工程地質壓縮原理
⑴ 溫州淺灘工程地質條件
2.3.2.1 工程地質分層特徵
根據測繪及勘察鑽探資料揭露[4][171][175],結合岩土體工程地質特徵及其物理力學性質的差異,溫州淺灘靈霓海堤范圍內主要分布的土層自上而下分為:
a.淤泥(
b.淤泥與粉砂互層(
c.淤泥質黏土(
d.黏土(
e.粉質黏土(
典型的工程地質縱斷面圖如圖2.4所示。
圖2.4 溫州淺灘靈霓海堤典型工程地質縱斷面圖
2.3.2.2 水文地質條件
研究區附近所在基岩島嶼地下水類型主要為基岩裂隙潛水,分布於構造裂隙及地表淺部的風化帶中,由大氣降水及地表水滲入後補給。另外在灘塗淤泥層中分布的砂層透鏡體和靈昆島及附近砂丘中賦存有孔隙潛水,多受海水漲-落潮影響,水質較差。根據鑽孔和海水中所取水樣的水質簡分析結果[176],水質分析綜合成果見表2.2、2.3。
2.3.2.3 不良地質問題
研究區內不良工程地質問題主要為軟土-淤泥分布,其特徵是厚度大且變化大,含水量高、壓縮性大、強度低、承載力低,不能滿足荷載要求,路基沉降量大且沉降周期長。
⑵ 工程地質與土力學 某建築物地基中的應力分布壓縮曲線在p128,計算第2,3層土的變形層
將2、3層土受到的自重應力和附加應力分別算出,得到2、3層土的自重應力和附加應回力平均值答,各層土的自重應力平均值為p1,各層土的附加應力平均值與自重應力平均值之和為p2,依據p1和p2在128頁的壓縮曲線上查到對應的孔隙比e1和e2,則2、3層土的豎向變形為s=(e1-e2)/(1+e1)*h,h為土層厚度。
⑶ 壓縮感測的原理
核心思想是將壓縮與采樣合並進行,首先採集信號的非自適應線性投影 (測量值),然後根據相應重構演算法由測量值重構原始信號。壓縮感測的優點在於信號的投影測量數據量遠遠小於傳統采樣方法所獲的數據量,突破了香農采樣定理的瓶頸,使得高解析度信號的採集成為可能。
信號的稀疏表示就是將信號投影到正交變換基時,絕大部分變換系數的絕對值很小,所得到的變換向量是稀疏或者近似稀疏的,以將其看作原始信號的一種簡潔表達,這是壓縮感測的先驗條件,即信號必須在某種變換下可以稀疏表示。 通常變換基可以根據信號本身的特點靈活選取, 常用的有離散餘弦變換基、快速傅里葉變換基、離散小波變換基、Curvelet基、Gabor 基 以及冗餘字典等。 在編碼測量中, 首先選擇穩定的投影矩陣,為了確保信號的線性投影能夠保持信號的原始結構, 投影矩陣必須滿足約束等距性 (Restricted isometry property, RIP)條件, 然後通過原始信號與測量矩陣的乘積獲得原始信號的線性投影測量。最後,運用重構演算法由測量值及投影矩陣重構原始信號。信號重構過程一般轉換為一個最小L0范數的優化問題,求解方法主要有最小L1 范數法、匹配追蹤系列演算法、最小全變分方法、迭代閾值演算法等。
采樣定理(又稱取樣定理、抽樣定理)是采樣帶限信號過程所遵循的規律,1928年由美國電信工程師H.奈奎斯特首先提出來的,因此稱為奈奎斯特采樣定理。1948年資訊理論的創始人C.E.香農對這一定理加以明確說明並正式作為定理引用,因此在許多文獻中又稱為香農采樣定理。該理論支配著幾乎所有的信號/圖像等的獲取、處理、存儲、傳輸等,即:采樣率不小於最高頻率的兩倍(該采樣率稱作Nyquist采樣率)。該理論指導下的信息獲取、存儲、融合、處理及傳輸等成為信息領域進一步發展的主要瓶頸之一,主要表現在兩個方面:
