工程地质案例
❶ 施工实例
1.工程概况
某工程占地面积12927m2。东邻主车间一锅炉房,最近处的距离仅7.5m,附近路面下有大口径(Φ1.5m)供水管、雨水管、污水管和煤气管,还有电力和电话电缆等重要公用设施,这些管线对开挖时产生的位移和沉降都很敏感。此地下工程开挖面积127m×71m,开挖深度4.6~6.7m。为确保施工期间周围建筑物和管线的安全,减少基坑开挖渗流对施工的影响,设计采用水泥土深层搅拌桩作侧向支护,以替代钢板桩。
2.工程地质条件
该场地的地质条件为:表层为1.7m杂填土,其下为2.3m褐黄色可塑粉质粘土、4.1m灰色淤泥质流塑粉质粘土、9.7m灰色流塑淤泥质粘土、20.9m灰色软塑粉质粘土。
3.施工方法
采用SJB-30型深层搅拌机,选用425号硅酸盐水泥,水泥掺入比为12%~15%,并掺入一定的早强剂和减水剂。桩与桩的搭接长度不小于200mm。为保证施工质量,相互搭接的两根搅拌桩施工间歇时间不应大于24h,如因特殊原因超过上述时间,应对最后一根先进行空钻留出榫头,以待下一批桩搭接。如间歇时间太长,与下一根桩无法搭接时,应在设计和建设单位认可后,采取局部补桩或注浆措施。
4.基坑开挖监测
开挖后基坑场地干燥,支护墙挺立,顶部最大水平位移0.25m,结构顶部最大沉降为6.4cm,满足设计的要求。
❷ 工程地质案例分析
给我你扣扣,我目前正在做一个这个方面的东西
❸ 崩塌勘查典型实例示范
1.5.1长江三峡链子崖音频大地电场法、甚低频电磁法裂缝、岩溶、煤洞勘测
链子崖位于长江三峡兵书宝剑峡出口处右岸,濒临江边的陡崖主体由二叠系栖霞组灰岩构成,底部为煤系软弱层。在长约700m,宽30~180m范围内发育有58条裂缝,将岩体切割成3个危岩区,即南部的I区To至T6缝区和北部的Ⅲ区T8至T12缝区以及中部的Ⅱ区T7缝区。其中T8至T12缝区危岩体紧临长江,南、西分别被T8、T9、T11缝和T12缝切割,北、东两侧临空,底部煤层基本被采空,是防灾治理、监测预报的重点险段。
到20世纪80年代中期,经过长期的大量调查研究工作,链子崖可见裂缝的分布情况已基本查清;但是,在表土覆盖地段的裂缝分布、延伸、连通交切情况,隐伏构造、岩溶、煤洞的分布等尚不清楚。针对上述问题,地质矿产部水文地质工程地质技术方法研究所于1988年采用了音频大地电场法、甚低频电磁法勘测裂缝、岩溶、煤洞的分布情况。
1.5.1.1 隐伏裂缝勘测
基于裂缝发育的不规则性和地形条件,勘测中采用了异常追踪法:即从已知裂缝的隐没端开始,根据裂缝和异常发育趋势布设勘探剖面,同时辅以现场地质调查,进行异常的定点、连接,循序渐进,直至查明(图1-1)。裂缝上方的音频大地电场和甚低频电阻率异常曲线一般形态尖锐,幅值较大(图1-2)。
裂缝勘测结果表明:链子崖南部Ⅲ区和北部I区裂缝已相互连通。特别是确定了Ⅲ区分布的 T8-1、T8-1-2、T9、T11裂缝均与T12裂缝连通以及T8-0缝向SE方向延伸至陡壁边缘,对危岩体稳定性评价至关重要。勘探结果在随后的工程探槽(图1-3)和声波跨孔测试中得到验证。
1.5.1.2隐伏煤洞勘测
图1-1追踪裂缝的测线布置及异常分布
链子崖的变形与底部马鞍山组(P1mn)煤层采空有直接关系。根据调查访问资料,链子崖底部有采煤巷道20余条,基本沿地层走向分布。为了解其存在状况,用音频大地电场法和甚低频电磁法在链子崖顶部展开了面积性勘测。
煤洞的电场异常不同于裂缝,一是幅值较小、宽度较大、规律性较强(图1-4a)。
勘测共确定煤洞14条,煤洞走向与岩层走向基本一致(SW—NE),长度300~400m,间隔30~40m,勘测结果和实际情况相符。
1.5.1.3隐伏岩溶勘测
平行于链子崖陡崖,勘测中追踪发现一条幅值高、宽度大的异常(图1-4b)带近南北向发育,其东侧裂缝发育,西侧则明显减少;该异常带与北部的黄泥巴壁相接,根据异常形态、结合地质特征分析,推测为一岩溶发育带,后期的勘探工程证实了这一推测(连克等,1991)。
图1-2隐伏裂缝实测剖面(T9缝前端)
图1-3TC3工程探槽展示图
1.5.2链子崖隐伏裂缝的声波检测
链子崖危岩体存在12组50余条裂缝,出露最宽约2m,深不可测。其中T8及T9裂缝,北端隐伏于覆盖层下,是否延伸与T12缝贯通,成为查明岩体结构与方量和确定治理工程设计的关键,为此,在上述裂缝延伸的关键部位,布两钻孔,孔距21m,深150余m。由地质矿产部水文地质工程地质技术方法研究所于1989年承担跨孔声波测试,查明裂缝的延伸及倾向。
现场地质剖面概况及跨孔声波测试示意图如图1-5a。采用等高同步测试法、扇面测试法,测取的波形记录分别如图1-5b及图1-5c。这些记录的推论是:接收到的是绕射波,其地质模型应如图1-5d,即裂缝张开无充填。显然,只有存在地表覆盖层的绕射波,才会出现发射与接收点靠近覆盖层声传播时间短,远离覆盖层则声传播时间加长。为证实现场测试推断是正确的,在室内按推理的地层模型,进行模型超声测试,取得和现场一致的测试结果。
