當前位置:首頁 » 地質問題 » 水文地質中的p什麼含義

水文地質中的p什麼含義

發布時間: 2021-02-06 12:53:38

Ⅰ 水文地質概念

下面這個看看.
根據和XX學之間的一般情況,把"是研究......的科學"這幾個字去掉,應該就可以用了~~~

水文地質學是研究地下水的數量和質量隨空間和時間變化的規律,以及合理利用地下水或防治其危害的學科。

在不同環境中地下水的埋藏、分布、運動和組成成分均不相同。查明上述各方面狀況,可為科學地利用或防治地下水提供根據。水文地質學對地下水的研究,著重自然歷史和地質環境的影響,同主要用水文循環和水量平衡原理研究地下水的地下水水文學關系密切,只是研究的側重點稍有不同。

水文地質學發展簡史

人們早在遠古時代就已打井取水。中國已知最古老的水井是距今約5700年的浙江餘姚河姆渡古文化遺址水井。古波斯時期在德黑蘭附近修建了坎兒井,最長達26公里,最深達150米。約公元前250年,在中國四川,為采地下鹵水開鑿了深達百米以上的自流井。中國漢代鑿龍首渠,是一種井、渠結合的取水建築物。在利用井泉的過程中,人們也探索了地下水的來源。法國帕利西、中國徐光啟和法國馬略特,先後指出了井泉水來源於大氣降水或河水入滲。馬略特還提出了含水層與隔水層的概念。

1855年,法國水力工程師達西,進行了水通過砂的滲透試驗,得出線性滲透定律,即著名的達西定律,奠定了水文地質學的基礎。1863年,法國裘布依以達西定律為基礎,提出計算潛水流的假設和地下水流向井的穩定流公式。1885年,英國的張伯倫確定了自流井出現的地質條件。奧地利福希海默在1885年制出了流網圖並開始應用映射法。

19世紀末20世紀初,對地下水起源又提出了一些新的學說。奧地利修斯於1902年提出了初生說。美國萊恩、戈登和俄國安德魯索夫在1908年分別提出在自然界中存在與沉積岩同時生成的沉積水。1912年德國凱爾哈克提出地下水和泉的分類,總結了地下水的埋藏特徵和排泄條件。美國邁因策爾於 1928年提出了承壓含水層的壓縮性和彈性。他們為水文地質學的形成作出了重要貢獻。

泰斯於1935年利用地下水非穩定流與熱傳導的相似性,得出了地下水流向水井的非穩定流公式即泰斯公式,把地下水定量計算推進到了一個新階段。20世紀中葉,蘇聯奧弗琴尼科夫和美國的懷特在水文地球化學方面作出了許多貢獻。到第二次世界大戰結束時,在地下水的賦存、運動、補給、排泄、起源以至化學成分變化、水量評價等方面,均有了較為系統的理論和研究方法。水文地質學已經發展成為一門成熟的學科了。

20世紀中葉以來,合理開發、科學管理與保護地下水資源的迫切性和有關的環境問題,越來越引起人們的重視。同時,人們對某些地下水運動過程有了新的認識。1946年起,雅可布和漢圖什等論述了孔隙承壓含水層的越流現象。英國博爾頓和美國的紐曼分別導出了潛水完整井非穩定流方程。

由於預測地下水運動過程的需要,促進了水文地質模擬技術的發展。20世紀30年代開展了實驗室物理模擬。40年代末發展起來的電網路模擬,到50~60年代在解決水文地質問題中得到應用。

由於電子計算機技術的發展,70~80年代,地下水數學模擬成為處理復雜的水文地質問題的主要手段。同時,同位素方法在確定地下水平均貯留時間,追蹤地下水流動等研究中得到應用。遙感技術及數學地質方法也被引進,用以解決水文地質問題。對於地下水中污染物的運移和開采地下水引起的環境變化,引起廣泛的重視。20世紀60年代以來,加拿大的托特提出了地下水流動系統理論,為水文地質學的發展開拓了新的發展前景。

水文地質學基本內容

水文地質學是從尋找和利用地下水源開始發展的,圍繞實際應用,逐漸開展了理論研究。目前已形成了一系列分支。

地下水動力學是研究地下水的運動規律,探討地下水量、水質和溫度傳輸的計算方法,進行水文地質定量模擬。這是水文地質學的重要基礎。

水文地球化學是水文地質學的另一個重要基礎。研究各種元素在地下水中的遷移和富集規律,利用這些規律探討地下水的形成和起源、地下水污染形成的機制和污染物在地下水中的遷移和變化、地下水與礦產形成和分布的關系,尋找金屬礦床、放射性礦床、石油和天然氣,研究礦水的形成和分布等。

供水水文地質學是為了確定供水水源而尋找地下水,通過勘察,查明含水層的分布規律、埋藏條件,進行水質與水量評價。合理開發利用並保護地下水資源,按含水系統進行科學管理。

礦床水文地質學是研究采礦時地下水湧入礦坑的條件,預測礦坑涌水量以及其他與采礦有關的水文地質問題。

農業水文地質學的內容主要包括兩方面,一方面為農田提供灌溉水源進行水文地質研究;另一方面為沼澤地和鹽鹼地的土壤改良,防治次生土壤鹽鹼化等問題進行水文地質論證。

地熱是一種新的能源,如何利用由地下熱水或熱蒸汽攜至地表的地熱能,用來取暖、溫室栽培或地熱發電等,以及地下熱水的形成、分布規律,以及勘察與開發方法等,是水文地熱學的研究內容。

區域水文地質學是研究地下水區域性分布和形成規律,以指導進一步水文地質勘察研究,為各種目的的經濟區劃提供水文地質依據。

古水文地質學是研究地質歷史時期地下水的形成、埋藏分布、循環和化學成分的變化等。據此,可以分析古代地下水的起源與形成機制,闡明與地下水有關的各種礦產的形成、保存與破壞條件。

