當前位置:首頁 » 地質問題 » 泥化夾層的工程地質特性有哪些

泥化夾層的工程地質特性有哪些

發布時間: 2021-02-23 10:38:20

㈠  工程地質力學的建立與進展

60年代中國學者在大量工程地質實踐的基礎上,認識到構造的重要性,從而提出了「岩體結構」的觀點。同時,法國的岩體力學學家Muller L等也認識到岩體結構的重要性。70年代谷德振等提出「岩體工程地質力學」的新概念。它以地質歷史的發展過程——建造與構造,並運用地質力學觀點,研究了岩體的工程地質特性及力學的成因問題。它包括了岩體結構的解析和表徵,岩體結構的力學特性和效應,工程岩體變形破壞機制的分析,工程岩體穩定性的預測和評價等一系列問題。現已初步建立了工程地質力學的理論體系與研究方法。俄羅斯學者最近認為應考慮土體結構。這樣工程地質力學就應將岩體和土體的工程地質力學都包括在內。

80年代岩體工程地質力學進一步發展,提出了岩體結構力學新概念。它主要研究地質模型的力學效應,即把地質模型轉化為力學模型,在此基礎上進一步將力學模型與岩體變形破壞機制有關要素,轉為定量的數學語言表達,進行岩體穩定性的力學分析,作為工程設計的依據。

對於土和土體的工程地質研究,最初是把土作為連續介質,但由於土的特殊物質組成和結構連接,其應力-應變關系為非線性隨時間變化的流變狀態,因此不僅從宏觀力學上用模型方法,而其從土的微觀結構,通過各種結構類型加以量化,建立土的微觀力學模型,這在國內外都取得了相當大的進展。

中國對軟土、黃土等特殊性土以及軟岩、泥化夾層的流變特性和模型研究,解決不少實際工程中土體變形、地基穩定分析等問題。土的微觀結構研究由於測試技術的發展,在80年代進展較快。取得的重要成果有:制樣技術上由風干法發展為凍干法,探討了土的結構對其蠕變及強度的影響,對粘性土及一些特殊性土的微觀結構和工程地質性質關系,以及對微結構的計算機圖像處理技術等。近年來工程地質學家認為土體結構既然對其工程性質有重要制約作用,就應把建立土的結構性本構(計算)模型作為核心問題,提出發展「土體微結構力學」作為土體工程地質研究的新領域。

工程地質力學的發展要求地質研究與工程高度結合,發展工程結構和地質結構的依存關系和相互作用理論。近年來王思敬等採用系統科學原理,提出了工程地質力學綜合集成理論和方法(The Engineering Geomechanics Meta-Synthesis,簡稱EGMS),以期使工程地質力學的定量評價和預測提高到新的水平。

㈡ 幫忙解一下題

時針是12個小時走360度,也就是2分鍾走一度,即1分鍾0.5度,分針是一個回小時走360度,也就是答1分鍾走6度,從9點開始(時針在9,分針在12),到重合時度數是相差270度的,設時間X,有6X-0.5X=270,則X=49.09,所以是9點49分
我這個分析應該比較好懂的,希望能幫到你

㈢ 擋水建築物在工程地質方面有什麼要求

一、特殊地基

(一)鬆散、軟弱土層

鬆散塗層①不滿足承載力要求的;②不滿足抗滲專要求的;③影響邊坡穩屬定的。

軟弱土層:淺層挖除;深層振沖置換。

(二)風化、破碎岩層

①影響邊坡穩定的:噴混凝土或掛網噴混凝土、灌漿和錨桿加固、砌體和混凝土和鋼筋混凝土格構。

②不利地下工程圍岩:支撐、支護、襯砌。

③影響地基承載能力和抗滲要求的:水泥漿灌漿加固或防滲。

(三)斷層、泥化軟弱夾層

①斷層:淺埋的清除回填,深埋的灌水泥漿;泥化夾層:淺埋的清除回填,深埋的不處理。

②是基礎或邊坡滑動控制面的:不便清楚,根據埋深和厚度,採用錨桿、抗滑樁、預應力錨索處理。

③滑坡體:經論證方可刷方減重,未經論證的可在坡腳採用擋土牆、抗滑樁支擋,也可固結灌漿。

④當地下水影響到邊坡或地下工程圍堰穩定時:採用洞、井、溝等措施,導水、排水,降低水位。

㈣ 工程地質問題有哪些

常見工程地質問題:(1)鬆散、軟弱土層。對不滿足承載力要求的鬆散土層,如砂和砂礫石地層等,可挖除,也可採用固結灌漿、預制樁或灌注樁、地下連續牆或沉井等加固;對不滿足抗滲要求的,可灌水泥漿或水泥黏土漿,或地下連續牆防滲;對於影響邊坡穩定的,可噴射混凝土或用土釘支護。

