工程地質B
1. 工程地質學的發展展望
21世紀可以預計的大型工程建設,如跨流域的調水工程、大型水電工程、深部露天采礦工程、地下工程、海洋工程等,其可能發生的復雜的工程地質問題,從理論到設計、施工實踐,從預測到防治,需要我們作為重要研究方向,在原有認識和經驗的基礎上,進一步去創新發展,與其它多學科聯合攻關。
(1)岩、土體工程地質力學的理論方法體系還應進一步發展
工程地質力學具有我國的特色,並在工程實踐中獲得了廣泛的應用。研究岩、土體穩定性中的關鍵問題,如節理面的各種工程地質特性,區域構造應力場和工程區實測點地應力場的研究,岩體穩定性的時間尺度,根據岩體變形破壞的實例建立「地質模型」等(孫玉科)。此外還應進行工程地質技術的開發研究,包括地質探測技術,岩組物理力學測試技術,岩體變形觀測技術和變形破壞模擬實驗技術等。
(2)環境工程地質將獲得迅速的發展
目前大型工程建設涉及的環境工程地質問題很多。如大型露天開采,地下開挖,深埋長隧道工程,大型水利樞紐,地下硐室,城市垃圾的處置和衛生填埋工程等的建設,就遇到前所未有的更復雜情況。如深埋長隧道工程的開挖,需要查明其所遇到的地質災害問題的形成條件和發生機理,作出科學的評價預測。大型水域水岩相互作用導致水庫誘發地震、庫岸崩滑、大壩潰決、水庫淤積、大面積環境惡化等問題。水庫誘發地震產生的可能性及發震強度的預測難度較大。現中國學者建立了兩種震級預測的神經網路模型,具有較高的預測能力。新的動向是引入突變理論,分析水庫誘震機制,建立誘震的充要條件判據和地震能量的表達式,提出斷層帶弱化和岩體軟化效應誘震的新假說。
當前環境工程地質的研究又進一步延伸向環境地質工程,即主要研究解決和處理地質環境問題的假說和方法。90年代國際環境地質工程的熱點領域是各國城市化和資源開發中固體、液體、氣體廢棄物的排放、填埋處理以及與城市工程建設有關的環境工程問題研究。總體來說,環境工程地質還有些基本問題,如工程環境影響場問題,工程建築的適應度與環境靈敏度之間關系問題,環境容量問題,監測技術、環境綜合分析及反信息技術等問題的研究還有待深入。
(3)區域地殼穩定性的研究
目前應進一步加深對影響和制約穩定性因素的認識。如何分析、確定和量化這些因素,直接關繫到區域地殼穩定性評價由定性到定量方向發展的問題。近來有用分數維理論描述斷裂和地震的分形結構,耗散、渾沌和協同學等用以描述地殼結構及其動態之自組織過程及探討其內部的相關性。但這些探索尚處於初始階段。此外在技術方法方面,應大力開展深部探測、監測、遙感、計算機、制圖技術和深部地應力測試技術等應用研究,提高區域地殼穩定性諸因素的時空變化的量測精度。
工程地質學發展至今日,需要與現代系統科學理論思維相結合,尤其是非線性科學對於工程地質學的提高和發展具有重要意義。黃潤秋根據系統科學原理結合工程地質的應用與實踐,提出了工程地質問題的系統分析原理。應用這些原理可以建立地質過程的機制分析-定量評價,建立過程地質模型和模擬再現,建立過程地質分級、分類系統,認識過程地質體(或環境)和人類活動相互作用,認識災害地質作用發展過程,描述地質體復雜的結構和工程地質問題過程,研究過程預報等。在工程地質學拓展到地質工程的新領域時,做好施工監測與信息反饋,這就是以監控-反饋原理為核心指導思想的「信息化施工」。總之,系統科學的引入,必將把傳統的工程地質學推向新的階段和新的水平。
主要參考文獻
王思敬.1992.工程地質學的前沿及其拓展.見:王思敬,易善鋒主編.90年代的地質科學.北京:海洋出版社,234~239.
王思敬.1997.論人類工程活動與地質環境的相互作用及其環境效應.地質災害與環境保護,第8卷第1期,19~26.
