地質記錄土層軟硬怎麼分
『壹』 地質分類有哪些地質分為什麼類型
(1)標准地質剖面:如中國最古老的岩石——遼寧鞍山白家墳花崗岩;天津薊縣中、上元古界地層剖面等。
(2)著名古生物化石遺址:如北京周口店北京猿人遺址;世界奇觀——河南西峽恐龍蛋化石等。
(3)地質構造形跡:如西藏雅魯藏布江縫合帶;河南嵩山前寒武紀地層及三個整合遺跡等。
(4)典型地質與地貌景觀:如安徽黃山奇峰;澎湖列島的地形景觀等。
(5)特大型礦床:如世界上最大的稀土礦床——內蒙古白雲鄂博;中國稀有金屬和寶石明珠——新疆阿爾泰偉晶岩;黑龍江大慶油田等。
(6)地質災害遺跡:如遼寧大連金石灘震旦系——寒武系地層中的地震遺跡;河北唐山地震遺跡;雲南東川市泥石流及防治等。
(1)地質記錄土層軟硬怎麼分擴展閱讀:
地質的研究對象:
1、礦物和岩石
在地球的化學成分中,鐵的含量最高(35%),其他元素依次為氧(30%)、硅(15%)、鎂(13%)等。如果按地殼中所含元素計算,氧最多(46%),其他依次為硅(28%)、鋁(8%)、鐵(6%)、鎂(4%)等。這些元素多形成化合物,少量為單質,它們的天然存在形式即為礦物。
2、地層和古生物
地層是以成層的岩石為主體,隨時間推移而在地表低凹處形成的構造,是地質歷史的重要紀錄。狹義的地層專指已固結的成層的岩石,有時也包括尚未固結成岩的鬆散沉積物。
3、地質構造和地質作用
地球表層的岩層和岩體,在形成過程及形成以後,都會受到各種地質作用力的影響,有的大體上保持了形成時的原始狀態,有的則產生了形變。它們具有復雜的空間組合形態,即各種地質構造。
參考資料來源:網路—地質
『貳』 地理中如何判斷地質層的硬度
硬度(莫氏硬度)的判斷一般是用待測物質在標准物質表面劃痕來測定的,比如一種岩層可以再硬度為9的剛玉上劃痕而在10的金剛石不可以劃,那該岩層硬度在9-10之間。
『叄』 如何分析地質土層
可以從土的顆粒大小來分析;可以從土的力學性質來分析;可以從土的物理性質來分析等等
『肆』 地質中如何具體劃分岩性
地質岩性指岩石的軟硬程度及成因,如:花崗岩、大理岩、沉積岩、泥岩等,是劃內分岩石等級的容主要依據;岩石結構是指斷層、節理、破碎等的統稱,是邊坡支護的設計依據。
地層岩性和地質岩性的區別。
地層岩性:一般指場地的岩性,特指某個場地,范圍較小,描述較具體、詳細,一般需要布設鑽孔來查明。多用於初設、施工圖階段。
地質岩性:一般指區域地質的岩性,特指某個區域,范圍較大,描述較簡單,一般查閱區域地質圖。多用於選址階段。
所以說,在工程選址中,對於中小型建設工程,要注意它的地質構造與地層岩性;而對大中型建設項目,要注意它的地質構造與地質岩性。
『伍』 地基基礎沉降計算中,較軟土層怎麼判別
ES上/ES下 有個比值要求 超過了 就判定為軟弱下卧層 多看下規范 騷年
『陸』 土石方工程中,軟土,軟質岩、較硬岩,堅硬岩的比例是按照什麼來確定地質勘測嗎
清單中,是按地質勘察資料來定的。
『柒』 岩石的硬度怎麼劃分,怎麼來鑒定岩石硬度
