忠縣野鶴鎮地質災害工程建設
㈠ 地質災害監測重點工程建設
7.4.1 長江三峽庫區地質災害監測預警工程建設
完成長江三峽庫區立體式監測預警預報示範網路系統建設。運用現代化的技術、設備,對庫區60處以上的地質災害點建立自動監測網路,實現監測數據的自動採集、實時傳輸和自動分析;建立全庫區的遙感(RS)監測系統和GPS控制網、基準網,為編制與實施防災減災預案提供決策支撐。通過該監測預報示範區的建設為全國地質災害監測預報網路的建立提供最直接的經驗。
7.4.2 長江三角洲、華北平原地面沉降監測工程建設
(1)長江三角洲地面沉降監測
長江三角洲包括上海市全部,江蘇省的蘇州、無錫、常州地區、南通和鹽城南部的三個縣(市),浙江省北部的杭州、嘉興和湖州地區,面積近5萬km2。
長江三角洲地區在原有監測網路的基礎上,按統一的規劃、統一的標准建立和完善區域性地面沉降監測網。建立和完善基岩標、分層標組和其他有效的地面沉降監測設施;調整、優化和補充地下水動態分層監測孔;開展全球定位系統(GPS)、干涉合成孔徑雷達(InSAR)技術和激光雷達(LI-DAR)技術應用試驗研究,使地面沉降監測更加合理和有效。
(2)華北平原地面沉降監測
華北平原包括北京市、天津市、河北平原和山東魯西北平原,總面積5萬多km2。
建立和完善地下水分層監測網路,建立統一的地面沉降監測網,逐步完善分層標和其他有效的地面沉降監測設施。開展全球定位系統(GPS)、干涉合成孔徑雷達(InSAR)技術和激光雷達(LI-DAR)技術應用試驗研究,使地面沉降監測更加合理和有效。
7.4.3 礦山地質災害綜合監測示範工程建設
建立遼寧撫順煤礦、黑龍江七台河煤礦、山西太原西山煤礦、貴州開陽磷礦四個具有代表性的國家級礦山地質災害綜合監測示範工程。通過國家級礦山地質災害綜合監測示範工程的建設,探索總結礦山地質災害監測的工作程序和相應的技術方法,為我國採取快捷、經濟的監測辦法,初步解決礦山地質災害對當地經濟建設造成的威脅提供技術准備,為實施礦山環境恢復工程提供基礎依據。
㈡ 什麼情況不算地質災害工程建設過程中,邊坡坍塌,算地質災害還是安全問題
具體情況具體分析,邊坡坍塌的原因如果是由於不可預料的地質原因發生,則算地質災害,如果是安全措施不到位,則屬於安全問題
㈢ 工程建設遭受已有地質災害危險性預測評估
輸油管道工程在施工開挖過程中和工程運營後可能遭受采空地裂縫、塌陷、地裂縫、滑坡、崩塌、岸邊坍塌,泥石流(潛在泥石流)、洪水沖蝕、地面沉降、黃土濕陷、鹽漬土脹縮、地震液化等地質災害的危害。
(一)采空塌陷和地裂縫
管線經過的霍西煤田區(K278~K335)和太原東山煤田區(K472~K495)采空區廣布,地面塌陷和地裂縫發育密集,采空區未穩定,工程建設和運營後將長期遭受其危害,危害程度大。
霍西煤田區2、4、10號煤層頂板岩性為砂質頁岩,1號煤層頂板岩性為砂岩,6、7號煤層頂板岩性為灰質頁岩,9號煤頂板岩性為灰岩。線路經過煤礦區2號煤已基本采空,埋深約50~300m,2號煤厚約2m,開采深厚比40~150,砂質頁岩頂板易垮落,上覆岩層變形破壞強烈,易引起地面變形(地裂縫、塌陷)破壞。尤其復採下層煤區,將加劇原有地面變形破壞,塌陷面積擴大,地裂縫下錯加大,對管道危害嚴重。K270~K279處屬霍州煤電集團規化開采區,為預測地面變形破壞區,將來對管道危害也嚴重。
東山煤田區3號煤頂板岩性為泥岩、砂岩,13號煤頂板岩性為泥灰岩,15號煤頂板岩性為灰岩。目前3號煤已采空,13號煤局部采空,15號煤為現主採煤層,15號煤埋深50~300m,煤均厚約6m,開采深厚比8~50,易引起地面變形破壞,采空區地裂縫、塌陷均處於未穩定狀態,對管道危害嚴重。