(1)數據獲取和處理方面。對於單個(幅)信號/圖像,在許多實際應用中(例如,超寬頻通信,超寬頻信號處理,THz成像,核磁共振,空間探測,等等), Nyquist采樣硬體成本昂貴、獲取效率低下,在某些情況甚至無法實現。為突破Nyquist采樣定理的限制,已發展了一些理論,其中典型的例子為Landau理論, Papoulis等的非均勻采樣理論,M. Vetterli等的 finite rate of innovation信號采樣理論,等。對於多道(或多模式)數據(例如,感測器網路,波束合成,無線通信,空間探測,等),硬體成本昂貴、信息冗餘及有效信息提取的效率低下,等等。
(2)數據存儲和傳輸方面。通常的做法是先按照Nyquist方式獲取數據,然後將獲得的數據進行壓縮,最後將壓縮後的數據進行存儲或傳輸,顯然,這樣的方式造成很大程度的資源浪費。另外,為保證信息的安全傳輸,通常的加密技術是用某種方式對信號進行編碼,這給信息的安全傳輸和接受帶來一定程度的麻煩。
綜上所述:Nyquist-Shannon理論並不是唯一、最優的采樣理論,研究如何突破以Nyquist-Shannon采樣理論為支撐的信息獲取、處理、融合、存儲及傳輸等的方式是推動信息領域進一步往前發展的關鍵。眾所周知:(1)Nyquist采樣率是信號精確復原的充分條件,但絕不是必要條件。(2)除帶寬可作為先驗信息外,實際應用中的大多數信號/圖像中擁有大量的structure。由貝葉斯理論可知:利用該structure信息可大大降低數據採集量。(3) Johnson-Lindenstrauss理論表明:以overwhelming性概率,K+1次測量足以精確復原N維空間的K-稀疏信號。
由D. Donoho(美國科學院院士)、E. Candes(Ridgelet, Curvelet創始人)及華裔科學家T. Tao(2006年菲爾茲獎獲得者,2008年被評為世界上最聰明的科學家)等人提出了一種新的信息獲取指導理論,即,壓縮感知或壓縮感測(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。該理論指出:對可壓縮的信號可通過遠低於Nyquist標準的方式進行采樣數據,仍能夠精確地恢復出原始信號。該理論一經提出,就在資訊理論、信號/圖像處理、醫療成像、模式識別、地質勘探、光學/雷達成像、無線通信等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。CS理論的研究尚屬於起步階段,但已表現出了強大的生命力,並已發展了分布CS理論(Baron等提出),1-BIT CS理論(Baraniuk等提出),Bayesian CS理論(Carin等提出),無限維CS理論(Elad等提出),變形CS理論(Meyer等提出),等等,已成為數學領域和工程應用領域的一大研究熱點。
⑷ 區域環境工程地質評價
4.3.1區域穩定性分析