王思敬,戴福初.1997.環境工程地質評價、預測與對策分析.地質災害與環境保護,第8卷第1期,27~34.
毛同夏,石宏仁,張麗君.1996.區域地質環境的定量評價和預測.地學前緣,第3卷第2期,141~146.
文寶萍.1996.滑坡預測預報研究現狀與發展趨勢.地學前緣,第3卷第1期,86~92.
中國21世紀議程——中國21世紀人口環境與發展白皮書.1994.北京:中國環境科學出版社.
中國科學院地學部.1998.中國水問題的出路.地球科學進展,第13卷第2期,113~117.
中華人民共和國全國人民代表大會環境與資源保護委員會編.1995.中國環境.
馮彥勛,陳德基.1997.三峽工程前期地質研究與施工期地質驗證.水文地質工程地質,第2期,4~6.
古迅.1995.核電工程地質(一).工程地質學報,2.
孫廣忠執筆.1992.十年來我國工程地質科學成就與展望.見:中國地質學會編.八十年代中國地質科學.北京:北京科學技術出版社,100~104.
孫玉科.1995.21世紀中國大型工程與工程地質問題.工程地質學報,第3卷第4期,1~11.
孫成權,施永輝.1997.中國全球變化研究能力評價.地球科學進展,第12卷第6期,564~573.
劉東生,郭正堂,韓家懋等.1997.當前國際古全球變化研究的主要科學問題和任務——極地-赤道-極地大斷面.地學前緣,第4卷第1期,63~69.
劉傳正.1997.區域地殼穩定性評價和核電站選址核廢料處置的工程電站及環境地質問題.水文地質工程地質,第2期,32~34.
劉怡芬,胡瑞林,石建省等.1996.地質災害預測防治智能決策系統設計與應用.北京:中國環境科學出版社.
劉樹臣.1993.第四紀全球變化地質學.見:肖慶輝,李曉波,劉樹臣等著.當代地質科學前沿——我國今後值得重視的前沿研究領域.武漢:中國地質大學出版社,39~48.
朱興賢,朱錦旗.1997.蘇錫常地區地面沉降災害與經濟損失分析.水文地質工程地質,第3期,24.
許兵,牟會寵.1992.90年代礦山邊坡的主攻方向——高陡邊坡穩定性.見:王思敬,易善鋒主編.90年代的地質科學.北京:海洋出版社.243~247.
汪民,吳永峰.1996.地下水微量有機污染.地學前緣,第3卷第2期,169~175.
李秀彬.1996.全球環境變化研究中的核心領域——土地利用/土地覆被變化的國際研究動向.地理學報,第51卷第6期,553~557.
吳樹仁,王瑞江.1996.地質災害與地殼穩定性有機的某些發展趨勢.地質力學學報,第2卷第3期,72~74.
吳錫浩.1993.過去全球變化研究.見:肖慶輝,李曉波,劉樹臣等著.當代地質科學前沿——我國今後值得重視的前沿研究領域.武漢:中國地質大學出版社,470~473.
張之一.1990.工程地質問題的研究現狀和動向.見:中國地質學會主編.當今世界地球科學動向——中國科學家談第28屆國際地質大會,124~128.
張宗祜.1991.地質環境與環境地質.北京:地震出版社,1~4.
張宗祜,袁道先.1995.我國跨世紀的重大地學問題——環境地學發展前景.地質科技管理,第5期,60~69.
張梁,郝秀英.1995.地質災害經濟學導論.地質災害與環境保護,第6卷第2期,1~11.
陳泮勤,孫成權主編.1992.國際全球變化研究核心計劃(一)、(二).北京:氣象出版社.
陳漢宗,周蒂.1997.天然氣水合物與全球變化研究.地球科學進展.第12卷第1期,37~40.
陳夢熊.1994.參加「地下水資源未來危機」國際學術會議的報導.水文地質工程地質,第6期,52~53.
陳夢熊,段永侯,哈承佑等.1998.「八五」水文地質工程地質環境地質研究的主要成就與進展.地質科技管理,第2期,55~58;第3期,63~64;第4期,55~56;第5期,45~49;第6期,50~54.