由於采空區地裂縫、塌陷出現時間滯後於採煤之後時間較長,穩定時間也較長,破壞力較強,工程建設運營後可能導致管道錯斷,成品油泄漏,危害程度大,故預測采空區地面塌陷和地裂縫地質災害危險性大。
(二)地裂縫
運城盆地GL1地裂縫延伸方向距管線約4km,臨汾盆地GL2地裂縫延伸方向距管線約3.5~4.2km,其發展速度較慢,預測危險性小。
太原盆地平遙—祁縣GL4、GL7、GL8、GL9、GL10、GL1 1地裂縫發育密集,均與管線及其分輸支線相交,其各單縫規模較大,正處於活動盛期,從1985年初現至2004年仍在發展,所到之處房屋毀損,水井、道路破壞,耕地起伏不平,損失巨大。工程建設運營後可能導致管道錯斷,成品油泄漏,危害程度大,預測危險性大。
(三)岸邊坍塌
岸邊坍塌發育於黃河及其支流汾河兩岸,黃河A1、A2岸邊坍塌由於工程建設採用定向鑽穿越黃河,對工程建設無影響,預測地質災害危險性小,A3、A4、A6汾河岸邊坍塌,工程建設後會導致管道暴露,由於汾河水流量較小,岸邊坍塌輕微~中等,預測危險性中等,A5岸邊坍塌離管線較遠,對管道危害程度小,預測危險性小。
(四)泥石流(潛在泥石流)
N1~N3潛在泥石流溝:均位於臨汾盆地沖洪積傾斜平原區,位置分別為 K203+500處、K226+200處、K238處。該泥石流均為人為型泥石流,規模為小型。誘發因素是暴雨和長時間降雨。臨汾地區多年平均降水量為494.19mm,一日最大降水量為104.4mm(1958年7月16日)。管道均穿越其下游區,河谷較寬,為泥石流溝堆積區,無下切破壞作用,有淤埋作用,沖淤變幅小。對於埋地敷設的管道危害小,預測危險性小。
N4潛在泥石流溝:位於霍西煤田區K301處,規模為中型,該泥石流為人為型礦渣流,判定其易發程度中等,誘發因素是暴雨和長時間降雨。霍州地區多年平均降水量為437.3mm,年最大降水量為688.9mm,一日最大降水量為137.5mm,時最大降水量為46.9mm,10分鍾最大降水量為 29.3mm。管道穿越其下游區溝口,河谷稍寬,為泥石流的堆積區,無下切作用,有淤積作用,沖淤變幅約1m左右,對管道危害程度小,預測地質災害危險性小。
N5泥石流:位於靈石縣梧桐河,規模為小型,泥石流中等易發,處於發展期階段。誘發因素是暴雨和長時間降雨,靈石縣多年平均降雨量為491.1mm,年最大降水量為115.4mm(1964年),一日最大降水量為115.4mm(1981年8月15日),最長連續降雨日數為12天,降水量為120.9mm。管線穿越其中、下游區,管線沿溝敷設段處於泥石流的堆積區,所處地形較高,泥石流對其危害小,管線穿越段處於泥石流的流通區,溝床較窄,泥石流有一定的下切作用,泥石流在流通過程中沖蝕河床可使管道暴露,對管道危害中等,預測危險性中等。
N6泥石流:位於介休龍鳳河,泥石流易發程度低,處於衰退期階段,誘發因素為暴雨和長時間降雨。介休多年平均降水量為571.9mm,年最大降水量為733.1mm。一日最大降水量為120.5mm。管線穿越其溝口地帶,為泥石流的堆積區,無下切作用,對埋設管道危害小,預測危險性小。
(五)洪水沖蝕
山西地形條件復雜,沖溝發育,洪水沖蝕現象多見。本次調查較大洪水沖蝕溝谷20餘處,總體特徵表現為,台地區洪水沖蝕現象較多,最高洪水深一般小於 lm,溝底岩性為新近繫上新統粘土,沖蝕量微弱,岩性為第四系中、上更新統黃土的沖蝕量較大,溝谷凹岸的沖蝕量較凸岸的沖蝕量大。