图1-4Ex、ρ。曲线图
另外,在一个孔内逐点发射,并接收裂缝的反射波,根据反射波的声波走时,推断出裂缝的倾向,与地质工程师从地质构造的推论相一致。至此对裂缝的性状给出明确的结论,为链子崖危岩体的治理,提供了依据,受到国家科委表彰(展建设等,1991)。
1.5.3危岩锚固钻孔内裂缝及裂缝密集带声波检测
长江三峡链子崖50000方危岩体防治工程,采用锚索加固处理,锚固孔深30~40m不等,最深达64.2m。危岩体主要以栖霞灰岩为主,裂隙发育且为张性,局部成破碎软弱带。锚固施工需掌握上述裂缝、软弱结构面在锚固孔中的位置,分布及几何尺寸。地质矿产部水文地质工程地质技术方法研究所承担此项特种检测任务,研制一发一收干耦合换能器,在不能存留井液的水平干孔中,完成了共2670m的测试,指导了施工。图1-6其中三个钻孔的测试结果,其中视声速低于1000m/s(图中粗实线部分)的低速孔段均为裂隙及裂隙密集带(展建设、曹修定实测,1996)。
1.5.4岩崩堆积体灌浆补强效果声波测试
1998年地质矿产部水文地质工程地质技术方法研究所在三峡库区迁建城镇新址岩崩堆积体工程改造现场,完成了灌浆补强前后岩体物理力学强度变化试验工作。采用“一发双收”单孔及跨孔声波检测对半径为1.7m圆周等分的六个钻孔中等边三角形分布的三个钻孔作为实施灌浆孔,另三个按等边三角形分布的钻孔及圆心的钻孔作为声波检测孔。采用灌浆前、灌浆后7d、灌浆后28d进行声波单孔测试及跨孔声波透视。
图1-5各种方法测试示意图及推测的地层模型
图1-6危岩锚固孔内裂隙及软弱破碎带声波测试声速-孔深曲线粗实线为裂隙及破碎带
单孔测试采用敲击作震源产生纵波及横波,以三分量检测器贴壁接收;跨孔测试用小药量爆炸震源的以三分量检测器贴壁接收。
岩崩堆积灌浆补强分别在四川奉节及巫山两地各做两组试验,现仅以奉节组试验为例加以说明。图1-7为灌浆前后单孔一发双收的时差-孔深对比曲线;图1-8为灌浆前后跨孔的声速-孔深对比曲线。由跨孔测试结果可见灌浆后声速有明显提高,最高可达60%以上;而单孔测试最高14%、最小仅2%。单孔测试声速变化小的原因是此法能了解沿孔壁一个波长范围的声速,单孔声速的提高,说明灌浆范围已达声波观测孔的孔壁;而跨孔测试是直接了解两孔连线间的岩体灌浆情况。
图1-7灌浆前后单孔一发双收的时差-孔深对深对比曲线
图1-8灌浆前后跨孔的声速-孔深对比曲线
由于测试纵波声速的同时,还测试了横波声速,因此可计算出岩崩堆积体灌浆前后的动弹性力学性能的变化,见表1-4(李洪涛等实测,1998)。
1.5.5长江三峡链子崖煤层采空区老空洞探地雷达探测
长江三峡链子崖底部煤层采空区的分布及其后期充填情况是评价链子崖危岩体稳定性的重要资料,同时也是确定治理工程混凝土承重阻滑键布置的重要依据。为此,在充分的地质调查分析基础上,委托煤炭科学研究总院采用地质雷达技术,利用PD2、PD6和PD1三个勘探平硐对煤层采空区的空洞或充填疏松地带进行了探测,取得了较好的效果。
表1-4奉节动弹性力学参数
地质雷达资料的解释是靠图形识别来进行的。具体解释过程是在资料处理后进行的对比,即对比波在相位、周期(频率)、同相轴和波形等运动学方面的特点,以及测点间在二维(横向与纵向)方向上组成的图形特征。同时,还应注意到相位的强弱(动力学特点)。图1-9为PD2沿线的一段探地雷达图像,图中44~61m之间显示为灰岩分布区,在76~85测点之间出现周期加大,相位改变,呈现明显弧形同相轴,反映的是煤层采空区。根据采空区的这种特征所得PD2平硐的探测成果列于图1-10与表1-5中(刘传正,2000)。
图1-9PD2Z线雷达图像(100MHz)
1.5.6金丽温高速公路崩塌体井内电视探测
由于浙江金丽温高速公路k81段高边坡地质条件复杂,岩层破碎,构造挤压,节理裂隙及断裂构造十分发育,处于崩塌体范围内。根据甲方要求对锚索孔B6-5、B6-9、B4-8、B6-16、B6-19、B6-23进行测试,以上各孔孔径为φ130mm,锚索钻孔俯角15°。主要查找钻孔中裂缝(图1-11)及破碎情况(封绍武实测,2002)。
图1-10PD2平硐雷达测线布置与探测成果
1—煤层采空区;2—充填但未压实的采空区
表1-5PD2平硐探地雷达勘查异常解释综合表
图1-11浙江金丽温高速路k81段高边坡(水平钻孔—干孔)裂缝图片
参考文献
段永侯,罗元华,柳源等.1993.中国地质灾害.北京:中国建筑工业出版社
郭建强,彭成,孙党生等.2003.链子崖危岩体勘查中物探技术的应用.水文地质工程地质
胡厚田.1989.崩塌与落石.北京:中国铁道出版社