對不滿足承載力的軟弱土層,如淤泥及淤泥質土,淺層的挖除,深層的可以採用振沖等方法用砂、砂礫、碎石或塊石等置換。
(2)風化、破碎岩層。風化一般在地基表層,可以挖除。破碎岩層有的較淺,可以挖除。
有的埋藏較深,如斷層破碎帶,可以用水泥漿灌漿加固或防滲;風化、破碎處於邊坡影響穩定的,可根據情況採用噴混凝土或掛網噴混凝土罩面,必要時配合注漿和錨桿加固。
(3)裂隙發育岩層。
對於影響地基承載能力和抗滲要求的,可以用水泥漿注漿加固或防滲。對於影響邊坡穩定的,採用錨桿加固。
(4)斷層、泥化軟弱夾層。對充填膠結差,影響承載力或抗滲要求的斷層,淺埋的盡可能清除回填,深埋的注水泥漿處理;淺埋的泥化夾層可能影響承載能力,盡可能清除回填,深埋的一般不影響承載能力。
斷層、泥化軟弱夾層可能是基礎或邊坡的滑動控制面,對於不便清除回填的,根據埋深和厚度,可採用錨桿、預應力錨索、抗滑樁等進行抗滑處理。
(5)岩溶與土洞。當建築工程不可能避開時,可挖除洞內軟弱充填物後回填石料或混凝土。
不方便挖填的,可採用長梁式、桁架式基礎或大平板等方案跨越洞頂,也可對岩溶進行裂隙鑽孔注漿,對土洞進行頂板打孔充砂、砂礫,或做樁基處理。
(6)地下水發育地層。當地下水發育影響到邊坡或圍岩穩定時,要及時採用洞、井、溝等措施導水、排水,降低地下水位。

(7)滑坡體。斜坡內可能沿滑動面下滑的岩體稱為滑坡體。滑坡發生往往與水有很大關系,滲水降低滑坡體尤其是滑動控制面的摩擦系數和黏聚力,要注重在滑坡體上方修築截水設施,在滑坡體下方築好排水設施。
防止滑坡,經過論證可以在滑坡體的上部刷方減重,未經論證不要輕易擾動滑坡體。在滑坡體坡腳採用擋土牆、抗滑樁等支擋措施。採用固結灌漿等措施改善滑動面和滑坡體的抗滑性能。
(8)對結構面不利交匯切割和岩體軟弱破碎的地下工程圍岩,地下工程開挖後,要及時採用支撐、支護和襯砌。
支撐多採用柱體、鋼管排架、鋼筋或型鋼拱架,拱架的間距根據圍岩破碎的程度決定。支護多採用土釘、錨桿、錨索和噴射混凝土等聯合支護方式。襯砌多用混凝土和鋼筋混凝土,也可採用鋼板襯砌

㈤ 常見的工程地質問題有哪些

風化、破碎岩層。風化一般在地基表層,可以挖除。破碎岩層有的較淺,可以挖除。有的埋藏較深,如斷層破碎帶,可以用水泥漿灌漿加固或防滲;風化、破碎處於邊坡影響穩定的,可根據情況採用噴混凝土或掛網噴混凝土罩面,必要時配合注漿和錨桿加固。

斷層、泥化軟弱夾層。對充填膠結差,影響承載力或抗滲要求的斷層,淺埋的盡可能清除回填,深埋的注水泥漿處理;淺埋的泥化夾層可能影響承載能力,盡可能清除回填,深埋的一般不影響承載能力。斷層、泥化軟弱夾層可能是基礎或邊坡的滑動控制面。

鬆散、軟弱土層。對不滿足承載力要求的鬆散土層,如砂和砂礫石地層等,可挖除,也可採用固結灌漿、預制樁或灌注樁、地下連續牆或沉井等加固;對不滿足抗滲要求的,可灌水泥漿或水泥黏土漿,或地下連續牆防滲;對於影響邊坡穩定的,可噴射混凝土或用土釘支護。

滑坡體。斜坡內可能沿滑動面下滑的岩體稱為滑坡體。滑坡發生往往與水有很大關系,滲水降低滑坡體尤其是滑動控制面的摩擦系數和黏聚力,要注重在滑坡體上方修築截水設施,在滑坡體下方築好排水設施。防止滑坡,經過論證可以在滑坡體的上部刷方減重,未經論證不要輕易擾動滑坡體。

地下水發育地層。當地下水發育影響到邊坡或圍岩穩定時,要及時採用洞、井、溝等措施導水、排水,降低地下水位。

對結構面不利交匯切割和岩體軟弱破碎的地下工程圍岩,地下工程開挖後,要及時採用支撐、支護和襯砌。支撐多採用柱體、鋼管排架、鋼筋或型鋼拱架,拱架的間距根據圍岩破碎的程度決定。

岩溶與土洞。當建築工程不可能避開時,可挖除洞內軟弱充填物後回填石料或混凝土。不方便挖填的,可採用長梁式、桁架式基礎或大平板等方案跨越洞頂,也可對岩溶進行裂隙鑽孔注漿,對土洞進行頂板打孔充砂、砂礫,或做樁基處理。

㈥ 從物質成分分析,影響岩體工程地質性質的主要因素有哪些

從物質成分分析,復影響岩體工程地質制性質的主要因素有哪些
岩體是指某一地點一種或多種岩石中的各種結構面、結構體的總稱.包括各種地質界面:層理、層面、節理、斷層等
影響岩體穩定性的主要因素有:區域穩定性、岩體結構特徵、岩體變形特性與承載能力、地質構造、岩體風化程度等