地下水的形成和分布與地質環境有密切聯系。水文地質學以地質學為基礎,同時又與岩石學、構造地質學、地史學、地貌學、第四紀地質學、地球化學等學科關系密切。工程地質學是與水文地質學是同時相應發展起來的,因此兩者有不少內容相互交叉。

地下水積極參與水文循環,一個地區水循環的強度與頻率,往往決定著地下水的補給狀況。因此,水文地質學與水文學、氣象學、氣候學有密切關系,水文學的許多方法也可應用於水文地質學。地下水運動的研究,是以水力學、流體力學理論為基礎的,並應用各種數學方法和計算技術。

水文地質學的發展趨勢是:由主要研究天然狀態下的地下水,轉向更重視研究人類活動影響下的地下水;由局限於飽水帶的含水層,擴展到包氣帶及「隔水層」;由只研究地殼表層地下水,擴展到地球深層的水。

預計今後的水文地質研究,在下列方面將有突破:裂隙水與岩溶水運動機制和計算方法;地下水中污染物和溫度運移機制和計算方法;粘性土的滲透機制;包氣帶水鹽運移機制;水文地球化學和同位素水文地質學,地下水數學模型;地球深層水文地質。

Ⅱ 水文地質區帶的含義與應用

水文地質區帶是指沉積盆地內地下水的水動力條件與水化學成分沿著徑流方向呈有序的變化,在縱向上不同含水岩系之間存在著蛛絲馬跡的相互聯系過程。這就是說:從供水區到泄水區,從地表到地殼深處,按照水動力和水化學的綜合特徵,可劃分出若干個有區別又有聯系的水文地質單元。

我國石油水文地質工作者在研究水文地質區帶時,主要沿用以下學者的觀點和方法:

1.B.A.蘇林的水文地質區帶的劃分方法

蘇林認為,地下水或多或少的都與地表水有一定的聯系,將聯系的程度定義為「水文地質開啟程度」,並用來作為劃分水文地質區帶的基礎。開啟程度決定於:含水層頂板的岩石性質,越厚越不透水,含水層與地表水隔離越好;含水層供水區和泄水區之間的距離和相對高差,它控制著水的循環強度;岩相變化情況,透水岩石的尖滅與相變情況;侵蝕窗的存在,使含水層與地表水發生了聯系,或出現上升泉;含水層埋藏深度,埋藏越深,地表水與地下水聯系越弱。實際上水文地質開啟程度主要決定於地質構造,自然地理條件及岩石性質。

根據上述綜合因素,劃分三個水文地質區帶:

1)水自由交替帶:與地表水或大氣降水有密切聯系;含水岩系裸露地表或被透水性好的岩層所覆蓋(無隔水頂板);位於當地侵蝕基準面以上,有的雖然位於當地侵蝕基準面以下,但本身透水性好;供水區與泄水區的高差大;水化學成分與地表水接近,以Na2SO4型水為主,在遭受沖刷的地區,當岩層中有長石礦物時,多為NaHCO3型水,相反在岩石溶濾作用很弱或受氯化物鹽漬的地區,出現礦化度略高的MgCl2型水。

2)水交替停止帶:岩層透水性能力差,或由於岩相變化,致使與地面隔離;遠離供水區,也無泄水區,即沒有侵蝕窗。也不存在使地下水流回地面去的通道或斷層,水沿地層運動的速度很慢;礦化度較高,以CaCl2型水為主。

3)水交替阻滯帶:介於上述兩帶之間,為它們的過渡帶。另外,如果供水區和泄水區之間的距離很大,或者透水性能不太好時,則屬於這一類型。本帶上部多為Na2SO4型水,下部為MgCl2型水;中間為過渡階段;在還原條件下,由於有機質的演化作用(烴類氣體與石油的形成),硫酸鹽可被還原形成NaHCO3型水;就礦化度而言,介於自由交替帶和交替停止帶之間。

2.M.A.格塔聯斯基的水文地質區帶的劃分方法

主要依據地下水的流速、水型特徵及礦化度高低,劃分以下四個區帶:

1)水自由交替帶:位於局部侵蝕基準面以上;地下水運動速度很快;常屬Na2SO4型水和NaHCO3型水;礦化度小於2 毫克當量/100 克;在斷裂破碎帶附近,由於深部地下水上涌,出現其他類型的水型,周邊岩石的性質也會引起水型的改變。

2)水交替緩慢帶:位於局部侵蝕基準面以下;地下水運動速度較快;可出現多種水的類型;礦化度在2~50毫克當量/100 克之間;主要受局部地方性的水文地質開啟程度和岩石性質的影響。

3)水交替阻滯帶:位於上帶的下部,地下水運動速度不大,大多屬於CaCl2水型,而MgCl2型水較少,僅在局部具有大量石膏化的剖面上或開啟程度良好的地段,可見到高礦化度的Na2SO4型水;礦化度在50~250毫克當量/100克之間。

4)水交替停止帶:包括沉積岩層剖面上最深的部分;礦化度高,大於250毫克當量/100克,均為CaCl2型水;此帶的厚度大,底部都為結晶基岩的侵蝕表面或基岩的裂隙部分,地下水運動速度極慢,已毫無意義,但仍在垂直方向上沿構造裂隙與斷裂進行運動。

3.K.B.費拉托夫水化學垂直分帶的理論

費拉托夫根據地下水礦化度、水化學類型、鹽類成分及有關比值等隨著埋藏深度增加而有規律變化的特點指出:

1)在任何一個盆地內,地下水的總礦化度均隨深度增高,與發展的性質和年代無關。

2)在任何一個封閉的盆地內,在地下水循環基準以下,水化學成分的改變與岩石成分的關系逐漸消失。

3)循環基準面——即通過該構造水文切割綱最低侵蝕線的一個彎曲面,它把地下水分為兩帶,上帶叫做循環和淋濾帶,下帶叫做水的類型分異和形成帶。

4)在地殼垂直剖面上,自上而下,地下水類型的改變是重碳酸鹽水—硫酸鹽水—氯化物水,而陽離子分帶性表現得不顯著。

5)地下水循環基準面以上的水,沒有明顯的分帶性。

6)盆地愈古老,岩石的透水性愈好,則水化學垂直分帶現象愈明顯。

為研究水化學的垂直分帶,他首先研究了垂直方向上各岩層的水力聯系,認為地下水絕不是相互隔絕的,而是保持著經常的、緊密的、靜水力學的滲透和水化學聯系。

費拉托夫在研究地下水溶液性質的基礎上,提出了水化學垂直分帶規律是由溶液的飽和極限和比重引起的理論,有一定的依據。自然界中大氣和岩漿的分異都與比重有關,所以地球表面為矽鋁層,向下為矽鎂層,地球內部為鐵鎳核心。

上述學者關於水文地質區帶的劃分,在油氣水文地質勘查實踐中得到廣泛地應用,對我國油田水研究產生一定的影響。

Ⅲ p是什麼意思

主要看你在什麼情景下使用這個P了。 一般來說, 在物理學中,p 是物理學名詞,電迴流在單位時間內做的功叫做電功率答。是用來表示消耗電能的快慢的物理量,用P表示,它的單位是瓦特(Watt),簡稱瓦,符號是W。 在地理學中,p是地質符號。

LES分T,P,H. T = Tom Boy = 男性化的女同志 (後來T又分為TomBoy.TomGirl;Tomgirl(TG)意思是T也是女人,穿體閑裝的短發的都得體現出女人的曲線美,一眼就能看出是女人。給別人看出你做女人的自信。Tomboy(TB)意思是穿男裝,頭發剪得像男人。

Ⅳ 水文地質參數變化

一、太原盆地水文地質參數計算

水文地質參數的選取直接影響著地下水資源計算量的大小和可信度,研究水文地質參數具有十分重要的意義。本次相關的水文地質參數主要有降水入滲補給地下水系數(α)、潛水蒸發極限深度(L)、蒸發強度(ε)、灌溉回滲地下水系數(β)、疏干給水度(μ)、導水系數(T)、彈性儲水系數(s)、滲透系數(K)、河流滲漏補給系數、渠系滲漏補給系數等。

(一)降水入滲補給地下水系數(α)

影響降水對地下水的補給量的因素很多,主要有地形、包氣帶岩性及結構、地下水位埋深、降水特徵及土壤前期含水量等。

降水入滲補給系數為降水入滲補給地下水量與降水量之比值。年降水入滲補給系數為年內所有場次降水對地下水入滲補給量總和與年降水總量的比值,其表達式為:

山西六大盆地地下水資源及其環境問題調查評價

式中:α年是年降水入滲補給系數;pri是場次降水入滲補給量,mm;P是年降水量,mm;n是年降水場次數。

用長期動態觀測孔求取年降水入滲系數的計算方法:

山西六大盆地地下水資源及其環境問題調查評價

式中:μ∑Δh是年內各次降水入滲補給地下水量之和;P是年降水量;Δh是某次降水引起的地下水位升幅值。

根據動態資料分析計算,在前人試驗的基礎上,綜合考慮各方面的因素,給出盆地區降水入滲補給地下水系數(詳見第四章)。

(二)地下水蒸發極限深度(L)、蒸發強度(ε)

蒸發極限深度就是指淺層水停止蒸發或蒸發量相當微弱時,淺層水位埋深值。蒸發強度就是在極限蒸發深度以上,單位時間淺層水的蒸發量。

影響地下水蒸發的主要因素是地下水位埋深、包氣帶岩性和水面蒸發強度等。

理論上,當水位埋深處於蒸發極限深度時,地下水在無補給、無開採的條件下,動態曲線近於平直。

地下水蒸發極限深度(L)

蒸發極限深度通常採用迭代法、試演算法和經驗公式計算(L),公式如下:

迭代法:

試演算法:

經驗公式法:

式中:ΔT1、ΔT2為計算時段,d;H1、H2、H3為時段內水位埋深,m;Z1、Z2為時段內水面蒸發強度,m/d;

經計算,太原盆地孔隙水區不同岩性的蒸發極限深度依包氣帶岩性不同分別為:亞砂、亞粘土互層為3.5m,亞砂土為4.0m,粉細砂、亞砂土互層為4.5m。

地下水蒸發強度

計算公式:

式中:Z0是液面蒸發強度,mm/d;ΔH是淺層水降落間段的平均水位埋深,mm;Z是蒸發強度,mm/d。

由本區淺層水水位埋深圖(詳見第四章)可看出,水位埋深小於4m的區域在北部太原市和南部平遙、介休一帶,根據上式計算太原、平遙、介休等地的地下水蒸發強度見表3-1。

表3-1 太原盆地孔隙水區地下水蒸發強度

(三)灌溉回滲地下水系數(β)

是指田間灌溉補給地下水的量與灌溉總量的比值。影響灌溉回滲系數和因素主要有岩性、水位埋深、土壤含水率、灌溉定額等多種。

計算公式:

式中:μ是給水度;Δh是由灌溉引起的地下水位平均升高值,m;Q是灌溉水量,m3;F是面積,m2

本次工作在盆地太原市小店區郜村、汾陽市賈家莊鎮東馬寨村和榆次市楊盤等3個地方布置了3組灌溉入滲試驗,地表岩性郜村為粉質粘土、東馬寨上部為粉質粘土,下部為粉土,楊盤為粉土,化驗室給水度試驗結果分別為0.195、0.11、0.143。郜村在37m×37m的面積上布置10眼觀測孔,水位埋深1.2~1.3m,累計灌溉水量160m3,10個孔平均水位上升值為0.1912m,根據上式計算得灌溉入滲地下水系數為0.32;東馬寨村水位埋深1.95~2.44m,在26m×26m的面積上布置10眼觀測孔,灌溉水量60m3,觀測孔平均水位上升值為0.465m,計算得灌溉入滲地下水系數為0.58;楊盤布3個觀測孔,水位埋深5.76~6.01m,灌溉面積100m2,灌溉水量100m3,平均水位上升高度為0.27m,計算得灌溉入滲系數為0.039。

從以上試驗數據可以看出,不同水位埋深、不同岩性地區灌溉入滲系數有很大區別。綜合考慮各種因素,灌溉回滲地下水系數選用值見表3-2。

表3-2 灌溉回滲地下水系數

(四)彈性貯水系數S、導水系數T、給水度μ、滲透系數K

盆地區大部分地區都進行過1∶5萬比例尺的農田供水水文地質勘查,做過大量單孔和多孔抽水試驗,本次在文水文倚、汾陽等5地分別作了5組抽水試驗,用非穩定流公式,降深-時間半對數法計算結果如下:文倚導水系數T=1983.59~2181.95m2/d,滲透系數K=32.19~35.4m/d,彈性貯水系數S=1.79×10-3;汾陽縣賈家莊鎮東馬寨村抽水試驗求得導水系數T=325.84~376.5m2/d,滲透系數K=5.65~6.53m/d。結合以往本區的工作成果,給出太原盆地淺層孔隙潛水和中深層孔隙承壓水水文地質參數,詳見參數分區圖3-13和參數分區表3-3。

表3-3 太原盆地中深層孔隙承壓水及淺層孔隙潛水參數分區

圖3-13 太原盆地參數計算分區圖

二、大同盆地水文地質參數計算

由本區淺層水2004年水位埋深圖可看出,水位埋深小於4m的區域主要分布於盆地中部沖積平原區,盆地南部懷仁、山陰、應縣、朔州分布面積較大。根據計算和以往試驗資料,本區蒸發強度確定值見下表(表3-4)。

表3-4 大同盆地孔隙水區地下水蒸發強度

據「山西省雁同小經濟區水資源評價、供需平衡研究報告」中搜集的本區灌溉回滲試驗數據取得不同水位埋深、不同岩性、不同灌溉定額的灌溉回滲系數,灌溉回滲系數選定值見表3-5。

盆地區大部分地區都進行過1/5萬比例尺的農田供水水文地質勘查,做過大量單孔和多孔抽水試驗。本次工作搜集本區以往抽水試驗孔117個,本次在大同縣黨留庄鄉、懷仁縣金沙灘鎮、懷仁縣新發村、懷仁縣榆林村、山陰縣張庄鄉、朔州市城區沙塄鄉等6地分別作了6組抽水試驗,採用AquiferTest計算程序,非穩定流方法計算,本次抽水孔具體情況和計算結果見表3-6和表3-7 。

表3-5 灌溉回滲地下水系數

表3-6 大同盆地本次抽水試驗數據統計

表3-7 大同盆地本次抽水試驗計算成果表

結合以往本區的工作成果,給出大同盆地淺層孔隙潛水和中深層孔隙承壓水水文地質參數,詳見參數分區圖3-14、圖3-15和參數分區表3-8、表3-9 。

圖3-14 大同盆地降水入滲系數分區圖

圖3-15 大同盆地淺層、中深層孔隙水參數分區圖

表3-8 大同盆地淺層孔隙潛水參數分區表

續表

表3-9 大同盆地中深層孔隙承壓水參數分區

三、忻州盆地

忻州盆地地下水資源較為豐富,開采條件優越,20世紀70年代之前地下水開采規模較小;70年代初至80年代末隨著農業灌溉的普及,工業生產的發展和城市規模的擴大,地下水開采量迅速增加。開采對象以淺層水為主,造成淺層水水位普遍有所下降(但下降幅度不大)。從20世紀90年代至今,雖然地下水開采量具有逐年增大的趨勢,但增加幅度較小,且中層井數量逐漸增多,形成了淺層水、中層水混合開採的新模式,地下水位總體處於動態平衡狀態。受地下水人工開採的影響,降水入滲系數及導水系數等水文地質參數發生了一定程度的變化。

區內降水入滲系數的變化除了與年降水量及降水特徵有關外,主要與淺層地下水位埋深關系較為密切。已有資料表明,在山前傾斜平原區,淺層水位埋深一般大於7m,因水位下降使降水入滲系數發生了不同程度的減小。在沖積平原區淺層水位埋深一般小於7m,水位下降的結果引起了降水入滲系數有所增大。不同地貌單元降水入滲系數的變化見第五章。

從20世紀70年代以來,區內含水層的導水系數發生了較為明顯的減小,主要體現在因淺層地下水位下降,使淺層含水層上部處於疏干狀態,含水層厚度減小,直接導到導水系數減小。因淺層水水位下降幅度不同,導水系數減小的程度也存在差異,從本次地下水側向補給量計算斷面附近的井孔資料分析,含水層厚度一般減小了3~6m,導水系數由70年代中期的60~250m2/d,減少到目前的50~200m2/d左右。

