资料表明,较严重的地质灾害有7类近30种,全国共发育特大型崩塌51处、滑坡140处、泥石流149处;大型崩塌3000多处、滑坡2000多处、泥石流2000多处;中小型崩塌、滑坡、泥石流达40多万处;岩溶塌陷近3000处,塌陷坑3万多个,塌陷面积累计达3000km2以上。全国有350多个县的上万个村庄、100多个大型工厂、55座大型矿山、3000km以上的铁路受崩塌、滑坡、泥石流的严重危害。全国1/2以上国土面积和2/3以上城市明显受到不同地质灾害的威胁,各种地质灾害除破坏环境、资源,直接威胁人民生命财产安全外,还危害到城市、交通和工程建设,影响社会稳定,对国民经济持续发展构成严重威胁。据统计,近年来平均每年死于常见地质灾害的人数达千人以上,超过了洪涝灾害的死亡人数;平均每年因常见地质灾害造成的经济损失高达270亿元,占全部自然灾害损失的1/4。
我国地质灾害发育具有明显的区域性特征,全国范围内大致可划分为4个地质灾害大区:①东部平原以地面沉降、地面塌陷为主的地质灾害大区;②中部丘陵山区以斜坡变形破坏为主的地质灾害大区;③青藏高原及大小兴安岭北段地区以冻融为主的地质灾害大区;④内陆高原、盆地以干旱、半干旱风沙为主的地质灾害大区。