陳夢熊.1995.環境水文地質學的最新發展與今後趨向.地質科技管理,第3期,28~35.
陳葆仁,吳吉春,劉淑雲.1994.地下水管理模型在我國實踐中存在問題的討論.水文地質工程地質,第6期,36~39.
陳毓川,張之一,項禮文等編.1997.90年代地球科學的動向——第30屆國際地質大會學術報導.北京:地質出版社.
楊志法,王思敬.1996.工程地質學一個新的研究方向.地質災害與環境保護.第7卷第6期,1~6.
楊學洋,陳震,劉淑琴等.1997.地球內核快速旋轉的發現與全球變化的軌道效應.地學前緣,第4卷第2期,187~191.
賀學海.1997.水資源管理模型的研究過程和發展趨勢.水文地質工程地質,第5期,24~26.
胡海濤,劉傳正.1993.區域地殼穩定性研究的後顧與前瞻.工程地質學報,創刊號,7~13.
胡瑞林,李向全,官國琳等.1999.土體微結構力學——概念·觀點·核心.地球學報,第20卷第2期,150~156.
閻世駿,劉長禮.1996.城市地面沉降研究現狀與展望.地學前緣,第3卷第1期,93~98.
施德鴻.1990.從應用地學與基礎研究看水文地質學的發展現狀與趨勢.見:中國地質學會主編.當今世界地球科學動向——中國科學家談第28屆國際地質大會.116~124.
錢祥麟.1997.固體地球科學與全球變化研究.地學前緣,第40卷第1-2期,71~75.
費瑾.1996.地下淡水資源管理研究的發展方向.地學前緣,第3卷第2期,156~160.
徐衛亞,孫廣忠.1992.地質災害學.見:90年代的地質科學.北京:海洋出版社,253~257.
殷躍平,胡海濤,康宏達.1993.區域地殼穩定性評價專家系統(CKUSTAB)及其在黃河黑山峽大柳樹壩址中的應用.見:地礦部環境地質研究所主編.工程地質水文地質.環境地質論文集.北京:地震出版社,100~112.
殷躍平,張穎,康宏達等.1996.全國地質災害趨勢預測及預測圖編制.第四紀研究,第2期,123~129.
柴育成,田興有,馬福臣.1997.中國的「過去全球變化」(PAGES)研究躍居世界前列.科學通報,第42卷第15期,1679~1680.
郭亞曦.1997.國際全球變化計劃與世界數據中心的聯合行動——1997年聯合數據會議及其啟示.地球科學進展,第12卷第6期,574~580.
郭進義,洪業揚.1998.過去全球變化研究中環境地球化學進展.地質科學,第33卷第3期,374~379.
黃潤秋.1997.現代系統科學理論與工程地質系統觀.水文地質工程地質,第1期,1~6.
熊尚發,丁仲禮,劉東生.1998.第四紀氣候變化機制研究的進展與問題.地球科學進展,第13卷第3期,265~270.
籍傳茂,王兆馨.1996.區域地下水資源研究的進展和前沿問題.地學前緣,第3卷第2期,147~155.
Broecker W S,Denton G H.1989.The role of ocean-atmosphere recoganizations in glacial cycles.Geochimica et Cosmochimica Acta,2465~2501.
Chen Mengfang,Soulsby C.1998.英國地下水保護戰略.見:第30屆國際地質大會論文集(第22卷),水文地質.北京:地質出版社,205~209.
Chin-Fu Tsang,Yvonne W.Tsang.1996.Research Directions in Hydrogeology.地學前緣,第3卷第1期,43~48.
Chin-Fu Tsang.1998.低滲透性岩層水文地質問題的討論.見:第30屆國際地質大會論文集(第22卷),水文地質.北京:地質出版社,85~89.
Dansgaard W S,Johnsen S J,Clausen H B,et al..1993.Evidence for general instability of past climate from a 250-kyr ice-core record.Nature,364:218~220.
1996 Geoscience Highlights(Hydrogeology).Geotimes,1997,Feb.,37.
1997 Geoscience Highlights(Hydrogeology).Geotimes,1998,Feb.,38~39.
International Conference on Water and the Environment:Development Issues for the 21st Century.Dublin Statement on Water and Sustainable Development,Dublin,1992.