岩石的軟硬程度不同,我們可以把岩石的硬度分成很硬、較硬、較軟三級。 按固結作用強度、頁理和劈理的發育程度將粘土岩分為粘土、泥岩和頁岩,然後再按結構或礦物成分細分。 早在1822年,Friedrich mohs提出用10種礦物來衡量世界上最硬的和最軟的物體,這是所謂的摩氏硬度計。按照他們的軟硬程度分為十級: 1)滑石 2)石膏 3)方解石 4)螢石 5)磷灰石 6)正長石 7)石英8)黃玉 9)剛玉 10)金剛石 高嶺石粘土簡稱高嶺土(kaolin),是一種以高嶺石族礦物為主要成分、質地純凈的細粒粘土,首先發現於我國江西景德鎮附近的高嶺村而得名。1712—1722年間,法國傳教土殷弘緒(原名Le.P.d』Entrecolles)曾兩次將景德鎮制瓷實況報告法國政府,稱高嶺村粘土為「高嶺土」,1867年約翰遜和布萊克(S.W.Johnson&J.M.Blake)首次把組成高嶺土的粘土礦物稱為高嶺石(kaolinite),從而成為第一個以中國地名命名的礦物學名詞。高嶺土外觀呈白、淺灰等色,含雜質時呈黃、灰、黑色等。緻密塊狀或疏鬆土狀,有滑膩感,硬度小於指甲。比重2.4—2.6。乾燥後粘舌,有吸水性。耐火度可達1770-1790℃。可塑性低,粘結性小,具良好的絕緣性和化學穩定性。純凈的高嶺土煅燒後色白,白度可達80—90%。主要用於陶瓷、造紙、橡膠工業,也可供作搪瓷、塑料、油漆等工業部門使用。 蒙脫石粘土又稱膨潤土、膨土岩、斑脫岩,是一種以蒙脫石為主要礦物成分的細粒粘土。膨潤土的外觀一般呈白色、粉紅色、淺灰色、淡黃色,當被雜質污染時可呈灰綠色、紫棕色及其他較深的顏色。疏鬆土狀者光澤暗淡,緻密塊狀者呈蠟狀光澤。硬度1—2,性柔軟。塊狀或土狀,有滑感。比重2—3。吸水後體積膨脹,最大吸水量為其體積的8-15倍。具高可塑性和良好的粘結性,在水溶液中呈懸浮和膠凝狀,還具有陽離子交換的特性。膨潤土是重要的工業礦物原料之一,在鋼鐵工業中,供作球團礦的粘結劑;鑄造工業中,用於鑄造型砂的粘結劑;化學工業中,可用來製造活性白上.作為油脂的脫色劑;地質鑽探中,它是優質的泥漿原料;陶瓷工業中,在陶瓷坯料中加入3-5%的膨潤土後,可以顯著增加坯泥的可塑性與干坯強度。此外,農業、醫葯、油漆等方面,膨潤土也有其用途 答案補充 代號:HV 單位:無 簡介:維氏硬度 英文詞條名:Vickers-hardness 表示材料硬度的一種標准。由英國科學家維克斯首先提出。以49.03~980.7N的負荷,將相對面夾角為136°的方錐形金剛石壓入器壓材料表面,保持規定時間後,用測量壓痕對角線長度,再按公式來計算硬度的大小。它適用於較大工件和較深表面層的硬度測定。維氏硬度尚有小負荷維氏硬度,試驗負荷1.961~<49.03N,它適用於較薄工件、工具表面或鍍層的硬度測定;顯微維氏硬度,試驗負荷<1.961N,適用於金屬箔、極薄表面層的硬度測定。 HV-適用於顯微鏡分析。維氏硬度(HV) 以120kg以內的載荷和頂角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)。
『捌』 地層中幾種常見土類及如何區分
具體可參見國抄標的岩土工襲程地質勘察規范里的土類劃分。比如
人工填土:顏色雜亂,成分也雜,可見建築及生活垃圾等。
沖洪積的砂土:主要是砂,還可見部分鵝卵石、礫石等
殘坡積的黏土:質地較純,部分上部可見植物根系,底部可見未完全風化的母岩殘塊等。
『玖』 地質報告中,關於土,有可塑,軟塑,流塑,都是什麼意思
野外鑒定,一般用手捏。能捏變形的為可塑。很容易就捏變形的為軟塑。像泥一樣仍在地上自己發生形變的為流塑。不知道對否
『拾』 中國地質的簡要介紹(最好是關於土質軟硬的)
中國地質構造的基本格局