洪水沖蝕,除黃河地質災害危險性大以外,本次調查的山區、高台地區洪水沖蝕,預測地質災害危險性中等,低台地及平原區的洪水沖蝕,預測危險性小。
(六)地面沉降
介休地面沉降邊緣區地面變形不明顯。管線穿越段位於山前洪積扇區,其下伏鬆散層以粗顆粒砂性土為主,預測地面變形微弱,對管道危害較小。預測危險性小。
(七)地震液化
據史料記載,公元866年臨汾西南5
2000年11月臨汾盆地自來水公司進行輸水管道跨越汾河工程中,在堯都北蘆村發生砂土液化,對工程影響很大。為查清原因,在北蘆村汾河河床及河漫灘區共布勘探孔16個,總進尺274m,取土樣90件,進行標准貫入試驗85次,認為Ⅷ度地震烈度區存在砂土液化,液化等級為Ⅲ~Ⅱ級,另據中國地震局勘測基本和上述結論吻合,確定汾河河床、河漫灘、一級階地為易液化場地。所以,K170~K180區段、K256+500~K260+750區段, 預測地震液化的地質災害危險性大,可導致管道變形開裂。
黃河漫灘區段,地下水水位埋深1~2m,河床及漫灘存在厚層的中、細粉砂,該區段地震烈度為Ⅷ度區,預測地震液化的地質災害危險性大,可導致管道變形開裂。
(八)特殊土地面變形災害
1.黃土濕陷變形災害
山西段黃土廣布,管線穿越地區岩土比例約1:8土均具有不同程度的濕陷性,主要發生於第四繫上更新統風坡積、坡洪積黃土中,據以往研究成果分述如下:
(1)黃土濕陷性
①風坡積黃土:岩性為淡黃色、灰黃色粉土,具大孔隙,結構疏鬆,質地均勻,無層理,垂直節理發育,局部夾有古土壤及砂礫石,厚10~20cm左右。天然含水量(W)一般2.5%~23.9%,天然隙比(e)0.744~1.198,飽和度(Sr)6.97%%~76.0%,屬稍密、稍濕~濕土;濕陷系數(δ) 0.05~0.102,自重濕陷系數(δz)0.014~0.052,屬中等~強濕陷性黃土,濕陷深度一般介於1.5~14m之間。管線分布風坡積黃土地段主要是在K105~K115區段,峨嵋山黃土台地區等。
②洪坡積黃土:主要岩性為灰黃色、淺黃色粉土,略具大孔隙,垂直節理發育,含鈣質及砂礫土石層。交錯層理。天然含水量(W)一般為5.1~20.94,天然隙比(e)0.747~1.12,飽和度(Sr)17.5%~72.3%,屬稍密、稍濕、高壓縮性土。濕陷系數0.067,自然濕陷系數(δz) 0.024~0.0634,屬中等濕陷性土,濕陷深度一般介於1.6~9.0m之間。該類黃土廣泛分布於盆周隆起黃土台地區。
(2)黃土濕陷變形
擬建工程在施工開挖過程中遭降雨沿開挖段積水或工程建設運營後沿管線敷設地形低窪處積水,均可能發生黃土不均勻濕陷,使管道架空受力不均而發生變形。
管線大體穿越9個區段,具濕陷性黃土區。
K8~K21區段、K34~K44區段、K105~K115區段、K125~K163區段、K261~K300區段、K346~K357+600區段、K490~末站區段,黃土為中~強濕陷性黃土,預測黃土濕陷地質災害危險性中等。
K473~K474+500區段,為Ⅱ級自重濕陷性黃土,預測評估黃土濕陷地質災害危險性中等;K223+500~K242+50區段,為弱濕陷性黃土,預測黃土濕陷地質災害危險性小。
2.鹽漬土鹽脹與侵蝕、軟土不均勻沉降
輸油管線沿途僅在K48~K54區段、K451~K464區段和黃河岸邊穿越鹽漬土、軟土分布區。
(1)K48~K54區段
位於永濟市東北伍姓湖區,調查區內分布面積約36km2,分布區段約6.6km,穿越湖面寬度1km左右,其餘為鹽漬地。地面高程343~345m,比周邊地勢低5~8m,表層土岩性為粉質粘土、粉土,濕~飽和,稍密,顆粒級配較好。地下水水位埋深0~3m。據已有分析資料,含鹽量介於1.0616%~1.1755%之間,屬中等鹽漬土,類型為硫酸~氯鹽漬土。