黃河三角洲是在基底構造甚為破碎、濟陽凹陷的一個次級負向構造單元上發育形成的。由於區內東北部位於北西向的燕山——渤海地震帶及北東向的沂沫斷裂地震帶的交匯部位,因而與新構造運動有關的構造地震異常活躍。據山東省地震局1985年10月布設的東營—墾利、陳家莊—河口的現代形變及牛庄—新刁口的兩次a徑跡測量結果,埕子口斷裂、孤北斷裂、陳南斷裂、勝北斷裂和東營斷裂的現代活動都有顯示,說明區內的區域穩定性較差。區內新生代以來的斷裂活動表現為具有繼承性脈動活動的特點。尤其是5號樁,樁西至海港一帶位於上述兩條活動斷裂地震帶的交匯復合部位,新生代以來斷陷幅度最大,歷史上曾發生過3次7~7.5級地震,區域穩定性差。根據以上的地震預測,影響烈度一般都在Ⅶ度以上,5號樁一帶為Ⅷ度。根據我國建築規范規定,一切建築物都應設防加固,以保安全。
區內飽和砂土、飽和粉土具有液化的宏觀條件。在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
由於黃河三角洲地質體物質組成主要是粉砂,且孔隙度較高,加之形成期堆積速率快,造成地質體中含水量高。隨著時間推移,在上覆沉積物擠壓下,孔隙中水逐漸被擠壓,造成地質體壓縮,導致地面下沉。根據1988年在黃河海港地區實測,該地區壓實下沉速率可達6cm/a,因此由於地面下沉所引起的海面相對上升則更加劇了海岸侵蝕。
另外,近幾十年來的人為活動加劇了本區地面沉降的發展,如:建築地基承載力不足引起的土體壓縮,地下水、石油、鹵水的開采所引起的含水層、儲油層壓縮等。
由此可見,黃河三角洲地區環境工程地質問題頗多,本節將對直接影響東營市經濟發展和規劃的地表下25m土體工程地質類型及其物理力學性質、工程地質性質的區域性變化等進行深入研究。
4.3.2土體的工程地質分類及工程地質特徵
區內小清河以北為黃河三角洲平原,小清河以南多為山前沖洪積平原,基岩埋深在數百米以下,表層均為第四系鬆散沉積物,鑒於一般工業與民用建築物地基持力層一般均在15m以上,一般中高層建築物持力層一般在25m以上的特點,下面僅以0~25m的土體為對象,進行分析和研究(圖4-6)。
圖4-6地表土體類型示意圖
1.土體的岩性與結構特徵
(1)土體岩性分類
區內0~25m深度內的地層多為第四系全新統地層,其沉積環境受黃河和海洋交互或共同影響,形成了以細顆粒為主的地層。所表現出的岩性以粉土最為廣泛,其次為粉質粘土、粉砂、粘土,局部有細砂,其主要岩性特徵見表4-6。
表4-6黃河三角洲0~25m地層岩性分類及主要特徵表
(2)土體結構特點
區內土體結構無單層結構,多為多層結構,(多層結構是指一定深度內由3層或3層以上的地層構成),這也是區內的沉積環境所決定的,該區瀕臨渤海,是河流的最下游段,河道游盪較頻繁,古地貌特點反復變化,攜帶泥、砂的水動力特點也隨之變化,因此,區內一般無巨厚的單層岩性沉積。
2.土體工程地質特徵
(1)山前沖洪積平原區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、洪積(
(2)古黃河三角洲區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、海積、湖沼相沉積(
(3)現代黃河三角洲平原區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積海積物(
3.地表下0~25m土體物理力學指標的變化規律
(1)古黃河三角洲區的物理力學性質總體上好於現代黃河三角洲,這正是由於現代黃河三角洲的成陸時間晚於古黃河三角洲,其自重固結的程度差於前者。