關於中國地質構造的基本格局,李四光(1939、1973)、黃汲清等(1977)、任紀舜(1990、1997)、程裕淇等(1994),分別從構造體系和構造域兩個方面進行過概括和客觀描述。借鑒前人成果,結合此次編圖所取得的資料,認為中國的地質構造格局主要是板塊間相互作用與陸內構造活動的綜合反映,而板塊活動與陸內塊體再活動總是有一定的方向、方式和涉及一定地域,從而形成一定的構造體系域。這與構造體系和構造域的原義和范疇已不盡相同。強調板塊相互作用與板內構造活動都具有重要意義。現從構造形變的綜合形態、主體構造帶展向、復合關系及其動力體系角度,將全國劃分為古亞洲、特提斯、華夏—濱西太平洋、賀蘭—康滇等4個主要的構造體系域,它們東西橫亘、南北縱貫,東西約略對稱,並以上揚子地塊為中心構造結,構成了一幅大中華構造格架。
我國地質構造的一個顯著特點是斷裂構造十分發育,所編1:250萬地質圖上最主要的區域斷裂(表5-1)計89條(圖5-2),有45條屬發生過6級以上地震的活動性斷裂,他們分屬於不同的構造體系域,其中包括6條板塊結合帶和6條重要的微板塊結合帶和10條地殼拼接帶,多數有蛇綠岩帶、構造混雜岩帶發育。不少伴有規模較大的韌性剪切帶,其中有16條已發現有藍片岩帶。而含柯石英榴輝岩的超高壓變質帶主要在中央造山系發現。由於絕大部分具有較長的發育歷史和復雜的力學轉變過程,地質圖未能區分其屬性。
古亞洲構造體系域
該域包括任紀舜(1997)所劃分的古亞洲構造域,但范圍、時限更為廣泛,主要是還考慮了板塊拼合後的陸內造山作用。以李四光(1973)所劃分的3條巨型緯向帶為主體,還包括其間所鑲嵌的東西向排列的陸塊或地塊。這些構造形體總體循近東西向展布,中部約略向南彎曲或形成規模不等向南凸出的弧形彎滑構造,如淮陽弧、廣西弧等,並相伴有NEE、NWW向一對X型剪切構造。
該體系域主要發育於我國中北部,包括發育於晚元古代以來,定型於華力西期的天山—興蒙造山系和定型於印支期的中央造山帶以及其間的塔里木、華北陸塊。形成於燕山期發育於特提斯與華夏構造域之上的南嶺構造帶也是該域的新成員,以隆起—花崗岩帶為特徵,是陸內造山的產物。除此尚有一些規模較小的構造帶。
特提斯構造體系域
特提斯構造體系域為華力西、印支、燕山、喜馬拉雅期,特提斯洋迭次關閉,岡底斯—印度板塊多次相對向N或NNE方向聚合、碰撞造山形成的一個主體為NW向、中段為近EW向、東南段約略向南東撒開的反S狀弧形擠壓地帶,是總體為EW向的特提斯造山系在特定邊界條件下發生的構造畸變。其地域主要在中央造山帶之南,揚子陸塊以西的青藏高原地區,NW向的右江造山帶也屬該域組成部分。主體由一系列造山帶間夾羌北—昌都、羌南、岡底斯等長條狀弧形微陸塊組成,其中有一系列巨大的斷裂帶,亦呈反S狀,長達1 000~3 000 km余,多數伴有蛇綠岩帶、外來混雜岩塊或藍片岩帶,他們一般具有拉張、逆沖擠壓等復性特徵。東段兼有左行走滑和旋轉,南段顯示右行,其間的塊體有向SE擠出的趨勢。多數斷裂活動性較大,為地震多發帶。
金沙江-紅河斷裂帶全長3 000 km以上,北西段呈NWW向分為兩支:一支為羊湖—金沙江斷裂,發育西金烏金蛇綠岩帶,並有榴輝岩分布,在蛇形溝新發現有早二疊世深海放射蟲硅質岩;另一支為郭扎錯—若拉崗日斷裂,在藏北青南沿帶發育二疊—三疊系復理石、硅質岩、基性火山岩及二疊系灰岩外來岩塊,且有蛇綠岩殘塊及藍片岩。中段折向NNW至SN向,由金沙江蛇綠岩及含志留系—二疊系灰岩外來岩塊的泥礫混雜岩組成寬達30~40 km的強變形帶,以逆沖兼有右行剪切為特徵。南段經哀勞山延出國境,與越南黑水河消減帶相連,以逆沖兼有左行剪切為主,是一條對接於印支期的微板塊結合帶。甘孜-理塘斷裂帶為金沙江-紅河斷裂帶的NNW向分支,北段為逆沖左行剪切,南段以右行剪切為主,帶內有理塘蛇綠混雜岩和藍片岩、志留系二疊系灰岩的外來岩塊。