Song X D,Richards P G.Seismological evidence for differential rotation of the earth』s inner core.Nature,1996,382:221~224.
Vrba J.1998.地下水保護的戰略、政策及管理.見:第30屆國際地質大會論文集(第22卷),水文地質.北京:地質出版社,199~204.
2. 地質鑽探甲級和工程地質甲級有什麼區別
工程中風的不同的兩個分類
地質鑽探是機械鑽進施工類,鑽探機械設備和工藝專取得地屬表以下岩礦心,為地質和礦產資源參數做出可靠評價的一項地質工程
工程地質主要研究內容涉及地質災害,岩石與第四紀沉積物,岩體穩定性,地震等
參見:https://www.so.com/s?q=%E5%B7%A5%E7%A8%8B%E5%9C%B0%E8%B4%A8&src=360chrome_zoned
https://ke.so.com/doc/6733333-6947663.html
3. 工程地質穩定性評價方法——以麗江-香格里拉段為例
一、概述
隨著滇藏鐵路工程的分段實施,麗江-香格里拉段的規劃設計已納入日程。但是,由於該段地形地貌和地質條件非常復雜,雖然經過多輪論證,線路仍難最後確定。按照初期規劃(圖13-1),滇藏鐵路麗江-香格里拉段共有3個走向方案可以比選:①麗江-長松坪-虎跳峽上峽口-香格里拉方案(西線方案);②麗江-大具-白水台-小中甸-香格里拉方案(組合方案);③麗江-大具-白水台-天生橋-香格里拉方案(東線方案)。初步分析認為,西線方案工程地質條件相對較好,可以作為推薦方案,該方案需要新建鐵路隧道34座,總長87130 m,占該段線路總長的54.4%,最長的隧道是位於麗江西北的玉峰寺隧道,全長10970 m;需要新建鐵路大橋39座(10253 m),涵洞182座(4547 m),橋涵占線路總長的9.2%。復雜的工程地質條件使得該方案仍存在許多問題,且工程建設難度大。
為了更好地指導該段鐵路選線,我們在區域地殼穩定性評價的基礎上,將基於GIS技術的層次分析法引入到麗江-香格里拉段鐵路規劃區的工程地質穩定性評價(工程地質條件評價)。在評價過程中,綜合考慮地形坡度、工程地質岩組、斜坡結構、地質災害發育現狀、地殼穩定性、微地貌類型(地形與鐵路設計高程高差)、人類工程活動、降水量、距離溝谷距離等因素,充分利用GIS技術處理海量數據信息的優勢,採用層次分析法模型,進行麗江-香格里拉段鐵路規劃區的工程地質穩定性評價。基於評價結果,可以很好的指導該段線路比選和優化。
二、基於GIS的層次分析法原理
層次分析法(Analytical Hierarchy Process,簡稱AHP)是美國數學家SattyT.L.在20世紀70年代提出的一種將定性分析和定量分析相結合的系統分析方法。它適用於多准則、多目標的復雜問題的決策分析,可以將決策者對復雜系統的決策思維過程實行數量化,為選出最優決策提供依據(圖13-2)。經過多年的應用實踐,不少研究者開始將GIS技術與AHP方法相結合,大大提高了傳統的AHP方法在地學研究中的應用效果(Harris et al.,2000;劉振軍,2001;彭省臨等,2005)。基於GIS的層次分析法充分利用GIS技術的空間分類和空間分析功能,在評價指標數據採集、處理和自動成圖方面具有明顯的優勢,不僅可以對工程地質穩定性的相關影響因素進行更細致的逐次分析,而且在計算過程中不受計算單元數量的限制,因而評價結果更直觀、更便於應用。
圖13-1 滇藏鐵路麗江-香格里拉段線路方案示意圖