㈦ 從物質成分分析,影響岩體工程地質性質的主要因素有哪些

岩體是指某一地點一種或多種岩石中的各種結構面、結構體的總稱。包括各種地質界面:層理、層面、節理、斷層等
影響岩體穩定性的主要因素有:區域穩定性、岩體結構特徵、岩體變形特性與承載能力、地質構造、岩體風化程度等
1 結構面 破裂面、物質分異面、軟弱夾層、軟弱帶、構造岩、泥化夾層、充填夾層
按地質成因,可分為原生的、構造的、次生的三大類
原生結構面:沉積的、火成的和變質的三類
沉積結構面 層面、層理、沉積間斷面、沉積軟夾層等
層面和層理的結合時良好的,層面的抗剪強度不低,但是順層錯動或風化作用會降低其抗剪能力
軟弱夾層:硬層之間,強度低,遇水易軟化,厚度不大。風化後為泥化夾層(泥岩、頁岩、泥灰岩)
火成結構面 原聲節理、流紋面、圍岩接觸面、凝灰岩夾層等
圍岩破碎帶或飾變帶、凝灰岩夾層,為火成岩的軟弱夾層
變質結構面 麻理、片理、板理
構造結構面:構造應力作用下,岩體中形成的斷裂面、錯動面、破碎帶
破裂結構面:劈理、節理、斷層面、層間錯動面
構造軟弱帶:斷層破碎帶、層間錯動破碎帶
次生結構面 風化、卸荷、地下水等作用下形成的風華裂隙、破碎帶、卸荷裂隙、泥化夾層、夾泥層等
結構面的特徵 結構面的規模、形態、連通性、充填物的性質
規模:
形態:平整度、光滑度,對抗剪強度有影響
密集程度:通常以線密度(條/m)或結構面的間距表示
連通性: 地下岩體連通性的勘探方法有:勘探平硐、岩芯、地面開挖
張開度和充填:張開度,兩壁面的離開距離,分4級
閉合的0.2mm,微張的0.2-1.0mm,張開的:1.0-5.0mm,寬張的:5.0-mm
張開和寬張的結構面,抗剪強度取決於充填物的成分和厚度,粘土一般少於砂土

㈧ 如何描述岩體的工程地質性質

岩體是指某一地點一種或多種岩石中的各種結構面、結構體的總稱。包括各種地質界面:層理、層面、節理、斷層等
影響岩體穩定性的主要因素有:區域穩定性、岩體結構特徵、岩體變形特性與承載能力、地質構造、岩體風化程度等
1
結構面
破裂面、物質分異面、軟弱夾層、軟弱帶、構造岩、泥化夾層、充填夾層
按地質成因,可分為原生的、構造的、次生的三大類
原生結構面:沉積的、火成的和變質的三類
沉積結構面
層面、層理、沉積間斷面、沉積軟夾層等
層面和層理的結合時良好的,層面的抗剪強度不低,但是順層錯動或風化作用會降低其抗剪能力
軟弱夾層:硬層之間,強度低,遇水易軟化,厚度不大。風化後為泥化夾層(泥岩、頁岩、泥灰岩)
火成結構面
原聲節理、流紋面、圍岩接觸面、凝灰岩夾層等
圍岩破碎帶或飾變帶、凝灰岩夾層,為火成岩的軟弱夾層
變質結構面
麻理、片理、板理
構造結構面:構造應力作用下,岩體中形成的斷裂面、錯動面、破碎帶
破裂結構面:劈理、節理、斷層面、層間錯動面
構造軟弱帶:斷層破碎帶、層間錯動破碎帶
次生結構面
風化、卸荷、地下水等作用下形成的風華裂隙、破碎帶、卸荷裂隙、泥化夾層、夾泥層等
結構面的特徵
結構面的規模、形態、連通性、充填物的性質
規模:
形態:平整度、光滑度,對抗剪強度有影響
密集程度:通常以線密度(條/m)或結構面的間距表示
連通性:
地下岩體連通性的勘探方法有:勘探平硐、岩芯、地面開挖
張開度和充填:張開度,兩壁面的離開距離,分4級
閉合的0.2mm,微張的0.2-1.0mm,張開的:1.0-5.0mm,寬張的:5.0-mm
張開和寬張的結構面,抗剪強度取決於充填物的成分和厚度,粘土一般少於砂土

㈨ 岩土類型和性質

岩土體是地質災害的載體,地質災害一般都是通過岩土體的變形破壞而表現出來的,是地質災害成生的物質基礎。

受地殼運動的控制,「蘭—鄭—長」工程地段分布有不同年代、成因、物質成份和結構的岩土體,類型復雜多樣,工程地質性質各異,它們對地質災害的形成、分布和活動起著主導作用。岩土體分布出露的特點是:山區、丘陵以岩體為主,而高原、盆地、平原則以土體為主;管線經過地段絕大多數是土體。下面分別就岩體和土體討論其分布、類型、性質及對地質災害成生的制約。