龍木錯—瀾滄江斷裂帶:西起龍木錯,過青海後轉沿瀾滄江南下,出境後與泰國清萊—馬來西亞結合帶連接。境內長2 800 km。西段於藏北加錯見蛇綠岩;雙湖地區也有藍片岩帶發育,南段有昌寧—孟連二疊紀蛇綠岩帶。可能是一條二疊紀晚世微板塊結合帶。
班公錯—怒江斷裂帶:前已述及,該斷裂帶西起班公錯,經改則、丁青轉怒江南下出境,中國境內長2 500 km。北西段分布有班公錯、改則、丁青、碧土、滇西三台山等三疊紀—白堊紀蛇綠岩帶和改則藍片岩帶;南段與瀾滄江之間的昌寧—孟連二疊紀蛇綠混雜岩帶,現歸於瀾滄江帶,但與怒江帶有何聯系,還值得研究。除此,伴有木嘎崗日群(J)含放射蟲硅質岩—復理石,顯示洋殼自北而南俯沖,岡底斯向北仰沖。結合帶最終對接於侏羅紀至早白堊世初。該斷裂帶南側此次新釐定的噶爾—納木錯斷裂帶,沿帶有6處蛇綠混雜岩和放射蟲硅質岩—復理石分布(K1),還可能與波密地區迫龍藏布蛇綠岩帶相連。小洋盆閉合於早白堊世末,斷裂帶顯示自南向北俯沖。
雅魯藏布江斷裂帶:沿印度河—雅魯藏布江河谷展布。自薩嘎以西分為南北兩支。東端在墨脫形成大拐彎出境,中國境內長1 700 km,寬幾至幾十千米。其北為岡底斯白堊紀—始新世火山弧,以南發育弧前盆地復理石楔。有雅魯藏布江蛇綠岩帶、放射蟲硅質岩、泥礫混雜岩和藍片岩分布。最近在林芝玉門有三疊紀蛇綠岩帶發現,說明洋盆在三疊紀已經出現,對接於白堊紀未。斷裂帶為自南向北俯沖。
道孚—康定、紫雲—南丹、右江等NW向斷裂以擠壓兼有左行走滑為特徵。道孚-康定斷裂帶也稱鮮水河斷裂帶,自二疊紀以來長期活動,中新世後左行走滑總距達80~100 km(許志琴,1997),南延有可能與小江斷裂帶相接,是一條地震活動頻發帶。
在喜馬拉雅造山帶有定日—洛扎斷裂、喜馬拉雅主中央斷裂和主邊界斷裂,為一組向南凸出的逆沖推覆斷裂系。喜馬拉雅主中央斷裂向北緩傾,傾角30°左右。主邊界斷裂帶北側的古老地層向南逆沖於山前的西瓦里克群(N+Q)之上,顯然是印度陸塊向北俯沖的產物,其形成時代為10 Ma~22 Ma(潘桂棠面告)。同時伴有強烈的伸展作用:高低喜馬拉雅之間的藏南拆離帶,大規模向NE滑脫,向東至墨脫與雅魯藏布江斷裂帶疊接,形成時代為12 Ma~21 Ma(潘桂棠面告)。沿北喜馬拉雅構造帶由拉軌崗日群組成一條穹隆群,最近區調證實是伸展環境下發展起來的一串變質核雜岩構造。在岡底斯地區垂直造山帶有多條近於等距的SN向地塹或張裂帶,最近區調發現,其中當窮錯—許如錯地塹有中新鹼性世火山岩、侵入岩(26.1 Ma),申扎打個隆弄巴溝口SN向斷裂,為一強地震活動帶,它們也與印度陸塊的嵌入、高原隆升背景下的陸內伸展有關。
華夏—濱西太平洋構造體系域