硫酸鹽漬土具有結晶的膨脹性,硫酸鹽沉澱結晶時,體積增大,脫水時體積縮小。山西屬乾旱—半乾旱地區,日溫差較大,硫酸鹽的體積時縮時脹,對管道具有一定的鹽脹和侵蝕作用,預測評估地質災害危險性小。
另外,該區段下部存在一定厚度的淤泥質粘土、淤泥、軟土,其結構松軟、飽水,多呈流塑狀態,工程地質性質較差,易產生不均勻沉降,對管道可產生危害,預測地質災害危險性小。
(2)K451~K464區段
位於清徐張花營村至榆次西榮一帶,鹽漬土分布面積50km2,分布區段長度約13km,地面高程771~772m之間,比周邊地勢略低,表層土為粉土,稍濕,稍密,地下水水位埋深0.20~3m。據已有分析資料,含鹽量為0.4436~1.12,屬輕微—中等鹽漬土。類型為氯—硫酸鹽漬土。
該鹽漬土對管道也具有一定的鹽脹和侵蝕作用,預測評估地質災害危險性小。
㈣ 在地質災害密集的地方進行大型工程建設需注意哪些問題
D
㈤ 在工程建設辦理相關手續時,地質災害危險性評估報告是為辦理什麼手續提供依據
建設用地的審批,以及對建設用地范圍內的地質災害進行調查及預防進行提前排查。
㈥ 誰知道忠縣野鶴鎮及相鄰鎮的地底震動是什麼原因引起的
估計是井噴,據我所知,萬州那邊沒有感覺,只有汝溪附近一帶有強烈響聲,不符合地址的特點
㈦ 忠縣野鶴鎮蝴蝶村村道硬化有沒有招標
忠縣全縣所有的工程項目招投標都會掛在忠縣公共資源綜合交易中心網站上,從該網站上目前還沒有野鶴鎮蝴蝶村農村公路硬化發包項目!
㈧ 知識普及二:在地質災害易發區進行工程建設,需要做哪些工作
在地質災害易發區內進行工程建設(包括新建、改建、擴建項目),應當進行地質災害專危險性評估。建設單屬位在申請辦理《建設工程規劃許可證》時,應當向規劃部門提交國土資源部門出具的地質災害評估報告書面審查意見。地質災害危險性評估報告應當按照規定分級向國土資源部門備案。經評估或鑒定認為可能引發地質災害或者可能遭受地質災害危害的建設工程,建設單位應配套地質災害治理工程,並與主體工程同時設計、同時施工、同時驗收,配套的地質災害治理工程未經驗收或者經驗收不合格的,主體工程不得投入生產或者使用。
㈨ 工程建設引發或加劇地質災害危險性的預測
主要有崩塌、滑坡、泥石流、崩岸和特殊土地面變形等災害。以下分災種論述。
(一)工程建設引發崩滑災害危險性的預測
管線穿越丘陵山區時,管道或從溝底穿行,或於溝坡穿越,依地勢而敷設,需開挖深度約2m的溝槽。丘陵山區為堅硬或較堅硬岩體,風化帶厚10~15m,構造線走向為北西西—北西或北北東,大部分地段與管線走向形成45°~90°夾角,一般不會形成順向坡的開挖,因此大部分地段管道敷設開挖不會引發規模較大的滑坡。但因風化帶厚,風化土體凝聚力低,呈鬆散砂狀,開挖過程中引發小規模坍滑是有可能的。這種小型坍滑危害有限,一般只發生在溝槽開挖過程中,當管道埋置穩定並恢復原坡形態後,邊坡便失去了坍滑的臨空條件,預測危險性小。
管線穿越崗坡粘土分布區段時,展布高程40~70m,地形起伏小,施工過程中將開挖數米的深溝,挖方棄土就近堆積於線路邊,這些棄土多座落於粘土層之上,加之原始地形具有一定的坡度,棄土置於其上,兩者力學強度差異較大,界面處又往往是地下水富集、逕流的場所,若棄土邊坡過陡或就近置於開挖深溝邊,沿上述界面易形成軟弱帶,因此,在久雨或暴雨滲透下,這類棄土易產生滑移。開挖溝坡若由具膨脹性的粘土組成,在天然狀態下,干濕反復交替,產生膨脹裂縫,致使水分更易進入土體,導致土體含水量逐漸增大而變軟,強度降低。在降雨入滲等誘發因素的影響下,可能產生溝坡失穩滑移。通過上述分析,形成滑坡的規模有限,所以,地質災害危險性小。