圖13-2 基於GIS的層次分析法技術路線圖
基於GIS層次分析法的工程地質穩定性分區評價過程大致可分為以下步驟:
(1)確定研究區、研究對象及研究目標,並進行數據分析,確定進行工程地質穩定性分區所需要的數據,包括數據來源、數據質量指標等。
(2)將收集的各種資料進行數據處理,包括在MapGIS 6.7軟體平台上進行數字化、格式轉換、投影轉換、分層及屬性編碼等,建立研究區、研究對象的空間資料庫。
(3)根據研究目標的特徵,分析影響目標的因素,建立目標的層次指標模型和層次結構,構造判斷矩陣,由專家對影響因素進行綜合評分,並進行層次單排序、求解權向量和一致性檢驗,從而獲得各指標因素值,並運用GIS空間分析功能提取分析因子。
(4)採用ArcGIS 9.2軟體平台,對評價區域進行柵格化,每一個柵格作為模型評價的一個運算單元,並將資料庫中的數據按照規則進行柵格化處理。再採用圖形疊加的模型評價方式,將參與評價的各個因素權值分配到不同的柵格上。將各個因素進行圖形疊加,對屬性值進行代數運算,再將疊加後的柵格數據化,生成新的圖形,並形成最終評價結果。
(5)工程地質穩定性分區評價的數學模型:
滇藏鐵路沿線地殼穩定性及重大工程地質問題
式中:B——工程地質穩定性指數,aj——權重,Nj——指數。
(6)通過分析計算獲得的工程地質穩定性指數值的分布范圍,結合野外實際調查結果驗證,對不同區域的鐵路工程建設適宜性進行綜合分區評價。
4. 主要建築物地區的工程地質勘察工作
在1955年初步設計階段第二期工程地質勘察的同時,也布置了為論證三門峽水利樞紐主要建築物地段,技術設計階段的工程地質工作(如勘探豎井、水平探硐及灌漿試驗),以便進一步了解混凝土重力壩建基高程處,及左右兩岸壩肩接觸部分的閃長玢岩的裂隙程度、風化厚度、岩石物理力學性質、地下水向基坑的滲入量,以及設計帷幕灌漿時的孔排孔距等。
1956年為了進一步確定在已選定的下壩線方案上建壩的問題,需要詳細地研究基岩頂板高程、構造和第四紀沉積層以及分布在本地段的各種基岩物理力學性能,因而補打了13個鑽孔。
此外,為了進一步核定混凝土重力壩壩內式電站與壩後式電站兩種比較方案,在正常高水位360m時的工程地質條件,1957年3月三門峽水電站設計總地質師B.Й.薩維里耶夫提出了下列的主要勘探任務:
1.進行比例尺1:1000地質測繪,對主要建築物布置的范圍內,閃長玢岩中所有的破碎帶及裂隙密集帶進行了解,並進一步說明其透水性和地下水的承壓性,以及破碎帶灌漿的可能性和必要性,以提高基礎岩石的質量。
2.進一步確定閃長玢岩的頂板所在高程。
3.根據地質勘探資料,進一步確定閃長玢岩表面風化帶的厚度,以及壩基風化岩石開挖的深度。
4.為了設計最好的排水系統(在灌漿帷幕的後面),對溢流壩段和廠房壩段基礎閃長玢岩裂隙做詳細說明,以便根據對裂隙的觀測資料,擬定出排水鑽孔的方向和所需要的數量。
5.為了設計溢流壩段的護坦,應在溢流壩至張公島間的地段內,進行對閃長玢岩完整性的研究。換句話說也就是要研究閃長玢岩中裂隙的大小,它們在水平及垂直方向上的分布情況,以及該地段內的構造破碎帶和裂隙密集帶的詳細性質。
6.進一步明確主要建築物基礎岩石的物理力學性質,特別是河床地段閃長玢岩以下的軟弱岩石(煤層和炭質頁岩)的特性。
7.進一步明確區內地表水和地下水的化學成分及其侵蝕性,以便選擇水泥的成分和標號,並確定左、右兩岸地下水的流向,預測該地段內水庫形成後,其地下水流的方向及其水質變化情況。