李媛,张颖,钟立勋.1992.中国滑坡崩塌类型及分布图说明书.北京:中国地图出版社
李智毅,王智济,杨裕云.1996.工程地质学基础.武汉:中国地质大学出版社
李智毅,唐辉明.2000.岩土工程勘查.武汉:中国地质大学出版社
李大心.1994.探地雷达方法及其应用.北京:地质出版社
连克,朱汝裂,郭建强.1991.音频大地电场法在地质灾害调查中的应用尝试——长江三峡链子崖危岩体隐伏地质结构的探测.中国地质灾害与防治学报
刘传正.2000.地质灾害勘查指南.北京:地质出版社
晏同珍,杨顺安,方云.2000.滑坡学.武汉:中国地质大学出版社
展建设,吴庆曾.1991.跨孔声波穿透法在探测三峡链子崖隐伏裂缝中的应用.中国地质灾害与防治学报
张咸恭,李智毅等.1998.专门工程地质学.北京:地质出版社
❹ 关于路基,桥梁,隧道工程地质问题的案例
存在
❺ 军都山隧道施工地质超前预报实例
隧道施工地质超前预报问题是怎么提出来的?1985年底,铁道部专业设计院邀请著者到军都山隧道现场去看看塌方事故处理工作。著者到现场对军都山隧道正在施工的掌子面进行了考察,听取了工地施工人员的反映,当时在2#斜井进主洞处正处于停工状态,通不过去,要我们给看看能不能过去。我们做了些地质工作,认为前方也不过是4~5m宽的一条断层带,可以用紧跟支护的办法强行通过。他们按我们的意见办了,结果很快就通过去了。使停工达半年之久的掌子面开始了正常掘进。考察过程中,还了解到这个隧道掘进过程中经常发生塌方、涌水。引起塌方的地质因素是什么?我们经过分析认为,主要有4个:①断层;②大节理;③风化的岩脉;④地下水。这就提出了一个问题,有没有办法对施工掌子面前方的断层、节理、岩脉及地下水做出超前预报?我们经过认真考虑以后,认为是可以办得到的,这就是用地质的办法作超前地质预报。刚提出这个办法时,有人讲是不可能的。他的根据是什么?因为20世纪70年代成昆线隧道施工中就曾碰到过这样的一个问题,塌方、涌水非常严重。曾经成立过一个地质预报组,研究施工过程中掌子面前方地质预报方法和技术问题。当时他们的着眼点是什么?主要是抓前方地质预报的新技术、新方法,结果没有获得成功,而预报组变成了抢险组。因为新技术没有研制成功,预报不了前方的地质条件,塌方、涌水得不到超前控制,塌方、涌水造成的停工不断产生,一出现事故就把他们找去,研究治理对策,他们的工作内容变成了抢险。地质预报组变成了抢险组,地质预报落了空,成了一个梦想。我们这次又提出了地质超前预报,自然就有人怀疑能否成功的问题了。关键在于怎么作,也就是技术路线问题。当时是议论纷纷,有的说要搞物探,有的说要搞水平钻进,有的说要搞平行导洞探测。我们分析了各种方法的使用条件和成功的可能性,决定不把这些技术作为主要预报手段,而把地质素描作为主要手段。因为物探方法主要困难在于掌子面形状太杂乱,搞接触物探耦合问题没有办法解决,非接触物探精度又不高。再有,断层带宽度只要大于30cm,就会引起塌方,而当时物探精度可能测得的断层带宽度要大于1.5m,现有物探水平达不到要求测的小断层条件,所以我们否定了这个技术;钻探技术问题,日本青涵隧道曾用过,我国大瑶山隧道也曾用过,效果也不是很理想,特别是对施工有干扰,施工单位也不欢迎;平行导洞我们采用过,结果也不理想,原因是有的平行导洞施工进度常落后于正洞,起不到预报作用;即使超前了,预报的精度也不高,后面我们将介绍这方面资料,在此暂不详述。到底采用什么方法好?经过比较,还是采用以地质方法预报为基础,也就是以地质素描为基础,辅助以风钻孔钻速测量、声波测试等手段开展超前预报工作,这样,获得了比较满意的结果。当时现场要求我们超前预报30m,我们办不到,根据他们施工所用台钻车的条件,用两根钻杆接起来可以超前打15m深,因此,开始时我们是采用15m深的风钻孔测试和地质素描资料分析进行超前预报。后来钻杆接头没有了,就采取8m深的风钻孔测试加地质素描资料分析进行超前预报。工作做得越多,胆子越大。实践结果表明,5m深的风钻孔也就可以满足要求。因为坏的地方摆在你眼前,不需要再作预报,好的地方一次爆破深度也不过2~3m,前方还有2m厚的防护层,基本可以保证施工安全。这样我们就形成了一套简易而又非常有效的隧道施工地质超前预报的方法。概括起来,这个方法就是以洞体地质素描为基础,配合风钻孔的钻速测量、声波测量、压水试验等为辅助的综合超前地质预报方法。
这样一项工作的经济效益是非常大的。以军都山隧道为例,施工的第一年未作地质超前预报工作,5个掘进掌子面停工650多天,占施工日期的40%,就等于两个掌子面全年停工;第二年我们开始研究预报方法,边研究边预报,6个掌子面工作总共停工了129天,仅占施工日期的6%,也就相当于一年里只有半个掌子面停工;施工的第3年,即1986年7月以后,我们全面地开始了地质超前预报工作,在以后的施工中基本没有发生大的塌方。下面举几个预报成功的实例:
(1)隧道掘进过程中曾遇到一条宽达60多米的F9 断层破碎带,由于坚持了地质超前预报工作,顺利通过施工,没有发生大的导致停工的塌方。
(2)1986年3月我们对 DK291+162—DK290+805段长达270m一段围岩的类别做出了预报,定为Ⅳ~Ⅴ类围岩,由于心中有数,施工加快了速度,结果创造了月成洞241m的全国隧道施工记录。
(3)在隧道DK285+410地段,我们根据地质素描资料预报前方存在有断层交汇带,岩体破碎,建议采用短进尺、强支护的手段进行施工,结果长60m的Ⅱ类围岩顺利通过施工。
上面实例可以说明,隧道施工地质超前预报不仅是可行的,而且是有很大的经济效益与社会效益。下面简单介绍一下军都山隧道施工地质超前预报工作情况。
军都山隧道长8.46km,是双线隧道,隧道截面为10.5m×11m。隧道经过地段火山岩占70%,地质条件比较复杂。隧道经过地段有三个火山口,对隧道所通过地段的地质条件产生了很大影响。但是这个地区的地质构造还是很有规律的,测绘时见到这个地区存在的断层主要为北西向,少量的是南北向,而东西向和北东向的极少见,在地质图上没有显示。地质图中编号的断层共11条,都是北西向的,北东向的仅有节理。这里应该强调地说一句,隧道开挖过程中间见到了大量的、规模不大的东西向的和北东向的小断层和大节理。这表明地面测绘结果不能完全反映地下的情况。我们第一次去考察时,他们把隧道线路地质图给我们看了一下,问我们哪些地方在施工过程中会出现麻烦,哪些地方是危险地段。我们根据看到的印象和他们提供的1∶2000的地质图,当时明确地提出了这条线路上存在5个施工困难地段。第一个是进口处,岩体风化破碎,节理面内夹泥,岩体松动,而且还有少量地下水,这个地段施工时要注意产生塌方;第二个施工困难地段是隧道通过黄土地段,这个地段有地下水,施工时会遇到困难,主要困难是洞壁收敛变形大,洞体成型困难;第三个施工困难地段是小金房沟地段,那里存在一个断层束,而且泉水溢出比较多,地势低,说明岩体破碎,有可能是隧道施工最困难的地段,塌方、涌水都会出现,施工中必须作好预防塌方措施准备;第四个施工困难地段是花岗岩与火山岩接触带,这个地方图上没有绘出断层,而在附近画有一条断层,这里有不少泉水溢出,而溢出点不在断层带上而在花岗岩与火山岩接触带上,这儿地形也偏低,地下岩体肯定是比较破碎的,施工通过这个地方时也有可能产生塌方和涌水;第五个施工困难地段是隧道出口处,这儿是由花岗岩组成的,但是有大量基性岩脉穿插,主要为煌斑岩,在这个地区煌斑岩脉风化都比较厉害,而且路边上也可见到泉水溢出。这个地方也可能出现比较大的塌方,但因为这儿地势较低,地下水量和水头都不大,而不会产生涌水。今天,军都山隧道已经竣工,施工结果证明,当时做出的判断是正确的,实际上这也是一种预报,是战略性预报。可以帮助施工单位作好施工抢险准备,避免问题出现时措手不及。在作了上面预报的3个月以后,我们到现场落实地质超前预报研究工作,来到出口段时,这时出口段正好发生了一次大塌方,从地下塌到山顶,塌方产生的原因就是掘进中截断了一条倾向洞外的煌斑岩脉,这条煌斑岩脉已经风化成泥状了,开挖过程中首先在洞底出现,施工人员没有重视,没有及时支护处理,在放第二炮时就发生了大塌方,主要是上盘部分大量滑塌下来。这个塌方造成停工达1个半月之久。当时工地停工一天损失约5万元。这次塌方停工造成的损失就达200多万元。我们目前存在一个问题,施工中出现了事故造成200多万元损失好像是合法的,为了避免事故提前作一点科研和技术工作,申请一点儿投资那是难上加难,而且先期作点预报性工作,预报准了,避免了塌方,多数是不承认的,因为没有塌。谁也没有看见造成什么损失,怎么好承认,这是隧道施工地质预报工作的又一难题。实际上这是一个重大认识误区。以前的施工没有地质超前预报,对前方地质情况不太了解,掘进带有很大的盲目性,盲目的掘进就避免不了不出事故。地质超前预报实际上是帮助施工单位查明掌子面前方的地质情况,情况明了,就可以做到有科学依据、有准备、有计划地掘进,克服了盲目性。实际上施工地质超前预报工作具有隧道施工发展划阶段的作用,也就是由盲目的掘进转变为有科学依据的掘进。这在军都山隧道施工中和以后的其他隧道施工中都具有重要意义。
图9-1 地上与地下节理间距分布对比
图9-2 2#斜井地段地表和地下节理统计
●节理面开度小于1mm的节理;×节理面开度为1~5mm的节理;○节理面开度大于5mm的节理