管線經過的湖北省大悟縣大新店—大悟縣城以南,出露地層是中上元古界紅安群,由片岩、片麻岩、混合岩等堅硬或較堅硬岩體組成。地形坡角15°~250,坡體上植被發育。線路緊鄰大悟河右岸邊側延伸,邊岸上第四系沖洪積物堆積較厚,工程切坡後,在久雨、暴雨及河水的漲落浸泡沖刷下,易導致鬆散堆積物的崩滑。在基岩邊坡中,由於岩層軟硬相間,各種構造結構面又較為發育,岩石的風化程度也較高(片岩多呈強風化狀態),當形成順層切坡時,也容易導致邊坡的失穩滑移。所以,本段地質災害的預測評估為中等。
管線經過的湖南省汩羅向家鎮、弼時鎮南部一帶,即長沙末站到湘潭支線0~15km和長沙末站至丁字鎮油庫支線的0~9km段,出露地層有上元古界板溪群變質砂岩、千枚狀板岩等,以變質砂岩為主,風化程度較高,呈強風化狀態,地形坡度較陡,工程切坡較大,預測風化層產生崩滑的可能性較高,地質災害危險性中等。
管線經過的湖南省瀏陽河南岸長沙末站—湘潭支線的53~60km、76~92km段,為丘陵陡坡區,坡角20°~30°,出露地層岩性由上元古界板溪群變質砂岩、千枚狀板岩及泥盆系石英砂岩、粉細砂岩、白雲岩、灰岩組成,工程地質岩組軟硬相間,軟質岩多呈全—強風化狀態,硬質岩呈弱~微風化狀態,變質岩為中等風化。由於岩層軟硬相間,地形坡度較陡,地質構造發育,人類經濟工程活動強烈,工程切坡後,在久雨或暴雨下,易形成崩滑災害,所以,地質災害危險性預測為中等。
(二)工程建設引發泥石流危險性的預測
管道敷設時的溝槽開挖,將產生土石渣,部分土石渣將用於溝道回填埋管,但由於管道空間占據,仍將產生0.3m3/m的棄渣。管道經過丘陵山區長247km,在此段將留下74100m3的棄渣。這些棄渣將沿線就地堆填於地勢低窪的沖溝、坡腳、山窪等地,將成為泥石流發生的部分固體物質來源。但由於棄渣並非集中堆放,一般多是危害不大的小型泥石流,預測危險性小。
(三)工程建設引發或加劇河流崩岸危險性的預測
管道工程將穿越13條主要的大中型河流,其中長江和大悟河流量最大,岸坡不甚穩定,歷史上發生過較大崩岸。管道穿越河流採用大開挖、定向鑽、盾構和隧道等施工方法(見表8-1)。
定向鑽和盾構法的施工辦法從河床底部侵蝕深度以下穿過。由於擾動了河岸、河槽的地質結構,地表、地下水流場均衡可能被打破,勢必會引起河岸、河槽的侵蝕再造,以求新的平衡穩定。是否能夠發生大的崩岸,這要看岸坡土體工程地質條件、河勢變化、流量大小、人工防護等情況。現按由北向南的次序,對將穿越的10條主要大中型河流逐一預測。
1.大悟河
該河屬長江一級支流,地貌屬丘陵山區崗狀地帶,本工程首先在大悟縣城南穿越大悟河,順大悟河右岸穿行至孝昌縣小河鎮再次穿越大悟河,穿越處河道順直,河床呈「U」型。河岸由上至下土體依次為粘土、細砂、粉質粘土,下部為砂卵石層,土體鬆散松軟,強度低,但人工植被發育。洪水時最大流量3276m3/s,最大流速1.8m/s,最大沖刷深度2.5m。
預測大悟河管道穿越處,由於已有潛在岸崩段存在,在河水沖刷側蝕及工程擾動下,施工引發河岸崩塌的可能性大,在洪水汛期施工可能引發兩岸大規模崩塌產生。預測地質災害的危險性為中等。
2.縣河
