隧道地質雷達檢測是怎麼操作的
Ⅰ 地質雷達探測法的原理
[地質雷達] Ground Penetrating Radar(GPR)是探測地下物體的地質雷達的簡稱。 地質雷達利用超高頻電內磁波探測地下介質分布,它的基本容原理是:發射機通過發射天線發射中心頻率為12.5M至1200M、脈沖寬度為0.1 ns的脈沖電磁波訊號。當這一訊號在岩層中遇到探測目標時,會產生一個反射訊號。直達訊號和反射訊號通過接收天線輸入到接收機,放大後由示波器顯示出來。根據示波器有無反射汛號,可以判斷有無被測目標;根據反射訊號到達滯後時間及目標物體平均反射波速,可以大致計算出探測目標的距離。 由於地質雷達的探測是利用超高頻電磁波,使得其探測能力優於例如管線探測儀等使用普通電磁波的探測類儀器,所以地質雷達通常廣泛用於考古、基礎深度確定、冰川、地下水污染、礦產勘探、潛水面、溶洞、地下管纜探測、分層、地下埋設物探察、公路地基和鋪層、鋼筋結構、水泥結構、無損探傷等檢測。
Ⅱ 隧道超前地質預報的各種方法、原理及使用條件
包括:HSP、TSP、TGP、TRT、TST、負視速度等各種方法。
1、TSP隧道
其工作原理是利用在隧道圍岩以排列方式激發彈性波,彈性波在向三維空間傳播的過程中,遇到聲阻抗界面,即地質岩性變化的界面、構造破碎帶、岩溶和岩溶發育帶等,會產生彈性波的反射現象,
這種反射波被布置在隧道圍岩內的檢波裝置接收下來,輸入到儀器中進行信號的放大、數字採集和處理, 實現 拾取掌子面前方岩體中的反射波信息,達到預報的目的。其中TSP、TGP、TRT應用的是反射理論,尚需在小孔徑偏移成像病態問題方面進行努力。
2、TST隧道
該方法充分認識三維波場的復雜性,能進行方向濾波,僅保留掌子面前方的回波,避免現行超前預報方法中虛報、誤報率高的技術缺陷。能准確確定掌子面前方圍岩波速分布,為岩體工程類別判定提供依據,同時避免現行方法預報位置不準確的缺陷。
TST地質超前預報技術具有如下優點:
TST隧道超前預報技術是國內外唯一的實現了地下三維波場識別與分離的超前預報技術,有效消除側向波和面波干擾,保證成像的真實性;
TST是唯一的實現了圍岩波速精確分析的超前預報技術,保證構造定位的精確性;
TST是建立在逆散射成像原理基礎上的超前預報技術,與傳統的反射地震技術相比具有更高的解析度。同時運用了地震波的運動學和動力學信息,不但可精確確定地質構造的位置,同時獲得圍岩力學性狀的空間變化;
TST採用獨特專業設計的觀測方式,保證觀測數據同時滿足圍岩波速分析、三維波場分離和方向濾波的需要。
3、HSP隧道
該方法和地震波探測原理基本相同,其原理是建立在彈性波理論的基礎上,傳播過程遵循惠更斯-菲涅爾原理和費馬原理。本方法探測的物理前提是岩體間或不同地質體間明顯的聲學特性差異。測試時,在隧道施工掌子面或邊牆一點發射低頻聲波信號,在另一點接收反射波信號。
採用時域、頻域分析探測反射波信號,進一步根據隧道施工掌子面地質調查、地面地質調查及利用一隧道超前施工段地質情況推測另一平行隧道施工掌子面前方地質條件的預報方法,
便可了解前方岩體的變化情況,探測掌子面前方可能存在的岩性分界、斷層、岩體破碎帶、軟弱夾層、以及岩溶等不良地質體的規模、性質及延伸情況等。
(2)隧道地質雷達檢測是怎麼操作的擴展閱讀
目的
開挖前對地質情況的了解,對於隧洞建設有著十分重要的作用。
通過超前預報,及時發現異常情況,預報掌子面前方不良地質體的位置、產狀及其圍岩結構的完整性與含水的可能性,為正確選擇開挖斷面、支護設計參數和優化施工方案提供依據,並為預防隧洞涌水、突泥、突氣等可能形成的災害性事故及時提供信息,使工程單位提前做好施工准備,
保證施工安全,同時還可節約大量資金。所以隧洞超前預報對於安全科學施工、提高施工效率、縮短施工周期、避免事故損失、節約投資等具有重大的社會效益和經濟效益。超前地質預報應達到下列目的:
1、進一步查清隧道開挖工作面前方的工程地質和水文地質條件,指導工程施工的順利進行。
2、降低地質災害發生的幾率和危害程度。
3、為優化工程設計提供地質依據。
4、為編制竣工文件提供地質資料。
Ⅲ 地質雷達法檢測隧道襯砌厚度和缺陷時,測線布置應符合什麼要求