上面讲到,地面测绘观察到的地质构造和地下开挖揭露出来的地质构造情况不完全一样,现在来举几个实例说明一下。下面几个资料是在军都山隧道工作中取得的,如图9-1所示,a表明地面测绘统计得的节理间距大约主要为0.7~0.8m,c是在地下统计得的大节理间距主要为1.0~1.2m,a与c的分布规律大本相似;b为地下统计得的所有的节理的分布情况,主分布的节理间距为0.2~0.4m,这是为什么?b统计的资料中有很大假象,这种小间距的节理实际上是施工爆破引起的。地上、地下节理对比时应采取较大的节理,大节理间距的分布是较相近的。这个特征我们可以从下面两张节理统计极点投影图上看得更清楚。图9-2的资料说明地表的构造,特别是小小构造,大节理、小断层,地下见到的与地表见到的不一样。前面已经谈过小金房沟地段,地面见到的断层仅有5条,而地下开挖遇到的有100多条,断层带宽度达2m以上的也有几十条,这说明它们之间的差别是相当大的。由于有这么多差异,所以我们提出要作施工地质超前预报。施工地质预报工作量很大,说起来容易,实际作起来可不那么简单。为了统一管理我们编写了《军都山隧道快速施工地质超前预报指南》,有了《指南》施工单位下死命令将地质超前预报纳入为一道工序,硬性规定必须贯彻执行。这是一个非常重要的条件,没有施工部门的配合,方法再好也发挥不了作用。这个《指南》现在已经由铁道出版社正式出版,铁道部基建局决定推广这一技术。应该说这是隧道施工中的一个重大举措。它将对我国隧道建设事业发挥重要作用。
❻ 地基基础设计中的工程地质评价及工程案例分析有吗
到专业的建筑室去,大把的
❼ 工程事故案例分析
四川省工程质量事故典型案例
最近几年来,在对工程质量事故鉴定工作中,我们收集了一些典型的工程质量事故案例。这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。现列举一部分,供大家参考。
案例一:
某工厂新建一生活区,共14幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm以上。事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为100kN, Es为4Mpa。设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为-1.4m~2m左右。该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。
案例二
某市一商品房开发商拟建10栋商品房,根据工程地质勘察资料和设计要求,采用振动沉管灌注桩,桩尖深入沙夹卵石层500以上,按地勘报告桩长应在9~10米以上。该工程振动沉管灌注桩施工完后,由某工程质量检测机构采用低应变动测方式对该批桩进行桩身完整性检测,并出具了相应的检测报告。施工单位按规定进行主体施工,个别栋号在施工进行到3层左右时,由于当地质量监督人员对检测报告有争议,故经研究决定又从外地请了两家检测机构对部分桩进行了抽检。这两家检测机构由于未按规范要求进行检测,未及时发现问题。后经省建筑科学研究院对其检测报告进行了审核,在现场对部分桩进行了高、低应变检测,发现该工程振动沉管灌注桩存在非常严重的质量问题,有的桩身未能进入持力层,有的桩身严重缩颈,有的桩甚至是断桩。后经查证该工程地质报告显示,在自然地坪以下4~6m深处,有淤泥层,在此施工振动沉管灌注桩由于工艺方面的问题,容易发生缩颈和断桩。该市检测机构个别检测人员思想素质差,一味地迎合施工单位的施工记录桩长(施工单位由于单方造价报的低,经常利用多报桩长的方法来弥补造价),将砼测试波速由3600米/秒左右调整到4700~4800米/秒,个别桩身经实测波速推定桩身测试长度为5.8m,而当时测试桩长为9.4m,两者相差达3.6m。这样一来,原本未进入持力层的桩,严重缩颈桩和断桩就成为了与施工单位记录桩长一样的完整桩。该工程后经加固处理达到了要求,但造成了很大的经济损失。
案例三
某市一开发商修建一商品房,为了追求较多的利润,要求设计、施工等单位按其要求进行设计施工。设计上采用底层框架(局部为二层框架)上面砌筑九层砖混结构,总高度最高达33.3m,严重违反国家现行规范〈建筑抗 设计规范〉GBJ11-89和地方标准〈四川省建筑结构设计统一规定〉DB51/5001-92的要求,框架顶层未采用现浇结构,平面布置不规则、对称,质量和刚度不均匀,在较大洞口两侧未设置构造柱。在施工过程中六至十一层采用灰砂砖墙体。住户在使用过程中,发现房屋内墙体产生较多的裂缝,经检查有正八字、倒八字裂缝;竖向裂缝;局部墙面出现水平裂缝,以及大量的界面裂缝,引起住户强烈不满,多次向各级政府有关部门投诉,产生了极坏的影响。
案例四:
某县一机关修建职工住宅楼,共六栋,设计均为七层砖混结构,建筑面积10001平方米,主体完工后进行墙面抹灰,采用某水泥厂生产的325水泥。抹灰后在两个月内相继发现该工程墙面抹灰出现开裂,并迅速发展。开始由墙面一点产生膨胀变形,形成不规则的放射状裂缝,多点裂缝相继贯通,成为典型的龟状裂缝,并且空鼓,实际上此时抹灰与墙体已产生剥离。后经查证,该工程所用水泥中氧化镁含量严重超高,致使水泥安定性不合格,施工单位未对水泥进行进场检验就直接使用,因此产生大面积的空鼓开裂。最后该工程墙面抹灰全面返工,造成严重的经济损失。