位於孝昌縣揚店,地處崗坡平原區,地勢平緩,河谷兩岸坡角5°~15°,河流水深通常2m左右,河谷呈「U」型,岸坡較陡,高 1.5~2.5m,河岸土體上部為粘土、下部為粉細砂、底部是砂卵石層。由於管線工程採用大開挖法穿越河道,在施工擾動作用下,岸坡可能產生小規模岸崩。在河道中施工時,因鬆散土體處於飽水狀態,也易產生滑塌,因此,施工過程中開挖斷面不宜過高過長,應逐段進行施工,也免產生大規模的崩滑,對工程本身和施工人員、機械設備造成威脅。只要安全措施採取得當,預測岸坡和開挖邊坡產生崩滑的規模有限。所以,地質災害的危險性中等。
3.灄水
灄水是長江一級支流,發源於大別山,全長142.14km,流域面積2317km2。本工程於黃陂區葉家河東約100m穿越灄水。管道穿越處為崗狀河谷平原,河床及其岸坡平緩,由粘性土、砂土構成,土層較厚。河流順直,沖淤平衡,河岸穩定。洪水時最大流量4560m3/s,多年平均枯水流量0.88m3/s,屬於季節性河流。
由於穿越河流採用定向鑽法,在穿越河道時將進行基坑開挖,兩岸開挖的基坑深度不大,雖然本區地下水位埋深較淺,在地下水滲流潛蝕作用下,基坑四周邊坡可能產生規模有限的滑塌,定向鑽施工工程擾動小,預測工程管道在河道穿越段基本不會引發兩岸崩塌發生,危險性小。
4.倒水
倒水是長江一級支流,發源於大別山,全長158.14km,流域面積2432km2。本工程於黃陂區周鋪南約8 km穿越倒水。管道穿越處為河湖低窪區平原,河床及其岸坡平緩,由粘性土、砂土構成,土層較厚。河流順直,沖淤平衡,河岸穩定。河水寬5.5~7.5m,河道寬約300m,洪水時最大流量4713m3/s,多年平均枯水流量1.34m3/s。
由於穿越河流採用定向鑽法,在穿越河道時將進行基坑開挖,兩岸開挖的基坑深度較大,本區地處湖泊邊緣,地下水位埋深淺,在地下水滲流潛蝕作用下,機坑四周邊坡可能產生規模較大的滑塌,在定向鑽施工工程擾動小,預測工程管道在河道穿越段可能引發兩岸崩塌發生,危險性大。
5.長江
是本工程穿越的最大河流。穿越點位於武漢市白滸鎮,水面寬1000m左右,兩岸場地開闊,交通便利。管道穿越處為一河灣,其上遊河道急劇變化,形成向南東凸出的「Ω」形急彎。北岸岸坡土體由上而下為素填土、粘土、淤泥質粉質粘土、粉細砂。汛期洪流最71100m3/s,沖刷深度45m。
由於在南岸白滸鎮緊鄰江邊出露有C—D系的灰岩、砂岩形成的天然磯頭,自上而下徑流的江水經磯頭阻擋後,水流主流線隨即改變方向向北岸偏轉,從而增強了水流對北岸的沖刷側蝕作用,在不斷沖刷側蝕作用下,已形成了長江北岸的潛在岸崩段,岸坡土體結構鬆散、松軟,在工程施工擾動下,隨時都有產生崩滑的可能。此外,在穿越河道時採用的盾構法施工將進行基坑開挖,由於河道深。兩岸開挖的基坑必然較深較大,因本區地下水位埋深較淺,僅有1~2m,基坑開探過程中或開挖好後,必然要進行基坑降水,在降水過程中將導致滲流潛蝕作用下,極易導致基坑四周邊坡產生滑塌,進而危及到施工人員,機械設備的安全。所以,工程施工過程中的危險性較大。
根據穿越處岸坡工程地質條件和河勢的演變趨勢,預測長江管道穿越枯水季節施工北岸可能引發較大規模崩塌,南岸可能引發小規模的崩塌;洪水汛期施工可能兩岸均引發較大規模的崩塌,危險性大。
6.陸水河
穿越點位於赤壁市北霞落港,為長江一級支流,穿越處河流較為順直,河面寬度約260m,河堤間寬約350m,河堤高約8~10m。其上游約9km為陸水水庫,水位波動不大,近30年洪水均未漫過兩岸河堤,目前河道內有采砂現象。
穿越河流採用定向鑽法,預測工程管道在穿越河道時不會引發兩岸崩塌發生。由於河道內有采砂現象,因此,在管道設計時,應適當加大其埋藏深度以免將來因河道采砂導到管道的損毀,危險性小。
7.新牆河