布線長度。隧道施工過程中質量檢測以縱向布線為主,橫向布線為輔。縱向布線位置專應在拱頂、左右拱腰屬、左右邊牆和隧底各布1條;橫向布線一般線距為8-12m;採用點測時每斷面不少於6個點,檢測中發現不合格地段應加密測線或測點。隧道竣工驗收時質量檢測應縱向布線,必要時可橫向布線。縱向布線的位置應在拱頂、左右拱腰、左右邊牆各布1條;橫向布線線距8-12m;採用點測時每斷面不少於5個點。需確定回填空洞規模和范圍時,應加密測線或測點。三車道應在拱頂部位增加2條測線。D測線每5~10m應有里程標記。
Ⅳ 隧道噴射混凝土空洞怎麼檢測出來
地質雷達。
除了地質雷達還有什麼可以檢測隧道背後空洞的技術
物探監測 物探磁法電法可以探測地質構造中的溶洞等現象
一般的核工業地質隊有這樣的設備
Ⅳ 公路隧道施工單位要地質雷達掃描自檢嗎
一般都是找第三方檢測機構的,中交路橋科技有限公司就是專業從事隧道工程檢測的第三方檢測機構,有很多地質雷達檢測的經驗及成功案例。
Ⅵ 隧道地質雷達檢測 現場需要什麼配合
地質雷達在隧道檢測中的應用有很多,其中一個應用就是能用來檢測二襯的質量,詳細的步驟,及其他需要配合的地方參見視頻:https://v.qq.com/x/page/k0379b2g6hd.html
Ⅶ 隧道地質雷達檢測是按照布線長度還是按照隧道長度
布線長度。
隧道施工過程中質量檢測以縱向布線為主,橫向布線為輔。縱向布線位回置應在拱頂、左答右拱腰、左右邊牆和隧底各布1條;橫向布線一般線距為8-12m;採用點測時每斷面不少於6個點,檢測中發現不合格地段應加密測線或測點。
隧道竣工驗收時質量檢測應縱向布線,必要時可橫向布線。縱向布線的位置應在拱頂、左右拱腰、左右邊牆各布1條;橫向布線線距8-12m;採用點測時每斷面不少於5個點。需確定回填空洞規模和范圍時,應加密測線或測點。
三車道應在拱頂部位增加2條測線。D測線每5~10m應有里程標記。
Ⅷ 地質雷達方法在公路質量檢測中的應用
公路質量檢測的原始方法是採用鑽探取心法,該方法不僅效率低、代表性差,而且對公路有破壞,為了快速、准確和科學地評價公路質量,必須採用無損檢測方法。目前,常用於公路檢測的物探方法有地質雷達、瞬態面波法、高密度電阻率法和人工地震等方法。在這些物探方法中,由於地質雷達方法具有快速、連續、無損檢測的特點。因此,在公路質量檢測中得到更加廣泛的應用。
高速公路是由土基礎、二灰土、二灰碎石、面層等構成,由於空氣、瀝青面層、二灰碎石、土壤等介質的介電常數不同,電磁波將在其介質發生變化的界面產生反射波。圖5-11為電磁波在公路剖面中各界面的傳播、反射途徑示意圖。圖5-12為電磁波在公路剖面中各界面的掃描示意圖。
圖5-11 電磁波在公路剖面中的傳播、反射途徑示意圖
環境與工程地球物理勘探
圖5-12 電磁波在公路剖面中各界面的掃描示意圖|t0—電磁波在空氣中的雙程走時;t1—電磁波在瀝青面層中的雙程走時;t2—電磁波在二灰碎石中的雙程走時。A0—反射波R0的振幅;A1—反射波R1的振幅;A2—反射波R2的振幅長春至四平高速公路採用瀝青路面,路面下為碎石墊層。路面分三次鋪設完成,設計路面厚度為25cm。在工程竣工前採用地質雷達進行了路面厚度檢測。
工作中使用的地質雷達為SIR—2型,工作天線頻率為900MHz。圖5-13為長春至四平高速公路上某段路面的地質雷達檢測剖面圖,圖中5.8ns附近的強反射為瀝青面層與碎石墊層界面的反射,根據反射界面的雙程走時和電磁波在瀝青路面中的傳播速度計算出路面厚度。瀝青路面的電磁波速度採用實驗標定並進行統計後得到,檢測結果表明,由於二灰石墊層凹凸不平,導致瀝青路面厚度有較大變化,最薄為26cm,最厚為43cm。達到了設計的要求。路面厚度評價按國家公路路面結構層厚度評價標准進行;在經數據處理後的地質雷達剖面中讀取電磁波在面層中的反射波雙程走時,計算出面層厚度並作出厚度評價結果。
圖5-13 長春至四平高速公路某段路面的地質雷達檢測剖面圖
地質雷達方法在公路質量檢測中除可進行路面厚度檢測外,還可進行路基隱患(脫空、裂縫等)的檢測以及橋涵的質量檢測。有些學者開展了地質雷達對公路壓實度、強度及含水量的檢測研究。