忻州盆地給水度根據不同地貌單元含水層岩性、分選性及富水性綜合確定見表3-10及圖3-16 。

表3-10 忻州盆地淺層含水層給水度分區

圖3-16 忻州盆地給水度分區圖

四、臨汾盆地

經過搜集以往資料,調查和計算確定臨汾盆地降水入滲系數見表3-11。臨汾盆地滲透系數及給水度分區見圖3-17,表3-12。

表3-11 臨汾盆地平原區降水入滲系數統計

圖3-17 研究區滲透系數及給水度分區圖

表3-12 臨汾盆地參數分區表

五、運城盆地

運城盆地地下水長觀網建站年代較遠,積累了大量的地下水位監測資料,且經過多次的地質、水文地質勘察、地下水資源評價工作,取得了大量的降水入滲值,參考前人綜合成果,結合目前包氣帶岩性、地下水位埋深,給出運城盆地降水入滲補給系數,見表3-13。

表3-13 運城盆地平原區降水入滲系數統計

渠系有效利用系數除受岩性、地下水埋深影響外,還與渠道襯砌程度有關。修正系數r為實際入滲補給地下水量與渠系損失水量Q的比值,是反映渠道在輸水過程中消耗於濕潤土壤和侵潤帶蒸散損失量的一個參數,它受渠道輸水時間、渠床土質及有無襯砌、地下水埋深等因素的影響。一般通過渠道放水試驗獲得。本次評價主要參考運城市水利局相關試驗成果,見表3-14。

表3-14 運城盆地萬畝以上灌區η、r、m值統計

灌溉回歸補給系數β值與岩性、植被、地下水埋深及灌溉定額有關,一般通過灌溉入滲試驗求得,本次評價主要參照運城市水利部門資料綜合確定,詳見表3-15。

表3-15 運城盆地灌溉回歸系數β取值

河道滲漏補給系數是河道滲漏補給地下水量與河道來水量的比值。其值大小與河床下墊面岩性、流量、地下水位埋深及滲漏段長度有關。運城盆地沿中條山前發育數條季節性河流,河床下墊面主要為砂卵礫石,當洪雨季節,地表河床水位遠高於地下水位,為地表水的入滲造就了十分便利的條件。根據河道滲漏資料,可建立如下數學模型:

山西六大盆地地下水資源及其環境問題調查評價

式中:m是河道滲漏補給系數;A是計算系數,A=(1-λ)×(1-φ)L,φ是單位千米損失率;L是河道滲漏長,km,Q徑是河道來水量,m3/s。

據運城市水利部門研究成果,A值約為0.090。

含水層的滲透系數主要由野外抽水試驗通過穩定流及非穩定流計算公式求得,各勘探部門在運城盆地先後進行過各種勘察,進行了大量的抽水試驗工作,積累了豐富的資料,參考本次抽水試驗成果對以往參數進行了修正,取值結果見表3-16 。

表3-16 運城盆地鬆散岩類K值選定表

降雨入滲補給系數在同岩性、同降雨量情況下,隨地下水位埋深的增大,降雨入滲補給系數會達到一個最大值之後趨於減少或變為常數。運城盆地北部的峨嵋台塬及聞喜北塬,其地下水位埋藏深,地表主要以黃土類為主,降水入滲主要依靠黃土垂直節理裂隙及「流海縫」以「活塞式」注入地下,多年來其降水入滲系數基本為常量,經用動態分析法計算其降水入滲系數在0.108~0.11間;在盆地中部的沖湖積平原區,其地表岩性主要以Qp3+Qh沖湖積相的亞砂土、亞粘土、粉細砂為主,由於開采強烈,區域水位嚴重下降,地表數米至幾十米內均為飽氣帶,為降水入滲准備了調蓄空間,加強了降水向地下水的轉化。根據盆地地下水長觀孔資料及次降雨資料,計算出盆地沖湖積平原地帶,降水入滲系數在0.1~0.162之間,總體上上游大於下游。而在東部及南部的山前傾斜平原區,地下水位埋深一般大於5m、乃至幾十米,地表岩性大多為亞砂土及亞粘土,尤其是在一些溝口附近,從地表往下幾十米范圍內為干砂卵礫石,一般降雨基本上不產生地表徑流,這無疑加大了降水的轉化。據相關資料計算,降水入滲系數高達0.21~0.30。因過去所做的工作不系統,沒有對降雨入滲系數進行系統分類,不便比較,但根據運城盆地飽氣帶岩性、地下水變動情況,除峨嵋台塬及黃土丘陵區變化不大外,其他地區降雨入滲系數無疑有增大趨勢。

盆地內抽水井的含水層,大多為數個含水層混合開采。現根據本次抽水計算值,對歷次研究成果中的K值加以修正,得出運城盆地各個地貌單元的滲透系數。總體來說,黃河岸邊低階地區K值最大為11.3~14.6m/d,中條山山前傾斜平原次之,為5.45~6.12m/d,最次為聞喜北垣K=1.10m/d左右。

根據地貌單元、含水層岩性、地下水水力特徵及各參數特徵,將運城盆地劃分為10個參數分區,見表3-17及圖3-18。

表3-17 運城盆地水文地質參數分區

六、長治盆地

根據水文地質條件,長治盆地參數分區見圖3-19,表3-18 。

圖3-18 運城盆地水文地質參數分區表

圖3-19 長治盆地參數分區圖

表3-18 長治盆地淺層孔隙潛水參數分區

(一)降水入滲補給系數變化

根據《太原市地下水資源評價報告》研究成果,盆地區亞砂土、極細砂、細砂的降水入滲系數隨著地下水位埋深的增大而增大,當水位埋深超過一定值以後,降水入滲系數開始趨於穩定;降水量越大,降水入滲系數在相同的岩性和地下水位埋深條件下也越大。對於亞砂土、極細砂、細砂在相同水位埋深和降水情況下,細砂的降水入滲系數>極細砂的>亞砂土的。總體來說,顆粒越粗,降水入滲系數也越大。