案例五:
某县级市一乡村修建小学教学楼和教师办公住宿综合楼,乡上个别领导不按照有关基本建设程序办事,自行决定由一农村工匠承揽该工程建设。工程无地质勘察报告,无设计图纸(抄袭其它学校的图纸),原材未经检验,施工无任何质量保证措施,无水无电,砼和砂浆全部人工拌和,钢筋砼大梁、柱子人工浇注振捣,密实度和强度无法得到保证。工程投入使用后,综合楼和教学由于多处大梁和墙面发生较严重的裂缝,致使学校被迫停课。经检查,该综合楼基础一半置于风化页岩上,一半置于回填土上(未按规定进行夯实),地基已发生严重不均匀沉降,导致墙体出现严重裂缝;教学楼大梁砼存在严重的空洞受力钢筋已严重锈蚀,两栋楼的砌体砂浆强度几乎为零(更有甚者个别地方砂浆中还夹着黄泥),楼梯横梁搁置长度仅50mm,梁下砌体已出现压碎现象。经鉴定该工程主体结构存在严重的安全隐患,已失去了加固补强的意义,被有关部门强行拆除,有关责任人受到了法律的惩办。
案例六:
某县有关部门为教师建一广厦工程,位于河边,其上游数百米为电站大坝。该工程于1995年11于月开工建设,1997年元月竣工。具有关资料表明,该工程所在地20年一遇洪水水位313.50(绝对标高),但建设、施工单位擅自将该工程±0.00标高由314.40m降到308.16m。致使该工程自1997年投入使用以来,遭遇洪水淹没五次,洪水水位高出二楼地面约70cm(相当于绝对标高312m),底楼地面受洪水冲刷已多处出现直径约1m~2m、深约0.5m~1m的管涌坑,直接危及地基基础的长期稳定和上部结构的安全。受电站卸洪浪涌冲击压力影响,二楼楼面板向上反拱(据住户反应由二楼板缝冒出的水柱高达70cm),室内瓜米石地坪多处破损并与空心板剥离,二楼部分楼面板已不满足建筑构件安全使用要求。工程设计二个单元九层,实际建造四个单元十层,顶层部分住户擅自加建到十一层,不满足现行国家标准《砌体结构设计规范》GBJ3—88》和《建筑抗震设计规范》GBJ11—89~要求。该工程经有关部门鉴定为不合格工程。
案例七:
四川省某市玻璃厂1999年4月为增加生产规模扩建厂房,在原来天然坡度约22°的岩石地表平整场地,即在原地表向下开挖近5m,并距水厂原蓄水池3m左右,该蓄水池长12m、宽9m、深8.2m,容水约900m3。玻璃厂及水厂厂方为安全起见,通过熟人介绍,请了一高级工程师对玻璃厂扩建开挖坡角是否会影响水厂蓄水池安全作一技术鉴定。该高工在其出具的书面技术鉴定中认定:“该水池地基基础稳定,不可能产生滑移形成滑坡影响安全;可以从距水池3m处按5%开挖放坡,开挖时沿水池边先打槽隔开,用小药量浅孔爆破,只要施工得当,不会影响水池安全;平整场地后,沿陡坡砌筑条石护坡;......本人负该鉴定的技术法律责任”。最后还盖了县勘察设计室的“图纸专用章”予以认可。
工程于7月初按此方案平基结束后,就开始厂房工程施工,至9月6日建成完工。然而,就在9月7日下午5时许,边坡岩体突然崩塌,岩体及水流砸毁新建厂房两榀屋架,其中的工人3死5伤,酿成了一起重大伤亡事故。
该工程边坡岩体属于裂隙发育、遇水可以软化的软质岩石,虽然属于中小型工程,但环境条件复杂,施工爆破、水池渗漏、坡体卸荷变形等不确定的不利影响因素甚多,在没有基本的勘察设计资料的前提下采用直立边坡,破坏了原边坡的稳定坡角,而且未采用任何有效的支挡结构措施,该边坡失稳是必然会发生的。若有正确的工程鉴定,并严格按基建程序办事,采用经过勘察设计的岩石锚桩(或锚杆)挡墙和做好水池防渗处理措施则是能够有效保证工程边坡安全的。
该高工的“技术鉴定”内容过于简略,分析评价肤浅、武断,未明确指出及贯彻执行现行勘察设计技术规范规定的技术原则及技术方法,主要结论建议缺乏技术依据,尽管其中有关地基施工中关于松动爆破和开槽减震的建议是正确的,也是有针对性的,但未经设计计算的有关边坡稳定的结论是不恰当的。有关用条石挡墙护坡的建议也不是该工程边坡条件下能确保边坡安全的有效支挡结构技术措施,而有关采用坡度为1:0.05的放坡建议,则更是没有贯彻现行规范的基本规定,缺少相应的论证分析,它的误导为该工程事故埋下了安全隐患。该“技术鉴定”虽然盖有县勘察设计室的“图纸专用章”,但却无一般勘察、设计单位通常执行的“审核”、“批准”等技术管理和质量保证体系,从技术鉴定的内容到形式都缺乏严肃性;而且这种技术鉴定缺乏委托方与承担方之间的有关目的、任务、质量要求等基本的书面约定,这就从根本上影响了技术鉴定工作的深度和技术质量。