(一)岩體

岩體在管線工程地段主要分布於甘肅、陝西段的關山—隴山,山西段的中條山、霍山和太原東山,河南段的大交口鎮—觀音堂、義馬—新安和大別山等地段,湖北、湖南段的大別山和江南丘陵地等地段,總長約300km,約占管線全長的10%。

參考國標《岩土工程勘察規范》(GB50021—2001)的規定,先將岩體按堅硬程度分大類,再由岩石的成因類型、岩性和工程性質,將本管道工程沿線的岩體劃分為4類7種(表4-1)。現作簡要討論。

1.堅硬岩類

按成因類型劃分為岩漿岩、變質岩和沉積岩3種亞岩類。

岩漿岩類管線地段分布於祁連山褶皺帶、秦嶺—大別山褶皺帶和揚子地台。分別有加里東期、華力西期、燕山期侵位的,其中祁連山褶皺帶三期皆有,岩性為花崗岩、石英閃長岩;秦嶺—大別山褶皺帶為燕山期花崗岩;揚子地台為加里東期和燕山期的花崗岩和花崗閃長岩。一般呈岩基和岩株狀產出,整體塊狀構造,緻密堅硬,物理力學性質均質,各向同性。應該說其工程性質優良,但在亞熱帶環境中化學風化強烈。地質災害一般不甚發育,以小型崩塌為主。

變質岩類在管線地段的祁連山褶皺帶、華北地台、秦嶺—大別山褶皺帶有分布。祁連山褶皺帶主要出露於關山—隴山地段,為中元古界隴山群和前震旦系,主要岩性為大理岩、黑雲母片麻岩、混合岩、結晶片岩。華北地台出露於山西支幹線的中條山、霍山、太原東山,為太古界涑水群和太岳山群,岩性為混合岩化的黑雲角閃斜長片麻岩、斜長角閃岩、大理岩、磁鐵石英岩、黑雲變粒岩、角閃變粒岩等,岩性復雜,風化較強。秦嶺—大別山褶皺帶出露於大悟一帶,為中上元古界紅安群含磷的變粒岩、大理岩和石英片岩夾片麻岩,抗風化能力較弱。由於受片麻理、片理及節理的影響,使岩體的工程地質性質呈明顯的各向異性和不均一性。地質災害不甚發育,一般以小型崩滑為主。

表4-1 岩體類型匯總表

沉積岩類在丘陵、山區分布較廣,在各大構造單元中皆有,其地質年代自中元古界至中生界早期幾乎皆有,岩性復雜多樣,主要有:中元古界熊耳群和汝陽群的安山玢岩、玄武岩、石英砂岩,新元古界洛峪群三教堂組的石英砂岩(以上均在河南境內);上元古界長城系、震旦系的石英砂岩、白雲岩、硅質岩、冰磧礫岩等;下古生界寒武系、奧陶系的中厚、厚層碳酸鹽岩;上古生界泥盆系的砂岩和碳酸鹽岩,石炭、二疊系的中厚、厚層狀灰岩和中生界三疊系碳酸鹽岩等(上古生界及中生界皆為揚子地台)。按岩性大類可劃分為火山噴出沉積岩、碎屑岩和碳酸鹽岩三大類。它們的共同特點是,層理構造發育且較厚,抗風化能力較強,但碳酸鹽岩具溶蝕性,岩溶較發育,工程地質性質具各向異性。上述這幾類岩性分布地段地質災害一般不甚發育,有小型崩滑和岩溶塌陷(覆蓋型岩溶地段)等地質災害。

2.較硬岩

按成因類型可劃分為變質岩和沉積岩兩大亞類。

變質岩類分布於祁連山褶皺帶、秦嶺—大別山褶皺帶和揚子地台中,岩性主要是較軟弱片岩和千枚岩、板岩。在祁連山褶皺帶的管線地段,新元古界長城系變質細砂岩、千枚岩;秦嶺—大別山褶皺帶信陽群、商城群的雲母石英片岩、綠色片岩、絹雲石英片岩、淺變質凝灰質砂岩等:揚子地台中元古界冷家溪群和新元古界板溪群的板岩、千枚岩、變質凝灰岩、變質砂岩等。上述各類岩體的共同特點是:片理、千枚理、板理等結構面發育,地面風化較強烈,殘坡積層厚度往往較大。岩體具明顯的各向異性,力學強度相對較弱。崩塌、滑坡和泥石流等山地地質災害較發育。

沉積岩類分布於華北地台和揚子地台中,華北地台岩性主要是上古生界和中生界粘土岩、鋁土岩頁岩、泥質粉砂岩、含煤層;揚子地台主要是泥盆系粉細砂岩、粘土岩、頁岩、泥灰岩。它們層理發育、薄層狀為主,遇水易軟化、崩解,風化也較強烈。由上述岩體組成的丘陵山區,地質災害較發育,主要有崩塌、滑坡、泥石流和採煤引起的地面塌陷和地裂縫災害(在山西、河南境內較突出)。