α隨降水量的變化,非飽和帶在降水入滲補給地下水過程中起調節作用,降水入滲補給過程要滯後於降水過程,其滯後時間的長短、特徵與非飽和帶的重力水蓄水庫容關系密切,地下水埋深越大,其蓄水庫容也越大,調節能力也越強,滯後現象也越明顯。

在亞砂土、極細砂和細砂3種岩性中,降水量相等時,降水入滲系數從大到小的順序為細砂、極細砂、亞砂土。場次降水量的影響表現為α次先是隨著降水量的增大而變大,當降水量超過一定數值後,α次反而呈減少趨勢,這個降水量即是最佳降水量。α年與α次有相同的規律性,從入滲機制分析,α年也存在最佳年降水量。

當地下水埋深為零時,降水入滲補給系數亦為零,然後隨埋深的增加由小變大;當地下水埋深到達某一定值時,降水入滲補給系數達到最大值即最佳降水入滲補給系數,並由此隨埋深的增加由大到小,到達一定的埋深時,趨於定值。地下水埋深對降水入滲補給系數的影響,可從3方面來說明。

埋深反映了蓄水庫容的大小。當埋深為零時,即蓄水庫容為零,這時無論降水量多大,均無入滲補給的可能。當埋深增加時,地下水庫得到了降水入滲補給量,此時降水入滲補給系數大於零,降水入滲補給系數隨埋深的增加而增大。當地下水達到最佳埋深時,其對應的降水入滲補給系數為最佳降水入滲補給系數,原因是由於條件一致的地區中的依次降水,其入滲補給量隨地下水埋深的變化必存在一個最大值。當地下水埋深較小時,由於地下水蓄水庫容較小,形成蓄滿產流,不能使降水全部入滲;當地下水埋深再增大時,則損失較最佳埋深為大,故降水入滲補給系數隨埋深的增加而減小。對於不同級別的降水量,α最大值出現的地下水位埋深區域也不同。最佳埋深與岩性和降水量有關。

地下水埋深在某種程度上反映了土壤水分的多少。土壤水垂直分布大體可概化為3種狀況。第1種情況是地下水埋深較小,毛管上升水總能到達地表;第2種情況是地下水埋深較大時,毛管上升水無法到達地表;第3種情況是地下水埋深介於兩者之間,在此埋深內,由於地下水位是升降變化,毛管上升水有時達到地表,有時達不到地表。這3種情況將對降水入滲補給量有不同的影響。第1種情況,降水一開始,水即可通過毛管在重力作用下迅速向下移動,地下水位在降水開始後很快上升。第2種情況,降水首先應滿足土壤缺水的需要,而後在重力作用下通過空隙下滲補給地下水。其滲漏途徑較第1種情況長,入滲方式也有差異。

圖3-20 滲透系數與深度關系圖

不同地下水位埋深條件對降水入滲補給系數取值的影響。盆地太谷均衡實驗場的水分勢能實驗最大深度為8.2m,有觀測點41個。多年資料的分析結果表明,土壤水分勢能變化從地面往下可分為3個變化帶———劇烈變化帶、交替變化帶和穩定帶,劇烈變化帶埋深為0~1.1m,土壤水分勢能變幅大於200×133Pa;交替變化帶埋深1.1~3.6m,土壤水分勢能變幅大於(100~200)×133Pa之間;埋深3.6m以下為穩定帶,其土壤水分勢能變幅小於100×133Pa,其中埋深在4.5~5.0m以下的穩定特性更為明顯,其土壤水分勢能的變幅一般不超過50×133Pa,其土壤水分全年為下滲狀態。表明埋深在5.0m以下為穩定入滲補給,反映在降水入滲補給系數上隨埋深增加,α將趨於穩定,故當埋深大於5.0m時,α值可取定值,不再隨埋深而變化。原因是地下水埋深已到達或超過地下水極限埋深,損失趨於定值,水分不向上運動,必然向下運動,故形成了降水入滲補給系數隨地下水埋深變化的穩定值。

(二)滲透系數變化

孔隙含水介質的滲透能力不僅取決於粒徑大小、顆粒級配、膠結程度,還與其埋深有關。同一岩性的孔隙含水介質,隨著深度的增加,介質被壓密,滲透系數會減小。

根據河北平原山前沖洪積扇扇頂區數百個鑽孔資料的統計,各種含水介質的滲透系數隨埋深增加呈指數衰減,部分深層不同岩性滲透系數隨埋深的變化規律參考下述經驗公式:

岩性為卵礫石時,滲透系數與埋深關系式:

K=K0e-0.0131h R=0.877

岩性為砂礫石時,滲透系數與埋深關系式:

K=K0e-0.0116h R=0.869

岩性為中粗砂時,滲透系數與埋深關系式:

K=K0e-0.0057h R=0.896

K為埋深處的滲透系數;K0為地表淺層的滲透系數;h為埋深;R為相關系數。

因此,對於同一種岩性,其滲透系數大小與深度有關(圖3-20)。

Ⅳ 學習水文地質學有什麼意義

研究各種元素在地下水中的遷移和富集規律,利用這些規律探討地下水的形專成和起源、屬地下水污染形成的機制和污染物在地下水中的遷移和變化、地下水與礦產形成和分布的關系,尋找金屬礦床、放射性礦床、石油和天然氣,研究礦水的形成和分布等。合理開發利用並保護地下水資源,按含水系統進行科學管理。為農田提供灌溉水源進行水文地質研究,為沼澤地和鹽鹼地的土壤改良,防治次生土壤鹽鹼化等問題進行水文地質論證。

Ⅵ 水文計算中p是什麼,水文計算中p是什麼知識

水文計算中的P有兩個意思:

  1. 表示降水量,即precipitation,單位是mm;

  2. 表示設計頻率,以百分數計。

Ⅶ 地質中的p,k,j代表什麼地層

是表示那個時代形成的地層,P表示二疊系,即二疊紀形成的地層;K表示白堊系,即白堊紀形成的地層;J表示侏羅系,即侏羅紀紀形成的地層,另外早一點的還有OSDCT

Ⅷ 水文地質基本知識

(一)地下水的形成和分類

1.地下水的形成

自然界中的水以氣態,液態和固態的形式存在於大氣圈、水圈和岩石圈中。大氣水、地表水和地下水並不是彼此孤立存在的,它們之間實際處於不斷運動,相互轉化的過程之中,這一過程稱為自然界中的水循環(圖1-12)。按其循環范圍和途徑的不同,分為大循環和小循環。

地下水的形成就是水的循環過程中水通過滲透和水汽的凝結作用而形成的。由大氣降水和地表水滲入地下形成的地下水稱為滲入水。其方式是大氣降水通過岩石的空隙向下滲入形成地下水,地表水是通過岩土空隙在地表水柱壓力和毛細力作用下滲入地下形成地下水。此外,在大氣中含有的水汽和岩石空隙中的水汽在溫度降低達到飽和時,就開始凝結成水滴,當水滴匯聚起來就成為地下水。我們把水汽凝結而形成的地下水稱為凝結水。而且我們還得出這樣的結論:地下水的來源主要來自大氣降水的滲入,地下水是水資源的重要組成部分,雖然能不斷得到補給,但它並非取之不盡用之不竭,如果不合理使用,水資源儲量將會減少乃至出現枯竭。

圖1-12 自然界中水的循環示意圖

①含水層;②隔水層;③大循環;④小循環

2.地下水的分類

地下水按含水層性質分為孔隙水、裂隙水和岩溶水三類。

(1)孔隙水

埋藏在孔隙岩層中的地下水稱為孔隙水。孔隙水廣泛分布於第四系鬆散沉積物中,如洪積、沖積、坡積、風積和海相沉積等岩層中。在堅硬和半堅硬的岩石中也有少量分布。孔隙水由於存在於岩土的孔隙中,因此孔隙的分布、大小、形狀、排列等,直接影響著孔隙水,這也就取決於鬆散沉積物的岩性、分布等特點。孔隙水具有如下特點:

1)孔隙水存在於岩土孔隙中,因此各種類型的具有孔隙的鬆散沉積物,都可以賦存孔隙潛水或孔隙承壓水。因此掌握沉積物的沉積規律、特徵,是尋找該含水層和初步評價含水層以及選擇供水施工工藝和供水結構設計的重要依據。

2)鬆散岩土孔隙發育,分布密集且均勻,相互連通,呈層狀分布,具有統一的水動力聯系,所以孔隙水一般呈層流運動。很少見到透水性突變等特徵。

3)由於鬆散沉積物具有不同的成因類型,它們所分布的地貌也不同,因此可形成不同類型的孔隙水,它們的均勻性也各有差異。

4)孔隙水的補給來源主要是大氣降水,在特定條件下,地表水也可成為重要的補給來源之一,在條件適宜的地方,深部裂隙水或岩溶水也可補給孔隙水。

5)孔隙水一般常存在於地殼表層,多以潛水形式出現,這對水源地勘察和供水井施工帶來便利,同時對采礦帶來一定的影響。

(2)裂隙水

埋藏和運動於基岩裂隙中的地下水稱為裂隙水。基岩的裂隙是地下水的儲藏和運動的場所,裂隙的發育程度和聯通性直接影響著裂隙水的分布和富集。因此,研究基岩的裂隙具有重要而實際的意義。基岩裂隙按其成因可分為成岩裂隙、構造裂隙和風化裂隙三種類型。裂隙水的埋藏和分布很不均勻,主要受地質構造、岩性及地貌等因素的控制。按埋藏條件和含水層產狀,可將裂隙水分為三種類型;面狀裂隙水、層狀裂隙水和脈狀裂隙水。

1)面狀裂隙水:賦存於各種基岩表部的風化裂隙中,某些巨大的交叉斷裂帶也屬這一類。這種裂隙水上部一般沒有連續分布的隔水層,具有潛水的特徵。風化裂隙廣泛分布,均勻密集,彼此連通構成面狀分布的網狀裂隙體系,因而構成統一水動力系統,具有統一的水面,屬面狀裂隙水或似層狀裂隙水。

2)層狀裂隙水:是指聚集於成岩裂隙及區域構造裂隙中的水。其埋藏和分布常有一定的呈層性,這種水稱為層狀裂隙水。由於各種裂隙交織相通,構成了具有統一地下水水面的網狀系統,因此,其埋藏和分布常具成層性。

3)脈狀裂隙水(帶狀裂隙水):是指埋藏和運動於構造斷裂帶或岩漿侵入接觸帶的水,常呈帶狀或脈狀分布。這種水由於受斷裂影響,往往補給源較遠,循環深度大,水量、水位較穩定。一般具有統一的地下水力聯系,有些地段可具承壓性。是良好的供水水源。脈狀裂隙水對礦床的開采、鑽探及地下洞穴工程,常常造成巨大的困難和威脅,有時可突然造成涌水事故。

(3)岩溶水

貯存和運動於岩溶中的地下水稱為岩溶水。岩溶水的分布較孔隙水和裂隙水有更大的不均勻性。它主要發育在石灰岩地區。由於水流對可溶性岩石(石灰岩、白雲岩、石膏、鉀鹽、石鹽等)以化學溶蝕為主,機械破碎為輔的一種特殊的地質作用,產生了特殊的地質現象(如石芽、溶溝、溶洞、石林、峰林、地下暗河等),將這種作用稱為岩溶作用,將這種現象稱為岩溶現象或岩溶形態,將這種地表岩溶現象,稱為地表岩溶。由此可見,地下岩溶是岩溶水貯存和運動的場所。因而它與孔隙水、裂隙水相比,具有獨特的埋藏、分布和運動條件。岩溶含水層水量往往比較豐富,常可作大型供水水源。