平基施工过程中及完工前后所发现的漏水等边坡岩体不稳定因素的征兆,虽然有关各方曾予以一定程度的重视与研究,但由于缺乏岩土工程及支挡结构方面的专业技术知识与经验,对隐患认识不足,未能采取相应措施,而继续盲目施工至全部工程(人工边坡及厂房扩建)结束和水池继续运行,并在7月3日决定将水池蓄水至7m水深,使整个工程的安危事实上依赖于个人狭隘的专业技术知识与经验上。
综上所述,此次事故造成人员伤亡,经济损失巨大,以及负面社会影响,主要是由于违章进行工程鉴定、处理方案错误所至。从事工程鉴定的技术人员以及管理者应从此次事故中汲取经验教训,严格按照国家的统一鉴定方法与标准进行工程鉴定,即按照:客户委托,确定鉴定目的、范围和内容;初步调查;详细调查及检测验算;安全性、使用性鉴定评级;可靠性评级;出具鉴定报告及处理意见的基本鉴定程序规范、标准地进行工程鉴定。
❽ 工程应用实例
【工程实例】 深圳地铁益田站桩外止水帷幕
①工程概况
益田站是深圳地铁一号线的重要工程,它位于深圳市福田区福华路段,工程采用顺作二层三跨框架式结构。基坑中部、顶部为冲积粘性土、砂层及人工堆积层,底部为残积土层。场地地下水为动水,水流自东向西,地下水埋深3~5.7 m,水位变幅1~1.5 m。工程两侧地下管线密布,北侧有正在建设的深圳市邮电枢纽中心大厦(A56)。该工程围护结构为圆形和椭圆形的人工挖孔咬合桩,为保证围护结构的施工,需在围护结构外侧施作桩外止水帷幕,然后通过在基坑内降水,以满足围护结构的安全施工。
②方案设计
根据工程地质及水文地质特征,采用地表垂直封闭式止水帷幕。注浆帷幕设置三排,注浆孔梅花型布设,注浆孔间距1.15 m,排距0.58 m。设计注浆帷幕厚度1.5 m,帷幕深度以进入相对不透水层2.5 m。
③注浆材料
注浆材料采用普通水泥-水玻璃双液浆,水泥采用早强型32.5 R普通硅酸盐水泥。浆液配比为:水泥浆水灰比1∶1~1.33∶1、水泥浆与水玻璃体积比1∶1~1∶0.8、水玻璃浓度25~35Be′。
④注浆参数
浆液扩散半径0.6 m,注浆终压1~1.2MPa,浆液凝胶时间50sec~1min30sec,注浆速度20~30L/min,注浆分段长度0.4 m,单孔单段注浆量根据地质条件分别取100 L(砾质粘性土)、150 L(砾砂层)、120 L(粉质粘性土)。
⑤注浆工艺
采用袖阀管后退式分段注浆工艺。注浆顺序采取约束-发散性方式。
⑥注浆效果检查评定
注浆截水帷幕施工结束后,测试地层渗透系数为1.8×10-5~2.5×10-6cm/s,满足工程安全施工要求。在随后桩基开挖中,仅有少量渗水。
【工程实例】 深圳地铁金-益区间桩间止水帷幕(基坑开挖前)
①工程概况
深圳地铁一号线10标段金益区间围护结构采用钻孔咬合桩工艺。在钻孔桩施工过程中,因受管线穿越制约、C15缓凝混凝土的早凝事故及施工机械故障等因素的影响,致使部分钻孔桩未能咬合或不能施作,破坏了围护结构的连续性,为防止基坑开挖过程中该部分发生涌水、涌砂等现象,决定在钻孔桩缺陷处通过基坑开挖前桩间止水,以降低地层渗透性,提高围护结构的整体性,保证基坑开挖的安全顺利施工。
②方案设计
针对钻孔桩相切、钻孔桩相离和空桩三种具体情况进行方案设计。当钻孔桩相切时,共布设3个注浆孔,1 个位于孔桩交接处内侧,另外2 个沿孔桩相切处外侧切线对称布设。注浆孔间距0.72 m,排距0.57 m,浆液扩散半径为0.4 m;当钻孔桩相离时,在外排补作三个钢筋混凝土桩,对各桩间相接处的空隙进行单孔注浆,注浆孔共布孔4个,注浆孔沿相邻桩切线方向,距切点距离为30cm;当由于管线影响,致使管线下方钻孔桩无法施作时,原则上采用垂直注浆止水帷幕,必要时在管线两侧适当钻设斜孔,确保注浆的连续性和整体性。注浆孔设计深度为地表以下17 m,进入相对隔水层2 m,注浆带为地表下3~17 m。
③注浆材料
注浆材料采用普通水泥-水玻璃双液浆,水泥采用32.5 R普通硅酸盐水泥。根据室内及现场试验,双液浆浆液配比为:水泥浆水灰比1∶1~1.33∶1、水泥浆与水玻璃体积比1∶1、水玻璃浓度32Be′。
④注浆参数
浆液扩散半径0.4 m,注浆终压1MPa,浆液凝胶时间50sec~1min30sec,注浆速度20~30L/min,注浆分段长度0.4 m,单孔单段注浆量根据地质条件分别取60 L(砾质粘性土)、90 L(砾砂层)、120 L(空桩),当采取单孔时,单段注浆量取90 L。
⑤注浆工艺
采用袖阀管后退式分段注浆工艺。
⑥注浆效果检查评定
注浆过程中主要采取定压注浆,要求每个孔每段必须达到设计的注浆压力。注浆后开挖过程中,大部分桩间无渗漏水现象。对于局部存在桩间渗漏水时,采取二次复注措施,确保了桩间止水效果。
【工程实例】 广州地铁公园前站桩间止水帷幕(基坑开挖后)
①工程概况
广州地铁公园前车站全长450.9 m,工程主要结构为ϕ1200mm人工挖孔桩,桩间距1300mm,桩长18~23 m。车站分A、B、C、D四个施工区段。在主体结构施作后,部分桩间及锚索点渗漏水严重,个别地方还出现喷水、涌水。据统计滴水部位8处,线流部位21处,涌水5处,喷水1处。