8.為了解決壩址區的施工用水和生活用水,於1957年4月對壩址下游右岸的老鴉溝及左岸的寨後溝先後布置了6個鑽孔,尋找奧陶紀馬家溝組石灰岩中的岩溶裂隙水,首先在69號孔中發現了有水,因孔徑太小,然後分別在右岸的74號孔與左岸的231號孔中共取得60L/s的水量,這些水量只能滿足第一期的施工用水。因此,於1957年9月在右岸8號孔附近補打了373號孔,又取得70L/s的水量。(Ⅱ-23)兩處水量為130L/s,可滿足施工用水。但由於水中含硫酸根離子較高,不適宜生活用水,故三門峽工程局在七里溝口修建了一、二級沉沙池,採用黃河水,經處理後作為生活用水,這樣三門峽壩址區的施工場地各個方面的用水都得到了完全的滿足。
經過上述一系列的技術設計階段的工程地質勘察工作,在地質測繪及勘察資料綜合分析的基礎上,對主要結構物地基的工程地質條件,又做了進一步的論證,特別是基礎中的斷層及構造破碎帶在水平、垂直方向上的變化,向深部的延伸,以及透水性方面,又做了進一步的闡明。但是對這些破碎帶是否伸延到下煤系岩層中去,以及破碎帶與斷層生成後,在第三紀及第四紀年代內是否活動過,今後結構物遭到了地震作用,基礎下的斷層及構造破碎帶是否會活動,而危及結構物的安全等等問題,都沒有給予明確的答案。這個問題的回答,在三門峽主要結構物技術設計中,具有重大的實際意義。為了解決此問題,1958年2月三門峽水電站設計總地質師B.И.薩維里耶夫提出了為進一步查明壩址區地質構造的任務書。地質總隊根據任務書的要求,1958年2~5月,經過兩個多月的勘探工作,這一問題已基本上得到了解決(Ⅱ-7)。
根據中華人民共和國國務院批準的混凝土重力壩壩後式電站方案,正常高水位350m,大壩在以後可能加高到360m,也就是說按360m正常高水位設計,350m高程施工。根據這一設計方案的要求,在結束技術設計工程地質勘察工作之前還需要補充下列工作,這些工作中有一少部分是屬於施工詳圖階段的。
1.在右岸從壩軸線至混凝土拌和樓場地(在此地段300m高程上,設計有通往水利樞紐安裝場地的鐵路專用線),需進行比例尺1:500的工程地質測繪。根據上述測繪資料,必須闡明岸邊的穩定性,及下鐵路線在施工過程中,邊坡穩定性的保證措施,和採取保證通往安裝場地的鐵路專用線行車安全措施的必要性。
2.在混凝土非溢流壩左岸接頭地段,進行1:500的工程地質測繪,根據測繪資料編制地質剖面,進一步確定該地段內石炭-二疊紀煤系岩層的厚度、成分和產狀要素,閃長玢岩表層裂隙性及風化深度,以及闡明左岸接頭部位穩定設計措施的必要性。
3.在混凝土非溢流壩右岸接頭地段,根據1:2000地質測繪資料,編制出精確的地質剖面,其目的是進一步確定黃土層以下閃長玢岩的埋藏深度,以及該地段內基坑開挖所需完成的土石方工程量。
4.為了進一步確定1、16、18號斷層在黃河河床部分的位置及斷距,必須在擬定的地質剖面圖A—A線上補打鑽孔6個。
5.為編制出准確的壩軸線、隔牆軸線、機組軸線,以及溢流壩軸線上的地質剖面圖,還需補打11個鑽孔。
6.進一步確定在河床內沖刷深坑部位的大壩河床地段閃長玢岩的頂板及沖積層的厚度、成分,需補充打4個鑽孔。
7.為了防止大壩基礎構造破碎帶的滲漏和帷幕灌漿時的孔距與孔排距離的設計需要,從1956年4月到1958年8月,其間還進行了4個地段的灌漿試驗工作。
上述工作除了個別水上鑽孔,由於洪水到來沒有進行鑽探外,絕大部分已於1958年9月完成,資料亦已於1958年9月底前送交設計部門。
根據1952年到1958年所取得的一系列的地質資料,用來編制三門峽水利樞紐的技術設計,已基本上滿足了設計要求(Ⅱ-2、Ⅱ-3、Ⅱ-8)。
1952~1958年主要建築物地區的工作量及勘探程度,詳見表3及圖7。
表3 黃河三門峽水利樞紐主要建築物地段1952~1958年間各個勘察階段的探工作項目及完成工作量總表
續表