(2)無論是古黃河三角洲區還是現代黃河三角洲區各類岩性土層的物理力學指標顯示出一個較明顯的規律,即從地表向下隨深度的增加土層的物理力學指標以較好—較差—好發生變化。一般較差的深度段在5~10m和10~15m。這一變化規律也與區內的沉積環境相吻合,力學指標較差的深度段為1855年黃河改道以前沉積的沖湖積、沖海積相為主的地層。
4.3.3天然地基承載力、飽和砂土液化及軟土與鹽漬土
1.天然地基承載力
黃河三角洲地區基土承載力在不同位置、不同層位均有較大變化,從小於80kPa到大於300kPa。天然地基承載力指自地表算起的第一層或第二層基土(當第一層厚度小於3m,且第二層基土承載力高於第一層時,取第二層承載力數據)的承載力。區內天然地基承載力可分為4個等級(表4-7),其分布與變化規律與地貌單元有較密切的相關關系(圖4-7)。
(1)承載力低區(fk<80kPa)的分布
① 呈條帶狀分布於現代黃河三角洲工程地質區內。如利津縣虎灘鄉西南—河口區義和鎮南部、河口東南孤河水庫—渤海農場總場北以及現代黃河入海口北側等地,以上各地帶多為1855年以後成陸,且位於濱海低地或窪地內,排水條件差,自重固結程度低。
表4-7天然地基承載力分區特徵表
② 呈小片狀分布於古黃河三角洲平原區。如東營區勝利鄉南部,利津縣王莊鄉南部等。
(2)承載力較低區(80≤fk<100kPa)的分布
① 沿海岸線分布,寬度不一。
② 沿黃河泛流主流帶邊緣、前緣和窪地展布。如利津縣大趙鄉—虎灘—羅鎮—河口區一帶、集賢鄉—渤海農場總場、孤北水庫北部、利津前劉鄉—東營區西城,以及東營區龍居鄉—西范鄉一帶。
(3)承載力中等區(100≤fk<120kPa)的分布
① 分布於決口扇的頂部及緩平坡地區。如利津縣南宋—北宋—明集,東營區龍居鄉—油郭鄉—六戶鎮—廣饒縣丁庄鄉以及勝坨鄉—高蓋鄉等地。
② 分布於現代黃河三角洲頂點附近。如寧海鄉—汀河鄉、寧海鄉—傅窩鄉一帶。
③ 分布於現代黃河三角洲北部、東部。如河口區新戶—刁口鄉、孤東水庫—五號樁、墾利縣建林鄉—孤東水庫、建林—西宋鄉。
(4)承載力較高區(fk>120kPa)的分布
① 分布於古黃河三角洲的南部。如牛庄—陳官—小清河一帶。
② 分布於小清河以南的山前沖洪積平原區。
③ 零星分布於近代黃河三角洲平原區的地勢較高處。
2.飽和砂土液化
砂土液化是指處於地下水位以下鬆散的飽和砂土,受到震動時有變得更緊密的趨勢。但飽和砂土的孔隙全部為水充填,因此,這種趨於緊密的作用將導致孔隙水壓力驟然上升,而在地震過程的短暫時間內,驟然上升的孔隙水壓力來不及消散,這就使原來由砂粒通過其接觸點所傳遞的壓力(有效壓力)減少,當有效壓力完全消失時,砂層會完全喪失抗剪強度和承載能力,變得像液體一樣的狀態,即通常所說有砂土液化現象。
區內的飽和砂土、飽和粉土具有液化的宏觀條件,在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
液化判別就是根據土的物理力學性質及其他工程地質條件,對土層在地震過程中發生液化的可能性的判別。國家標准《建築基礎抗震設計規范》(GBJ11-89)中規定了飽和砂土、飽和粉土的液化判別方法,在對區內飽和砂土、飽和粉土的液化判別時,即依照了前述規范提供的方法,在液化勢宏觀判定的基礎上,採用了原位測試資料——標准貫入試驗進行了液化臨界值和液化指數的計算。根據液化指數對地基液化等級的劃分見表4-8。區內液化砂土的分布規律見圖4-8。