②方案设计
对于渗漏水的治理有两套方案,一是垂直注浆治水方案,即在桩间一侧,远离桩间0.75 m,垂直地面布设一排注浆管,注浆后,形成一道防水帷幕;二是水平治水分案,哪里出水堵哪里,有的放矢。经论证比选,确定采取水平注浆治水方案。
③注浆材料
注浆材料采用普通水泥-水玻璃双液浆,水泥采用32.5 R普通硅酸盐水泥。双液浆浆液配比为:水泥浆水灰比为1∶1、水泥浆与水玻璃体积比1∶1、水玻璃浓度35Be′。
④注浆参数
原则上采用定压注浆,注浆压力2MPa。单孔控制注浆量为0.3 m3。
⑤注浆工艺
采取钢花管一次性注浆,注浆管长1.5 m,花管部分长1 m。
⑥注浆效果检查评定
施工前,最大漏水点漏水量为12L/min,经注浆堵水后,只能见到个别部位有少量渗水,注浆堵水率达到99%以上。
【工程实例】 广州地铁越秀公园站基底止水帷幕
①工程概况
越秀公园站是广州地铁二号线的重要工程,工程由南北两端站厅和中间暗挖隧道组成。北基坑地层自上而下依次为素填土、淤泥质土层、断裂破碎带。地下水为第四系孔隙水和基岩裂隙水,流动性强,水位位于地表以下1~2.5 m,基底为透水构造。
②方案设计
在基坑开挖至一定深度后在基底施作封闭式止水帷幕。注浆孔梅花型布设,注浆孔间距1.3 m,排距1.3 m。设计帷幕厚度为基底以下3.2 m。
③注浆材料
注浆材料采用普通水泥-水玻璃双液浆,水泥采用32.5 R普通硅酸盐水泥。双液浆浆液配比为:水泥浆水灰比1.33∶1~1.5∶1、水泥浆与水玻璃体积比1∶1、水玻璃浓度30~35Be′、缓凝剂掺量1%~3%。
④注浆参数
浆液扩散半径0.8 m,注浆终压1.2~1.7MPa,浆液凝胶时间50sec~1min30sec,注浆速度20~30L/min,注浆分段长度0.4 m,单孔单段注浆量100~120 L。
⑤注浆工艺
采用袖阀管后退式分段注浆工艺。施工顺序按单双排两序孔进行。
⑥注浆效果检查评定
a.涌水量对比法:基坑开挖完成后,测试地层渗涌水量为2~5 m3/d,和施工前设计单位预测涌水量600~1000m3/d相比,堵水率达到99%以上。
b.水位推测法:在基坑开挖过程中,基坑外地下水位基本稳定,无明显下降,可见基底截水帷幕截水效果明显,这和基坑开挖过程中基本无水现象相吻合。
c.变形推测法:通过采取基底水平注浆截水帷幕,在基坑开挖过程中,地表下沉速率缓慢,下沉值较小,累计下沉量仅为2.2mm。这充分说明了基底水平注浆截水帷幕的可靠性,它确保了工程施工期间周围建筑物的安全稳定。
【工程实例】 广州地铁杨箕站工程抢险止水帷幕
①工程概况
1996年10月16日8:45 ,广州地铁杨箕站东端头右侧YDK13+969.1处地面下13 m左右围护桩间三角带处突发涌水、涌砂。现场采取“插管引水,封闭管周,上法兰盘”措施,13:00时涌水、涌砂基本得到控制。13:30左侧ZDK13+969.1处,地面下12 m左右围护桩间同样发生突发性涌水、涌砂,如前方案,控制了涌水、涌砂。此涌水,仅右侧就随水带出砂约300m3,使杨箕站东端围墙东侧地层砂层严重流失,造成地面南北约18 m,东西约5 m范围整体急剧下沉,最深达1.5 m。围墙裂塌,通往居民区道路中断。
②方案设计
在杨箕站东端头钻孔桩外侧施作三排,南北两侧各施作两排垂直注浆止水帷幕。注浆孔孔距1.35 m,排距1 m,钻孔深度进入强风化砂岩1.5 m。
③注浆材料
结合工程现状,根据加固要求,注浆采用普通水泥-水玻璃双液浆,浆液配比为:水泥浆水灰比0.8∶1、水泥浆与水玻璃体积比1∶1、水玻璃浓度35Be′。
④注浆参数
浆液凝胶时间35sec,浆液扩散半径0.8 m,注浆速度40L/min,注浆压力1.2MPa,单孔注浆量7.34 m3,注浆分段长度60cm。
⑤注浆效果检查评定
经过注浆施工后,原涌水、涌砂处堵漏效果良好,在杨箕站东端头继续开挖过程中未出现涌水、涌砂。
❾ 因地质问题而失效的水利工程案例有哪些
水利工程的建设主要面临的地质问题:
1、水库开发对周边山体切割导致滑坡;专
2、蓄水压力作用可能属导致地震;
3、水库渗水导致周边地下塌陷、溶洞等.
水电工程地质存在的问题很多,除了与其他工程类似的区域地壳稳定、坝基、边坡和地下洞室岩土体的稳定性等问题外,还有库坝渗漏、水库库岸稳定、水库淤积、滨库地区浸没、水库诱发地震的问题。
一般解决的思路是针对具体的工程地质问题分阶段进行专门勘察,并进行稳定性计算和治理设计,然后付诸施工,用工程的方法进行改善.例如边坡问题,先进行地质填图调查,然后设计勘探类型和位置,等勘探施工完成后计算边坡稳定性,如果不够稳定即进行治理,设计抗滑桩,盲沟等等,最后是治理措施的施工.