3.軟弱岩

這大類岩體主要是沉積岩類,較廣泛分布於各大地構造單元中生代晚期和新生代陸相盆地中,地質年代為白堊系、古近系和新近系。由於固結壓密程度低,岩體孔隙率高,強度小,變形大。岩性主要是河湖相的砂礫岩、砂岩和泥岩,夾淡水泥灰岩,含石膏、芒硝。岩石一般干單軸抗壓強度小於30MPa,而新近系岩石成岩性更差,接近於土體,干單軸抗壓強度不足於5MPa,屬極軟岩。這類岩石遇水易軟化崩解,抗風化能力亦低。但這類岩體出露地段地形起伏小,地質災害不發育,主要有膨脹性岩體的輕度脹縮變形災害,還存在采空塌陷災害。

4.軟硬相間岩

這大類岩體主要也是沉積岩類,較廣泛分布於華北地台和揚子地台的古生界和中生界地層中,一般是兩種強度和剛性差異較大的岩性相互成層或間夾;古生界常見的是灰岩與頁岩互層,砂岩與泥頁岩互層,中生界常見的是砂岩與泥頁岩互層。在外力作用下會發生層間錯動和脫開,而在地下水等作用下更會泥化而形成泥化夾層,層面間強度降低而成為典型的軟弱結構面。所以這類地層組合可以稱之為「易滑地層組合」,較易產生滑坡。此外,軟硬相間岩層差異風化顯著,「上硬下軟」組合的條件下,軟岩易形成岩龕,崩塌也較普遍。

(二)土體

土體在管線地段廣泛分布,約佔全長的90%。按地質成因,可劃分為殘積土、坡積土、洪積土、沖積土、淤積土和風積土等;按粒度成份,可劃分為碎石土、砂土、粉土和粘性土。對一些具有特殊成份和結構、工程性質也特殊的土,則可單獨劃分為特殊土,本管線工程的特殊土有黃土類土、膨脹土、鹽漬土和淤泥質土等。這里我們也參考國標《岩土工程勘察規范》(GB50021—2001)的規定,將土體劃分為碎石土、砂土、粉土、粘性土和特殊土5大類(表4-2)。以下分別就一般土和特殊土作簡要討論。

1.一般土體

一般土體包括各種成因類型的碎石土、砂類土、粉土和粘性土。

(1)碎石土:

碎石土指的是土中粒徑d>2mm的顆粒質量超過總質量50%的土。根據規定,碎石土可再劃分為礫質土、卵(碎)石土和漂(塊)石土,它們的粒徑分別>2mm、20mm或200mm的質量,超過總質量50%。一般沖積成因的碎石土分選性和滾圓度較好,位於河床和河流階地二元結構的下部,而其他成因的則較差。本工程各段情況是:甘肅段礫卵石佔45%~70%,粒徑一般 20~80mm,呈次圓—次稜角狀,一般分布於沖洪和平原表層之下。陝西段分布於渭河及其各支流以及山前洪積扇。河流沖積成因者在河漫灘和河床地段,在渭河幹流厚度可達20~40m,結構較均一;而洪積扇區則為大小混雜的砂卵石為主。山西段主要分布於汾河、龍鳳河和瀟河等山間河谷地段,以砂卵礫石為主,磨圓較好,級配良好。河南段主要分布在伊洛河、沙潁河等諸河流河谷區,以砂礫卵石為主。湖北—湖南段碎石土多分布於低山丘陵斜坡地帶,多為殘坡積成因,碎石成分隨母岩而變化。一般碎石土較疏鬆,孔隙比大,滲透性強,地基承載力高。

表4-2 土體類型匯總表

(2)砂類土:

砂類土指的是土中粒徑d>2mm的顆粒質量不超過總質量的50%,d>0.075mm的顆粒質量超過總質量50%的土;根據顆粒級配還可劃分為礫砂、粗砂、中砂、細砂和粉砂,一般是沖洪積成因的。此類土在本工程的情況是:甘肅段分布於洪積平原表層土之下,主要由粉細砂、中細砂組成,鬆散—中密狀態。陝西段分布於渭河及支流的漫灘、一級階地和古河道中,以中細砂和粉細砂為主,常含少量礫石,除河漫灘地段外,砂層均埋藏於細粒土之下,厚度不均一,多呈透鏡體狀,孔隙度大,滲透性強,中粗砂是良好的地基持力層,而飽水粉細砂則易產生震動液化。山西段分布於黃河、汾河及其較大支流的河床、河漫灘和階地,一般為砂礫石混合,厚度較大。也有在山前傾斜平原區前緣的洪積砂礫石,與細粒土組成多層結構。河南段分布除了與碎石土相同外,在沙潁河以南淮河平原各河流河漫灘和一級階地前緣地帶,表層之下為中細砂,稍密—中密狀態,厚度不穩定。砂類土一般級配較好,滲透性較強,一般是良好的地基持力層,但在地震烈度≥Ⅶ區需關注飽和粉細砂的震動液化問題。

(3)粉土和粘性土:

粉土和粘性土也可稱之為「細粒土」,前者是土中粒徑d>0.075mm的顆粒質量不超過總質量的50%,且塑性指數ⅠP≤10的土;而後者則ⅠP>10的土。這兩類土大量廣泛分布於鄭州—長沙段洪沖積平原和丘陵地段。具各種成因類型。一般洪沖積成因的土體較密實,孔隙比小,含水量相對較少,透水性弱,強度高,地基承載力高。而丘陵地帶的殘坡積成因者往往與碎石土混雜,土體孔隙性大,透水性相對較強,在久雨或強降雨時,易產生坡積層崩滑。

2.特殊土

(1)黃土類土:

黃土類土是第四紀時期特殊的大陸鬆散沉積物,它在世界各地分布廣而性質特殊。這類土在我國主要分布於西北、華北和東北地區,面積達60萬km2以上,以北緯34°~45°之間最為發育,這些地區位於我國西北沙漠區的外圍東部地區,具有大陸性乾旱少雨氣候的特點。黃土類土從早更新世(Q1)開始堆積,經歷了整個第四紀,直至現今還未結束。按地層時代及其基本特徵,黃土類土可分為3類:老黃土、新黃土和新近堆積黃土(表4-3)。老黃土是Q1、Q2時期堆積的,分別稱「午城黃土」和「離石黃土」,一般無濕陷性;新黃土一般是Q3時期堆積的,稱「馬蘭黃土」,也有Q4早期的,具濕陷性,分布面積最廣(約佔60%);新近堆積黃土一般是Q4晚期堆積的,濕陷性不一。各地黃土類土總厚度不一,陝甘黃土高原地區最厚,可達100~200m,河谷地區一般只有數米至30m左右,且主要是新黃土。黃土類土的成因一直是爭論的熱點問題,但普遍的看法是,風積成因是主要的,也有沖積、洪積、坡積、冰水堆積等成因類型。顆粒成份以粉粒為主,富含碳酸鈣,具大孔性,垂直節理發育,具濕陷性等特徵者,稱 「典型黃土」,而有些特徵不明顯者則稱「黃土狀土」。下面討論一下本管線工程黃土類土的特性。

本管線工程的黃土類土分布於蘭州—鄭州段(含山西支幹線)。不同地段黃土類土的粒度成份和結構有所不同,所以其物理力學指標和工程地質性質也有明顯差異。下面我們以Q3典型的濕陷性黃土為代表作分析。

首先是黃土的顆粒組成,將蘭州、西安、太原、洛陽四地作比較(表4-4)。可以看出它們的差異,總趨勢是:由西北往東南砂粒和粉粒含量愈來愈小,而粘粒含量則愈來愈大,而粉粒所佔比例最大是一致的。所以有人將西部黃土稱之為「砂黃土」,而東部為「粘黃土」。 黃土的顆粒組成對其濕陷性有一定影響,即砂粒含量愈多,濕陷性愈強,而粘性愈多則濕陷性愈弱。

表4-3 不同年代黃土的特徵

表4-4 濕陷性黃土的顆粒組成單位:%

各地濕陷性黃土的基本物理力學性質指標列於表4-5中。

由西往東的總趨勢是:土體的密度和天然含水率愈來愈大,液限和塑性指數也愈來愈大,孔隙比愈來愈小;而三項力學性質指標變化規律則不明顯。而且可看出,隴西和隴東地區指標相近似,關中地區與汾河流域也比較接近,而豫西地區與前面的4個地區則又有明顯差異。上述規律很重要,因為它與黃土的濕陷性相關的,即自西往東濕陷性逐漸變弱。

管線地段濕陷性黃土的濕陷系數(δs),經大量統計後匯總於表4-6中。從表中可看出,濕陷系數隴西地區最大,隴東地區次之,關中地區汾河流域再次之,而豫西則最小;而且高階地的濕陷系數要大於低階地。按有關規定,δs>0.015時,該黃土為濕陷性土;δs為0.015~0.03時濕陷性輕微,δs為0.03~0.07時濕陷性中等;δs>0.07時,濕陷性強烈。所以說,隴西和隴東地區黃土具中等—強烈濕陷性,關中地區和汾河流域黃土具中等濕陷性,而豫西地區黃土為輕微—中等濕陷性。

表4-5 各地濕陷性黃土基本物理力學性質指標

表4-6各地黃土濕陷系數(δs)統計表

濕陷性對黃土地區地質災害的成生和活動關系密切,地基的濕陷變形破壞本身就是黃土地區特殊的地質災害。此外由於黃土結構疏鬆,以及大孔性和垂直節理發育,潛蝕地質災害也很普遍。由於黃土的濕陷和潛蝕特性,還可誘發崩塌、滑坡和泥石流災害。

(2)膨脹土:

具有明顯遇水膨脹和失水收縮的土稱膨脹土。這類土在我國主要分布在南方山前丘陵、壠崗和二、三級階地上,大多數是晚更新世及以前的殘坡積、沖洪積和湖積物。從外表看,膨脹土一般呈紅、黃、褐、灰白等不同顏色,具斑狀結構,常含有鐵錳質或鈣質結核。土體常有網狀開裂,有臘狀光澤的擠壓面,類似劈理。土層表面常出現各種縱橫交錯的裂隙或龜裂現象,這與失水土體強烈收縮有關。膨脹土的脹縮特性,主要是土中含有較多的粘粒,一般粘粒含量高達35%以上,而且這些粘粒大部分為親水性很強的蒙脫石和伊利石等粘土礦物,膨脹收縮能力較強。天然狀態下,膨脹土一般緻密堅硬,天然含水率較小,所以土體常處於硬塑或堅硬狀態,壓縮性較低,強度較高;但在浸水膨脹後,強度明顯降低,壓縮性增大。膨脹土的這種脹縮特性,對工程建設會帶來危害。按我國有關規定,凡自由膨脹率δef大於40%者,即可定名為膨脹土,40%≤δef<65%為弱膨脹土,65%≤f<90%為中等膨脹土,δef≥90%為強膨脹土。

本管線工程的膨脹土主要分布於湖北境內的黃陂縣周港、應城支線和五里橋—賀勝橋—橫溝橋一帶:在河南境內的平頂山、周口西、郾城—駐馬店的沙汝河平原和確山—信陽北的低山丘陵也有零星分布。

湖北境內的膨脹土主要分布於高程30~45m的壠崗和崗間坳溝地帶,自然地形坡度平緩。土體時代為更新世,顏色呈棕黃、褐黃、棕紅色,土體平均自由膨脹率:周港一帶下更新統82%(最大99%),應城支線中更新統62%(最大109%),五里橋—賀勝橋一橫溝橋一帶上更新統44%(最大72%)。土體脹縮性危害主要導致當地居民低層建築牆體拉裂破壞,斜坡和水渠邊坡坍滑。

河南境內的膨脹土分布於淮河平原邊緣的平頂山東和確山—信陽北的低山丘陵,以及沙汝河平原之間的周口和郾城—駐馬店地段。土體時代為中、晚更新世,顏色呈棕黃、灰綠、棕紅色,乾燥時呈硬塑狀態,裂隙發育,含鐵錳質和鈣質結核,平均自由膨脹率43.5%。平頂山以膨脹破壞為主,而信陽多以收縮破壞為主,多發生在乾旱季節。

(3)鹽漬土:

土中易溶鹽含量大於0.5%的土稱為鹽漬土。由於它發育於地表土層中,與道路、低層建築等有關,主要是土的腐蝕作用以及鹽脹和溶陷作用對工程建設的危害。鹽漬土按地理分布可分為濱海鹽漬土、沖積平原鹽漬土和內陸鹽漬土等類型。我國鹽漬土主要分布在北方諸省區。鹽漬土的形成及其所含鹽的成分和數量與當地的地形地貌、氣候條件、地下水的埋藏深度和礦化度、土壤性質和人類活動有關;它的厚度並不大,一般分布於地表以下1.5~4m范圍內,且由地面至深部含鹽量逐漸減少。鹽漬土的形成一般是由於地下水埋深過淺(甚至出露地面),蒸發強烈而鹽分在地表的聚積所致。

鹽漬土的性質與所含鹽分和含鹽量有關。土中的鹽類主要是氯鹽、硫酸鹽和碳酸鹽三類,因此鹽漬土也相應地劃分為氯鹽漬土、硫酸鹽漬土和碳酸鹽漬土(表4-7)。鹽漬土中所含鹽分及其數量對土的工程地質性質影響很大。由於土成分的改變,影響了土的結構,從而影響了塑性、透水性、膨脹性、壓縮性、擊實性等性質。

表4-7 鹽漬土的分類

本管線工程的鹽漬土主要分布於甘肅段通渭以西、陝西段華縣—華陰地段和山西段的永濟市東北伍姓湖區(K48~K54)及清徐張花營村—榆次西榮(K451~K464)地段。

甘肅段通渭以西地段河谷平原一級階地潛水位埋深很淺,經測定,土壤中平均含鹽量3.4%,最大可達8%~15%,屬硫酸—氯型中—超鹽漬土。

陝西段華縣—華陰地段的鹽漬土是由於黃河三門峽水庫淤積和回水,引起潛水位壅高,使渭河南岸赤水河至方山河一級階地中部成為浸沒區,而導致土壤鹽漬化。但近年來當地大量開采地下水,潛水位埋深增大,鹽漬化已幾近消失。

山西段永濟伍姓湖區地勢低窪(比周邊低5~8m),表層土由粉質粘土和粉土組成,潛水位埋深0~3m,土中含鹽量1.06%~1.18%,類型為硫酸—氯型,屬中鹽漬土。清除張花營村—榆次西地段地勢較周邊略低,表層土為粉土,潛水位埋深0.2~3m,土中含鹽量0.44%~1.12%,類型為氯—硫酸鹽型,屬弱—中鹽漬土。硫酸鹽結晶膨脹以及腐蝕作用,對管道將有一定危害。

(4)淤泥質土:

淤泥質土是指在水流緩慢甚或靜水環境中沉積,有微生物參與作用的條件下,含較多有機質,而疏鬆軟弱的粘性土,它是近代在濱海、湖泊、沼澤、河彎、廢河道等地區沉積的未經固結的一種特殊土。從外觀看,這類土常呈灰、灰藍、灰綠和灰黑等顏色,污染手指並有臭味。土中含有大量親水性強的粘土礦物(蒙脫石和伊利石佔多數),有機質含量較多(一般含量 5%~15%),天然孔隙比大於1,天然含水率大於液限。其結構形式常為蜂窩狀或棉絮狀,疏鬆多孔,壓縮性很強,地基承載力很低。我國淤泥質土的地理分布基本上可分為兩大類:一類是沿海沉積的,另一類是內陸和山區湖沼盆地沉積的。前者分布穩定而厚度大,後者常零星分布且厚度小。

本管線工程的淤泥質土主要分布於湖北—湖南段。管道經過長江等13條大中型河流的沖湖積平原低窪地段,有較大范圍的淤泥質軟土分布,有機質含量大於1.5%,岩性為淤泥、淤泥質粘土和淤泥質粉土,呈軟塑—流塑狀,天然含水率多大於35%,最高達133%,孔隙比1~2.02,最高達3.12,壓縮系數一般大於0.5MPa-1,最高可達3.68MPa-1,凝聚力一般9.8~29.4k Pa,內摩擦角6°~15°,地基承載力,天然狀態下一般為25~55k Pa,常導致建築物過量沉降和不均勻沉降。很顯然,這類土體對管溝開挖影響較大,常導致溝坡坍塌擠出而不易成形。此外,對場站地基穩定性也有影響。

㈩ 典型岩組特徵

參照水工建築物的布置以及開挖邊坡的展布,綜合考慮壩前、壩後、左岸邊坡、右岸邊坡,釐定采樣點的平面分布位置,以及典型剖面岩組的空間展布情況,如圖3-1所示。取樣大致分出泥化夾層、煤、炭質頁岩、泥質粉砂岩四種岩組。

具體采樣點分布見表3-1。

表3-1 工程區邊坡軟岩岩礦鑒定取樣一覽表

續表

注:「-1」代表炭質頁岩,「-2」代表煤,「-3」代表泥質粉砂岩,「-4」代表泥化夾層,均為野外定名;「-」前為采樣點編號。

圖3-1 邊坡軟岩采樣平面分布圖

黏土礦物以伊利石為主的泥化夾層岩組較常見,危害性最大。泥化夾層是構造變形的產物,是母岩經多期構造擠壓與研磨的結果。其基本岩性可以是含炭屑泥頁岩或泥質粉砂岩或細礫屑泥質岩中的某一種,也可以是它們的綜合。總之,岩性較為復雜,一般與母岩的關系較密切。對壩區的泥化夾層做X射線粉晶衍射測試結果見表3-2和圖3-2~圖3-5。

表3-2 泥化夾層X射線粉晶衍射測試結果

(測試單位:成都理工大學材料與生物工程學院)

圖3-2 1#-4衍射分析曲線

圖3-3 2#-4衍射分析曲線

圖3-4 4#-4衍射分析曲線

圖3-5 6-#4衍射分析曲線

黏土礦物對工程地質性質有極大的影響。從以上圖表中可知,壩區的泥化夾層確實存在新生的黏土礦物。然而,即使當其含量並不佔優勢時,也能表現出明顯的控製作用。特別是親水的黏土礦物更應該引起重視,它會不同程度地對邊坡岩體構成安全隱患,甚至會導致其失穩破壞。

壩區有煤層15層,其中與樞紐關系較為密切的有L9、L10、L11、L12、L13、L14。通過大比例剖面調查得知,無論是右岸還是左岸煤槽頂板都出現了不同程度的開裂,裂縫寬可達幾厘米甚至十幾厘米,是開挖煤層置換回填過程中,引起卸荷造成的。煤層頂板結構面發育,而煤層由於頂板擠壓產生明顯的撓曲變形,局部煤層還有很明顯的揉皺現象。調查工程邊坡典型露頭發現,煤岩組各單體邊坡發育不均一,受構造變形的影響較大。

泥質粉砂岩在軟岩帶中比其他的岩組強度大,涵蓋了泥質粉砂岩和粉砂質泥岩,具條帶狀的泥質粉砂結構,定向構造。岩體結構屬鑲嵌碎裂結構,而岩體質量較差,並具有較大的壓縮變形。炭質頁岩岩組包括含炭質泥岩或泥頁岩岩組的綜合。

邊坡軟岩帶中所發育的炭質頁岩已變成層間剪切破碎帶,其岩性軟弱,呈散體結構,壓縮變形量大,強度很低,岩體質量極差。其中以條帶狀含炭質泥岩或泥頁岩為主,間夾煤線,頁理鏡面清楚。砂頁岩互層,構成了軟硬相間的岩性組合。

工程區的邊坡典型軟岩順層產出,在空間上呈帶狀展布,受構造擠壓作用的影響,形成層間剪切破碎軟帶。

根據野外實測地層剖面(圖3-6)測算,整個工程邊坡中所發育的軟質岩層與硬質岩層之比為3:7。各岩組在剖面中所佔的比例見表3-3。

圖3-6 典型剖面岩組空間展布示意圖

表3-3 工程區軟岩帶發育的岩組成分比例

續表

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864