新牆河(又稱微水),是直接注入東洞庭湖的較大支流,源出平江寶貝嶺,流域似桑葉狀,平均流量52.60m3/s,天然落差400m,坡降7.18‰。管道在岳陽新牆鄉處穿越新牆河,穿越兩岸地形平坦,河岸兩側有碎石護坡,河水寬約80m,河道寬300~400m,水深2~3m,屬於季節性河流,水清。據區域地質及現場觀察,穿越地層為粉土,粘粒含量高,層厚3~4m,其下為細砂,建議圍堰導流大開挖,具體開挖深度建議經初步勘察後再定。
由於管線工程採用大開挖法穿越河道,在施工擾動作用下,岸坡可能產生小規模岸滑。在河道中施工時,因鬆散土體處於飽水狀態,也易產生滑塌,因此,施工過程中開挖斷面不宜過高過長,應逐段進行施工,也免產生大規模的崩滑,對工程本身和施工人員、機械設備造成威脅。只要安全措施採取得當,預測岸坡和開挖邊坡產生崩滑的規模有限。所以,地質災害的危險性中等。
8.汩羅江
穿越點位於汨羅市新市鎮附近,兩岸堤高約6~8m,河岸間寬約260m,大約1983年出現過河水漫過兩岸堤壩的現象。穿越處上遊河段有采砂現象,擬利用已建忠武線長沙支線輸氣管道汨羅江隧道通過,危險性小。
9.撈刀河(湘潭支線)
穿越點位於長沙縣果園鄉南瞿家塅附近,為湘江一級支流,穿越處河流較曲折,屬河道下游,河流坡降較小,河水寬約50m,河岸間寬約250m。由於管線工程採用大開挖法穿越河道,在施工擾動作用下,岸坡可能產生小規模岸滑。在河道中施工時,因鬆散土體處於飽水狀態,也易產生滑塌,因此,施工過程中開挖斷面不宜過高過長,應逐段進行施工,以免產生大規模的崩滑,對工程本身和施工人員、機械設備造成威脅。只要安全措施採取得當,預測岸坡和開挖邊坡產生崩滑的規模有限。所以,地質災害的危險性小。
10.瀏陽河
穿越點位於長沙縣塱梨鎮東南渡頭附近,為湘江一級支流,穿越處河流較曲折,屬河道下游,河水寬約150~180m,河岸間寬約270m。河床及其岸坡較平緩,由粘性土、砂土構成,土層較厚。河流順直,沖淤平衡,河岸穩定。穿越河流採用定向鑽法,地下水位埋較深,預測工程管道在穿越河道時不會引發兩岸大規模崩塌發生,危險性小。
(四)工程建設引發或加劇特殊土變形危險性的預測
1.軟土
管道經過的湖北長江、大悟河、倒水、灄水及湖南的汩羅江、瀏陽河沖湖積低平原地區,位於河流與湖泊邊緣,有較大范圍的軟土分布,軟土壓縮變形垂直壓力在100k Pa左右,容許承載力為20~98k Pa。由於該區段內河流深切,地形較平緩,坡角較小,在河流兩側,低窪湖泊、水田、藕田兩側分布有淤泥、淤泥質粘土及飽和粘土,其孔隙比大、壓縮性高,且厚度變化大,垂向剖面上可能出現由結構密實的粘土與飽水粉細砂層、淤泥質土類呈間互成層的現象,這些地段土體岩性差異大,力學強度各異,若工程開挖或載入,一方面易導致不均勻沉降變形,另一方面若工程邊坡形成後,易導致軟土的壓縮擠出坍滑,引起建築物損壞。但本工程無論是管道,還是分輸站,都是輕荷載構建,一般不會引發軟土的變形,如果有個別重載設備和加壓震動設備的安裝,則有可能引起淤泥土地段小規模的壓縮變形、壓縮擠出坍滑。所以,建設過程中應對強度較低的軟弱土進行清理,採取夯實壓密措施,以改良土體、提高地基強度。
2.膨脹土
管道經過的丘陵山前壠崗平原和長江沖洪積波狀平原(二、三級階地)地區,有大范圍的第四系中、上更新統粘性土構成的膨脹土分布。膨脹土中礦物成分以蒙脫石、水雲母為主,化學成分以 SiO2、A12O3、Fe203為主。具有失水收縮,遇水膨脹的特點,自由膨脹率 Fs=30%~70%,膨脹力Pp=17~46kPa,有荷載膨脹率 VHa=0.025%~0.805%,屬於弱脹縮性土。水分變化對膨脹土影響深度一般為4m左右,急劇影響層深度一般為1.8m~2.25m左右。