任紀舜等將中國東部劃歸由在太平洋—太平洋動力體系形成的環太平洋構造域。程裕淇等則分為由揚子、華夏兩個古板塊相互作用形成的古華夏構造域和燕山期以來由歐亞板塊和太平洋板塊相互作用形成的濱西太平洋構造域。根據1∶250萬地質圖編圖資料,對古太平洋構造所知尚少,故在前人劃分基礎上稱為華夏—濱西太平洋構造體系域。華夏構造域地域限於中國東南部地區,濱西太平洋構造域則擴及整個東亞地區。華夏古板塊與揚子古板塊的相互作用,主要由南向北和由東向西以及由南東向北西的擠壓碰撞,自四堡運動至加里東運動完成拼合。印支、燕山運動時期兩個古板塊又發生強烈的陸內擠壓嵌合作用。加里東造山運動時期華南造山帶先自南向北不均一仰沖推覆,後自東向西仰沖拼貼,奠定了該區構造輪廓。形成了總體為NE向、中段為EW向的反S狀的江南地塊和反S狀欽—杭結合帶以及反S狀羅霄—北武夷—會稽山加里東期前緣褶沖帶,也可能是EW向構造帶在特定條件下的一個變種。除此,還發育有稍晚的近南北向疊加褶皺和一些更晚的NE向的褶皺帶、斷裂帶。該構造體系域的NE向反S構造帶與特提斯構造域的NW向反S構造帶在中國南部圍繞四川盆地,約略呈犄角之勢,只是前者規模略小,不完全對稱。
燕山運動以來,由於陸內收縮和歐亞板塊與古太平洋板塊相互作用,形成了東亞濱西太平洋構造體系域,主要包括遼闊的中國東部陸緣活化帶、完達山造山帶和台灣造山帶以及東南海域,在東部陸區疊加改造中國東部的華夏構造體系域與古亞洲構造體系域,形成了一系列NNE向的隆起—岩漿帶和松遼、華北等大型盆地,其間發育一系列的NNE向巨大的斷裂帶,包括大興安嶺—太行山、嫩江—青龍河、濟寧—團風、鎮江—廣州、麗水—海豐、長樂—南澳、台東縱谷、台灣中央山脈、台西山麓等斷裂帶,也捲入了狼山、彌勒—師宗、撫州—遂川等NE向斷裂,重要的有30條,不少斷裂的一些段落並不連續,呈左行側列排列,其性質以逆沖兼有左行走滑為主,且以自SE向NW仰沖居多。他們在晚白堊世時大部分轉化為正斷層,局部發生位移不大的右行走滑,其中以汾渭斷裂帶控制的「之」字狀地塹系最為特徵。台灣的一束NNE向斷裂在新近紀以來作疊瓦式向西逆沖,至今仍有活動。
該域著名的郯廬斷裂系縱貫中國東部,它是中生代以來在一些古斷裂的基礎上發展起來的,以郯廬斷裂帶為主幹,南北均有一些分支,形成一個具有成生聯系的斷裂系統。居於中段的郯廬斷裂帶由一束平直的走滑斷裂組成,斷面向E陡傾,在其兩側變形特點有明顯不同。東盤以長距離牽引拖曳為主,斷續出露的青白口紀張八嶺群、南華—震旦系及古生代地層,在廬江、張八嶺一帶呈NNE走向,向北逐漸向東偏轉,至蘇北宿遷—泗洪、響水—淮陰一帶轉為NE、NNE向。總體呈NE—NNE向大型弧形構造,其間可能有一些規模較小的拉斷現象,顯然具牽引弧特點。至於肥東地區出露於郯廬帶中的闞集岩群、肥東岩群等中深變質構造岩片,這些古老硬脆的塊體,很可能是走滑錯斷的碎片。還需要說明的是在郯廬斷裂帶的南部廣濟、宿松等地斷裂兩側的震旦紀及早古生代地層大致呈由NWW向轉為NE向的弧形,平移錯動不顯著,說明郯廬斷裂帶南部是在一個向南凸出的弧形構造基礎上發展起來的,最大走滑拖曳部位在郯城、廬江一帶,向南逐漸減弱消失。郯廬斷裂帶的西盤構造帶與構造線主要為NWW至EW向,與走滑斷裂帶直交,不具拖曳特點,出現巨大斷距。郯廬斷裂帶南端達長江北岸,與揚子陸塊北緣逆沖斷裂帶以及大別推覆體前緣斷裂帶同時終止廣濟附近,即他們具有共同終點。由此不難設想郯廬斷裂帶西側的深層俯沖和大推覆與郯廬斷裂帶的大平移有密切的成生聯系。平移作用導致和加強了西側華北陸塊的深層俯沖和大別塊體向南擠出與推覆效應。而推覆與俯沖是以郯廬斷裂帶為邊界條件,並使走滑斷裂帶隨推覆同步發展延伸。這種走滑與推覆的聯動現象在中國東南部已有多處見到。