在岩溶地區采礦和勘探時,要仔細研究岩溶的發育規律,以防造成損失。

地下水也可按埋藏條件,分為上層滯水、潛水和承壓水三類。

1)上層滯水。存在於包氣帶中局部隔水層上面的重力水叫作上層滯水(圖1-13)。一般分布不廣,是降水或地表水下滲時,被局部隔水層或弱透水層所阻而存積起來的地下水。這種水與季節和氣候有直接聯系。濕潤季節或雨後出現,乾旱季節或雨後不久即消失。補給區與分布區相一致。上層滯水一般只能作小型或暫時性供水水源。由於它距地表近,易被污染,如作飲用時要加以注意。防範水質污染。

圖1-13 上層滯水和潛水示意圖

aa'—地面;bb'—潛水面;cc'—隔水層面;OO'—基準面;h1—潛水埋藏深度;h—含水層高度;H—潛水位

2)潛水。埋藏在地表以下第一個穩定的隔水層以上,具有自由水面的重力水。潛水的自由水現稱為潛水面如圖1-13所示;潛水面至地表的距離稱為潛水的埋藏深度(h1);潛水面上任一點的標高(H)稱為潛水位;潛水面至隔水板頂面的距離稱為含水厚度(h)。潛水的基本特點是:潛水面上部,一般無穩定隔水層存在,因此潛水具有自由的水面,不承受靜水壓力屬無壓水。在重力作用下,潛水由較高處向低處流動;通常大氣降水、地表水經過包氣帶直接滲入而補給潛水,所以大多數情況下,潛水的分布區就是補給區,二者完全一致;潛水動態(水位、水質、水量等)受氣候影響隨季節性變化。如雨季,降水充沛,潛水獲得補給量較多,致使潛水面上升,埋藏深度變小。因而呈現季節性變化;由於潛水埋藏較淺,易污染,易於取用。常為民用水源及工農業供水水源。

3)承壓水。充滿於兩個隔水層之間的地下水叫作承壓水(圖1-14)。當這種含水層未被水充滿時,其性質與潛水相似,稱為無壓層間水。由於承壓水具有隔水頂板,因而它具有與潛水不同的特點,承壓水的特點是:承壓水具有承壓性能,當鑽孔揭穿到含水層後,在靜水壓力作用下,初見水位與穩定水位不一致,穩定水位高於初見水位。當水能溢出地表時,可形成自流,這種水頭稱正水頭。如果承壓水頭不能流出地表,這種水頭稱負水頭;承壓水分布區與補給區不一致,且往往補給區小於承壓區,因承壓水具有隔水頂板,使承壓含水層不能自隔水頂板上部的地表直接接受補給。補給區往往處於承壓區一側,位於地形較高的含水層出露的位置。排泄區位於地形較補給區低的位置;承壓水自補給區流入承壓區再向低處排泄,故承壓水的水量、水質、水溫等受氣候影響較小,隨季節變化不大,且顯得穩定;承壓水受地表污染少,它是最具戰略價值的水源地。

圖1-14 承壓盆地構造圖

a—補給區;b—承壓區;c—排泄區1—隔水層;2—含水層;3—噴水鑽孔;4—不自噴鑽孔;5—地下水流向;6—靜止水位;7—泉;H—承壓水頭厚度(m);M—含水層厚度(m)

(二)含水層及水文地質單元

1.含水層

地殼中的岩層有的含水,有的不含水,有的雖然含水(結合水、毛細水)但不能透水。我們把不透水且不含水的岩土層稱為隔水層。透水的而又飽含重力水的岩土層稱為含水層。

作為含水層必須是具備下列基本條件。

(1)岩層要有儲存地下水的空間

岩土層要能含水,首先是在岩土層中必須要有儲存地下水的空間(空隙),外部的水才能進入岩土層把水儲存起來,並能在其中運動,才有可能成為含水層。由此可知,岩層具有空隙是含水層形成的先決條件,也是確定含水層存在的重要標志。

(2)要有儲存地下水的地質條件

岩層有了空隙,雖然是含水層形成的首要條件,但它不是唯一的條件。同時,必須是具備一定的有利於地下水聚集和儲存的地質條件,才能構成含水層。

(3)要有一定的補給水量

有了容水的空隙岩土層和有利蓄水的地質條件,並不一定有豐富的地下水,還必須具備充足的補給水量,才能使具有一定地質條件的空隙岩土層有水而構成含水層。有一定的補給水量不僅是形成含水層的一個重要條件,更重要的是關繫到含水層水量的多少及其保證程度的一個主要因素。

2.水文地質單元

由水文地質要素(補給區、排泄區、含水層、隔水層等)組一個統一而完整的水文地質結構(單位),稱為水文地質單元。一個水文地質單元可包括若干個蓄水構造,或者只有一個蓄水構造。研究水文地質單元才能揭示地下水的產生和發展變化規律,才能確切地認識、保護和合理地開發利用地下水資源。

補給區是指地下水接受水源補給的地區。它一般位於地形的相對高處或相對於排泄區的高處。

排泄區是指排泄地下水的地段,它一般處於地形的相對低處。河流、泉、某些斷層都可以成為地下水的排泄通道。

Ⅸ 地質學中cal.aB.P.是什麼意思

是calibration(校準) before present的縮寫,現在基準一般以1950為基準
指校正前多少年

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864