(1)嚴重液化區
① 分布於現代黃河三角洲頂點,向北向東呈扇形展布的黃河泛流主流帶的中上游部位,主要在陳庄鎮—六合鄉、虎灘鄉—義和鎮一帶。
圖4-7天然地基承載力分區示意圖
表4-8地基液化等級表
② 零星分布於廢棄河道帶和決口扇,如下述地帶:東營區永安鄉—廣北水庫一線,呈條帶狀分布,為廢棄河道帶;利津縣店子鄉—前劉鄉,呈片狀分布,為決口扇的中部;東營區史口鄉附近、東營區六戶鎮西側、河口區新戶鄉東北等地。
該區內的飽和粉土、飽和粉砂顆粒均勻,粘粒含量低,沉積厚度較大,形成年代新,固結程度差,因此是最易發生液化的地區。
(2)中等液化區
① 分布於較大的決口扇及決口扇前緣坡地地帶,利津縣城東—明集鄉—大趙鄉、東營區勝利鄉—董集鄉—油郭鄉一帶。
② 分布於黃河泛流主流帶或其邊緣地帶。寧海鄉—墾利縣城;陳庄鎮—傅窩鄉;渤海農場總場東—建林鄉—新安鄉;義和水庫南—河口區。
③ 在濱海低地帶內有零星片狀分布,五號樁及以東地區;刁口碼頭東北—孤北水庫北部;新戶鄉以西及以北的近海地帶。該區一般位於嚴重液化區的外圍及決口扇頂部位或零星分布於小規模的黃河主流帶,飽和粉土、粉砂的粘粒含量較低,固結程度較差,因此是較易發生液化的地區。
(3)輕微液化區
① 分布於古黃河三角洲泛濫平原及決口扇邊緣,如下述地帶:利津縣南宋鄉—北宋鄉;東營區龍居鄉—廣饒縣陳官鄉—丁庄鄉。
② 分布於現代黃河三角洲的非黃河泛流主流帶區,如下述地帶:利津縣王莊鄉—墾利縣勝坨鄉;利津縣集賢鄉—墾利縣城東部;河口區太平鄉—義和水庫。
該區粉土、粉砂的沉積厚度較小,粘粒含量較高,因此液化程度較輕。
(4)非液化區
① 分布於工作區小清河以南的山前沖洪積平原,該區地下水位埋藏深,水位以下的飽和粉土,粉砂密實程度較好,因此不易液化。
② 分布於沿海地帶的濱海低地,該區除河口相沉積外,地層粘粒含量較高或以粘性土為主,因此不易液化。
3.軟土與鹽漬土
(1)軟土
軟土一般是指天然含水量高、壓縮性大、承載力低的一種軟塑到流塑狀態的粘性土。如淤泥、淤泥質土以及其他高壓縮性飽和粘性土、粉土等。黃河三角洲地區地處渤海之濱,具有軟土的沉積環境,鑽探資料亦證明,區內呈片狀分布著軟土。
① 軟土的劃分標准
本次劃分軟土時採用如下方法:當滿足下列條件之一時,並且厚度大於0.50m,將其確定為軟土:承載力標准值fk<80kPa;標貫錘擊數N63.5≤2;靜力觸探錐頭阻力qc<0.5MPa;流塑狀態。
② 軟土的空間分布
軟土主要分布於區內的東北部濱海地帶、河口—刁口碼頭一帶。利津縣羅鎮—黃河故道西、墾利縣下鎮鄉東部,另外在利津縣明集鄉—廣南水庫一線呈不連續片狀、碟狀分布。
③ 軟土的成因及主要物理力學性質
區內的軟土具有兩種成因:①爛泥灣相沉積:在歷次河口的兩側,沉積的以細粒成分為主的土層,一直處於飽和狀態,排水固結過程進展緩慢,所以土的力學性質很差。顏色以灰褐色為主,流塑態,土質細膩,岩性以粉質粘土為主,夾粉土和粘土薄層。②濱海湖沼相沉積:顏色以灰—灰黑色為主,有機質含量較高,具腥臭味,為淤泥或淤泥質土。
圖4-8地基砂土液化分區示意圖
表4-9軟土的主要物理力學指標統計表
從表4-9中可以看出:區內軟土具有含水量高、孔隙比大、壓縮性高、承載力低的特點,在荷載作用下變形較大,對建築物極為不利。因此,在工程建設規劃時,應盡量避開有軟土分布的地區。在無法避開軟土的建築物,應對區內的軟土有足夠的重視,採取一定的處理措施,對於一般工業民用建築可採取粉噴樁法進行處理,對於高層重型建築物應採取深基礎,如沉管灌注樁等,以避開軟土的不利影響(圖4-9)。