本工程在膨脹土區的施工方法主要為大開挖—溝底墊層—埋管壓實的辦法,埋置深度為1.2m,管道設計管徑355.6mm。也就是說管道埋置位置一般在1.5~2.5m,正好是急劇影響層,膨脹土的脹縮變形活動正好作用於管道,不利於管道的穩定運行,這是不利的一面。另一方面人工開溝鋪設墊層後,人為在管道沿線形成了孔隙潛水的含水通道,易接受降雨入滲,上層滯水廣泛存在,在一定深度內降雨入滲與蒸發量大,為膨脹土體遇水膨脹、失水收縮創造了較好的環境條件。同時土體開挖後由於膨脹性,雨水浸入風化帶內發育的裂隙中,使粒間聯結力被削弱,土粒易於吸水膨脹。在平行坡面方向,吸水作用使土體橫向膨脹勢能顯著增加,膨脹土坡上的土體沿坡面向坡腳方向產生位移,坡腳處較大的位移使該處抗剪強度首先越過峰值而逐漸降到殘余值,在土體重力及大氣降水入滲產生的靜水壓力作用下產生坍滑。
綜上所述,本工程會加劇膨脹土的脹縮變形,但脹縮變形的規模有限,而且經過簡單的施工工藝改良,還可以大大減弱膨脹土的脹縮變形,從而減少對工程的危害。所以,建設過程中應對強度較高的脹縮土進行處理,
需要指出的是,在現狀評估中,地質災害危險性大的岩溶地面塌陷和采空地面塌陷不會因工程建設而引發或加劇災害。
㈩ 工程建設與運營中的地質災害減災工程
按照《地質災害防治條例》的要求,鐵路、交通、水利、建設等部門實施的各項建設工程,要嚴格落實地質災害治理工程的設計、施工、驗收與主體工程的設計、施工、驗收同時進行的「三同時」制度,結合「十一五」各相關行業的發展規劃,對已建和在建的鐵路、公路、水利水電工程、礦山工程和輸油(氣)管道工程等地質災害隱患點編制專門的地質災害防治規劃,對地質災害隱患點進行治理,確保建設工程區的地質災害得到及時治理。
9.8.1 水利水電工程建設與運營中的地質災害減災工程
水利水電建設多位於山區,極易引發崩塌、滑坡、泥石流等突發性地質災害;結合大江大河干(支)流水利樞紐工程建設開展地質災害治理,使威脅水利水電建設和運營的地質災害得到有效治理。
(1)近期(至2010年)
1)三峽庫區崩塌、滑坡、泥石流地質災害治理與搬遷避讓減災示範工程。
2)結合病險水庫除險加固工作,對全國143座大型病險水庫和543座重點中型病險水庫的地質災害進行有效治理。
(2)遠期(2011~2020年)
南水北調中線工程滑坡、泥石流治理工程。
9.8.2 交通道路工程建設與運營中的地質災害減災工程
由交通、鐵路主管部門組織對已建和在建的公路、鐵路沿線地質災害隱患點進行專項治理,對發現的地質災害隱患點,結合本行業特點,編制本部門地質災害防治規劃,逐步開展工程治理。
1)青藏鐵路(格爾木—拉薩)沿線崩塌、滑坡、泥石流的地質災害治理。
2)國道219線改擴建工程(拉孜縣查務鄉—新藏區界)沿線崩塌、滑坡、泥石流地質災害的治理。
3)國道108線成都—西安段沿線崩塌、滑坡、泥石流地質災害治理。
4)川藏公路沿線崩塌、滑坡、泥石流地質災害治理。
9.8.3 礦山工程建設與運營中的地質災害減災工程
建立國家級礦山地質災害綜合治理示範工程,實現礦山開發、土地復墾、綜合整治、環境恢復相統一的礦產資源開發模式。
1)黑龍江省七台河煤礦,以采空塌陷為主的地質災害綜合治理示範工程。
2)遼寧撫順煤礦,以露天采礦為主的地質災害綜合治理示範工程。
3)山西大同煤礦,以采空塌陷為主的地質災害綜合治理示範工程。
4)貴州開陽磷礦,以崩滑流為主的地質災害綜合治理示範工程。
9.8.4 油氣能源工程建設與運營中的地質災害減災工程
1)西氣東輸管道沿線地質災害治理工程。
2)寶成輸油管道沿線地質災害治理工程。