郯廬斷裂系南延部分的廬江—懷寧斷裂,平移距離很小,該斷裂在湖口與贛江斷裂帶相接後,因九嶺疊瓦式逆沖推覆帶沿其西側向SSW方向推移,使其平移特徵得到顯著加強,以後形跡斷續零星,至粵西地區主要是遷就利用了較古老的四會—吳川斷裂帶,又有所加強。郯廬斷裂系北段為舒蘭—依蘭斷裂帶和敦化—密山斷裂帶,斷裂走向也向NE偏轉,左行走滑作用明顯減弱,敦化-密山斷裂後期右行走滑則比較明顯。根據地質依據和大量定年數據,郯廬斷裂帶啟動於三疊紀末(2088Ma~245 Ma)(王小風等,2000),強烈走滑於侏羅紀—早白堊世(100 Ma~208 Ma),晚白堊世至古近世為伸展期,新近紀又有一些擠壓或右行走滑。斷裂帶西側大約也在印支期發生了華北陸塊向南俯沖,處於中下地殼的大別山「山根」受到擠壓深層發生超高壓變質,開始擠出,在中部層次形成低溫高壓藍片岩帶。於侏羅紀時岩塊大規模向南逆沖推覆,在白堊紀時大別山體開始隆升,周邊斷陷。東南沿海的長樂—南澳斷裂帶走滑剪切的時限集中於100 Ma~120 Ma(舒良樹,2000)。所以中國大陸東部的NNE向走滑作用啟動時間有所不同,但均結束於100 Ma前後。
除此,在東南陸緣還發育一組NW向張裂帶,斷裂形跡斷斷續續,向陸內逐漸閉合,沿帶發育中新生代火山、斷陷盆地和成串的火山機構及小型侵入體,沿九江-寧德、會昌-雲霄斷裂帶有中酸性同熔型斑岩、次火山岩或晶洞花崗岩分布,具深張斷裂特點。沿海的晶洞花崗岩沿九江-寧德斷裂帶達贛東北的靈山。
賀蘭—康滇構造體系域
該域主體縱貫我國中部,包括賀蘭山、康滇、黔中一帶的褶皺帶和斷裂帶,以及近SN向的鄂爾多斯盆地,松潘—甘孜造山帶東部以及四川盆地。該體系域居我國地質構造的中軸,而上揚子古陸塊(現四川盆地),則是多體系聚合施壓的穩定核心,構成中國的中心構造結。其西面是「北、西雙向」擠壓而成倒三角形的松潘—甘孜褶皺區(許志琴,1997),北、東、南三面為大巴山、江南、川南等弧形褶皺帶所圍繞。從深部構造看我國地殼西厚東薄,西南特厚、東南特薄,而該域地殼厚度為38~45 km,大致代表我國地殼的平均厚度,恰為「中性」的過渡帶(程裕淇,1994)。
該域有7條重要的斷裂帶,均為地震活動的敏感地帶。北端的鄂爾多斯斷裂帶,走向SN,向西陡傾,晚侏羅世—早白堊世時向E逆沖,東部相對下降,最大降幅可達800 m。中南段有著名的龍門山、箐河和小金河逆沖推覆斷裂帶,屬松潘—甘孜造山帶的前陸逆沖推覆系統。南段於康滇地塊發育3條近SN向斷裂帶,長度均為500~600 km。自西向東依次為綠汁江、安寧河以及小江斷裂帶,同為左行逆沖推覆斷裂帶,都是二疊紀玄武岩的噴溢通道,地震活動由西而東依次減弱。
上述格局說明該構造體系域主要是陸內近東西向擠壓和特提斯構造動力體系與華夏—濱西太平洋構造動力體系復合聯合作用的結果,同時還受到了古亞洲構造動力體系的復合影響。
以上四大構造體系域各具特點,同時又互相遷就、互相改造、互相干涉、互相疊加,形成我國復雜而有規律的構造面貌。
除此,近期限的一些調查資料表明千山帶內部先後的褶皺變形可以平行造山帶發生疊加,但也可以近乎直交。如江南地區四堡期限第1期褶皺帶為近SN向,第2期即主體褶皺為近EW向;贛中武功山區加里東期第1期褶皺帶為近EW向,第2期即主體褶皺為近SN向;湯家富也報導了(2003)安徽滁州、和縣、巢湖一帶印支期限早期褶皺為NWW向,後期為NE向,均近直交。這也可從板內構造活動和板塊碰撞兩種作用得到期解釋,是否如此,值得進一步研究。