(2)鹽漬土
當土中的易溶鹽含量大於0.5%,且具有吸濕、松脹等特性的土稱為鹽漬土。區內的鹽漬土為濱海鹽漬土,按含鹽性質則大部分屬氯鹽漬土,局部為硫酸鹽漬土,鹽漬土按含鹽量可分為弱鹽漬土(0.5%~1%),中鹽漬土(1%~5%)、強鹽漬土(5%~8%)和超鹽漬土(>8%),區內的鹽漬土主要為弱鹽漬土,局部地段有中鹽漬土(見圖4-10)。
4.3.4工程地基適宜性評價
工程建築地基適宜性受多種因素的影響,為達到評價結果清晰簡潔、合理反映出區內建築適宜性等級的目的,選用了專家聚類法(亦稱總分法)進行評價。評價過程為:首先擬定評價因子,對各評價因子量化、分級並給定各級別的標准分,其次用傅勒三角形法確定各評價因子的權重,然後計算各勘測點單項因子分值和總分值,再按各點的總分值進行分區。最終的評價結果見表4-10、4-11、4-12、4-13。
圖4-9軟土分布示意圖
圖4-10鹽鹼土分布示意圖
表4-10一般工業與民用建築地基適宜性評價方案(評價深度10m)
① 沉降因子
② DⅠ——山前沖洪積平原;DⅡ——古黃河三角洲平原;DⅢ——現代黃河三角洲平原。
表4-11一般工業與民用建築地基適宜性評價分區說明表
表4-12高層重型建築物地基適宜性評價方案(評價深度25~30m)
表4-13高層重型建築物地基適宜性評價分區說明表
一般建築、高層建築物地基適應性評價分區見圖4-11、4-12。
圖4-11一般建築物地基適宜性評價分區示意圖
圖4-12高層建築物地基適宜性評價分區示意圖
⑸ 其他工程地質問題
其他問題如地面沉降、海岸侵淤、地裂縫、滑塌、水侵蝕性等,也對黃河三角洲開發建設的工程地質有一定影響。
(1)地面沉降
黃河三角洲地質體物質組成主要是粉砂,且孔隙度較高,其形成期堆積速率快,造成地質體中含水量高。隨著時間推移,在上覆沉積物擠壓下,孔隙中水逐漸被擠壓,造成地質體壓縮,導致地面下沉。根據1988年在黃河海港地區實測,該地區壓實下沉速率可達6cm/a。
近幾十年來的人為活動也加劇了地面沉降的發展,如地基承載力不足引起的土體壓縮,地下水、石油、鹵水的開采所引起的含水層、儲油層壓縮等。
(2)海岸侵淤
黃河攜帶大量泥沙入海,導致河口處向海淤進;而黃河改道後,因失去泥沙的補給,在海潮動力和沿岸流的作用下,產生海岸侵蝕。
地面沉降引起的海平面相對上升又加劇了海岸侵蝕。
(3)地裂縫、滑塌
鄰區發生強震時會產生地裂縫、滑塌。1969年7月18日渤海7.4級地震、1976年7月28日唐山7.8級地震時,黃河三角洲均有地裂縫發生,唐山地震時黃河北岸土堤在發生地裂縫的同時,產生滑塌及小范圍沉降,使地面穩定性遭到破壞。1989年7月27日,廣饒縣遭到特大暴雨,沿淄河兩岸的3個鎮出現不同程度的地裂縫,多呈NE—SW走向,同淄河走向一致,深0.4~4.0m、寬0.2~3.0m,使公路斷裂5處,房屋塌陷損壞十餘間;1986年6月25日下午5時30分,廣饒縣花園前安村的西北池塘,其塘體長60m、寬25m、深1.5m,池塘水在半小時內全部漏光,塘底出現一條長40m、寬0.5m、深1.5m的突發性地裂縫。
(4)侵蝕性地下水
黃河三角洲位於濱海平原,兩側臨海;尤其是東北部地區,為1855年黃河改道後新形成的陸地,地下水溶解性總固體較高,徑流滯緩,含水層屬弱含水層,因此,其地下水具有侵蝕性。區內淺層地下水有結晶性侵蝕和結晶分解復合侵蝕兩種侵蝕類型,侵蝕性地下水的分布規律為:具有侵蝕性的地下水主要分布於近海地帶,在瀕海地段體現為強侵蝕,在向內陸無侵蝕區的過渡帶內則分布有中等侵蝕和弱侵蝕性的地下水。
⑹ 土體變形規律
土力學至今還是把土體變形視為線性法則,即
地質工程學原理
或
地質工程學原理
式中:ε為孔隙比;P為壓力;α為壓縮指數。
實際上,土體變形遵循如下的曲線規律(圖4-5,4-6)。土體變形規律實際為曲線變形法則,而工程實際中常常作為線性法則處理。結果是在割點以下的應力水平狀態下對土體變形計算結果小於實際變形,而在割點以上應力水平狀態下對土體變形計算結果則大於實際變形,結果都是失真的。
圖4-5 土體變形特徵曲線
圖4-6 黃土壓縮曲線
土體變形實際上是土體在附加應力作用下土體中孔隙壓縮、孔隙中氣體和水排出的結果。在一般工程荷載作用下,土粒壓縮變形遠遠小於土體中氣體和水從孔隙中擠出,孔隙壓縮產生的變形。故在實際工程中把土體孔隙壓縮變形近似地作為土體壓縮變形,通常用孔隙比ε變化Δε來表示。土體中含水量愈高,土體變形愈以孔隙變形為主;當含水量很低,處於干固狀態時,在作用力較小時則其變形以顆粒間聯結變形為主,其變形曲線曲率不同於潮濕狀態(圖4-6)。在高作用力下,土體顆粒間聯結被破壞,其變形曲線與潮濕狀態相同。根據實驗結果統計得知,潮濕狀態土體變形基本法則符合於半對數曲線法則,即:
地質工程學原理
式中Cm為潮濕土體壓縮指數,其倒數1/Cm為壓縮模量E0,這是一維壓縮模型。上式又可寫為
地質工程學原理
在應力由σ0改變至σ時土體體積V改變為
地質工程學原理
當初始土層厚度為H0時,在一維壓縮條件下土層壓縮量為
地質工程學原理
此公式可作為潮濕土體地基一類工程土體壓縮變形估算公式。
干固類土體變形規律遵循指數法則,即
地質工程學原理
式中:ε0,σ0為初始狀態土體的孔隙比和土體中的應力;ε,σ為土體工作狀態的最終孔隙比和土體中的應力;Cd為干固狀態土體壓縮指數,其倒數1/Cd為壓縮模量E0。
在土體中應力由σ0改變到σ時,其體積改變為
地質工程學原理
當初始土層厚度為H0,土體中應力由σ0改變到σ時,土層單向壓縮量為
地質工程學原理
這個公式可適用於干固狀態土體在結構聯結未被破壞狀態下的地基一類地質工程變形估算。
土體變形不是受荷載作用後立即就完成的,而是經過排氣排水過程完成的。排氣過程是短暫的,排水過程隨著土體滲透系數不同經歷的過程是不同的。簡單地說,土體滲透系數愈大壓縮完成愈快,滲透系數愈小的土體,如粘性土,需經歷幾年的時間才能完成土體的固結過程。這個問題太沙基研究得比較透徹,一般的書籍都引用他的研究結果。在這里就不重復了。
⑺ 工程地質學和土力學有什麼不同·
剛好這兩門課 我都在學
工程地質學 主要從講地質方面的工程問題,很多地版質學內容
比如:岩石的權構造,地質構造 第四紀沉積物 總之和地質學相關的東西很多
屬於專業基礎課程
土力學 顧名思義 主要是講土的
涉及土的很多力學性質 :應力壓縮性 抗剪強度 土壓力
計算的比較多
我暫時的只能理解這么多 希望能幫到你
⑻ 工程地質學的主要內容(作者:石證明)
不是幾字能說清的,你自己去查吧 ,推薦《專門工程地質學》