殘積土工程地質
『壹』 工程地質知識點
1、「物源」的概念
萬物皆有所源,所有地質現象,都有其物質基礎。
如:滑坡——滑動面、切割面和臨空面,泥石流——鬆散的物質、陡峻的地形和足夠的突發性水源,岩溶——可溶性岩石、岩石透水、水的溶蝕性和流動性;
黃土——粉粒、可溶鹽結晶;膨脹土——粘粒、粘土礦物;軟土——粘粒、絮狀機構;
2、「成因」的概念
萬事皆有所因,內因決定外因。
土層、岩層皆為自然歷史的產物,其形成和演化遵循一定的規律,其背後是內、外動力地質作用的營力的作用結果。
學習土的成因,是工程地質和土力學在本科教學內容的一個非常重要的區別,對於土,工程地質按土的成因進行分類,側重定性;土力學按顆粒級配分類,側重定量。
在地表水地質作用類型和產物中介紹殘積土、坡積土、洪積土和沖積土,分別對應的作用是:淋濾作用、洗刷作用、沖刷作用和沉積作用;我們要學會用分選性、磨圓度、層理等概念來分析這四種土的特性,這幾個概念來自這幾種搬運距離的不同導致的。
因此對於土而言,其形成源自外動力地質作用,包含:風化、剝蝕、搬運、沉積;
剝蝕和搬運涉及不同的外部營力,包含風、流水、冰川、重力、湖海等,不同的營力就有不用的物質,原生黃土源自風力搬運、膨脹土是流水搬運、冰磧物是冰川搬運等;
疊覆定律的內涵是原始地層由上到下的順序是按由新到老的順序分布的,新地層覆蓋在老地層之上。如果地層出現老地層在新地層之上,就是地層的倒置,一般由劇烈的構造運動導致。
工程地質構造中,倒轉褶曲、平卧褶曲、推覆輾掩斷層都會出現地層的倒置。
原始水平定律、原始連續性定律表示沉積地層形成時,一般先形成水平岩層,整合關系,地層沉積主要因為地殼的連續下降導致。地層抬升、受水平擠壓,會導致各種構造的產生,抬升後會導致地層的缺失;地殼的重復運動將導致各種不整合接觸的產生。
『貳』 岩土體的工程地質分類和鑒定
一、岩體
(一)岩體(岩石)的基本概念岩體(岩石)是工程地質學科的重要研究領域。岩石和岩體的內涵是有區別的兩個概念,又是密不可分的工程實體。在《建築岩土工程勘察基本術語標准》(JG J84-92)中給出的岩石定義是:天然產出的具有一定結構構造的單一或多種礦物的集合體。岩石的結構是指岩石組成物質的結晶程度、大小、形態及其相互關系等特徵的總稱。岩石的構造是指岩石組成物質在空間的排列、分布及充填形式等特徵的總稱。所謂岩體,就是地殼表部圈層,經建造和改造而形成的具有一定岩石組分和結構的地質體。當它作為工程建設的對象時,可稱為工程岩體。岩石是岩體內涵的一部分。
岩體(岩石)的工程分類,可以分為基本分類和工程個項分類。基本分類主要是針對岩石而言,根據其地質成因、礦物成分、結構構造和風化程度,用岩石學名稱加風化程度進行分類,如強風化粗粒黑雲母花崗岩、微風化泥質粉砂岩等。岩石的基本分類,在本書第一篇基礎地質中有系統論述。工程個項分類,是針對岩體(岩石)的工程特點,根據岩石物理力學性質和影響岩體穩定性的各種地質條件,將岩體(岩石)個項分成若干類別,以細劃其工程特徵,為岩石工程建設的勘察、設計、施工、監測提供不可缺少的科學依據,使工程師建立起對岩體(岩石)的明確的工程概念。岩石按堅硬程度分類和按風化程度分類即為工程個項分類。
在岩體(岩石)的各項物理力學性質中,岩石的硬度是岩體最典型的工程特性。岩體的構造發育狀況體現了岩體是地質體的基本屬性,岩體的不連續性及不完整性是這一屬性的集中反映。岩石的硬度和岩體的構造發育狀況是各類岩體工程的共性要點,對各種類型的工程岩體,穩定性都是最重要的,是控制性的。
岩石的風化,不同程度地改變了母岩的基本特徵,一方面使岩體中裂隙增加,完整性進一步被破壞;另一方面使岩石礦物及膠結物發生質的變化,使岩石疏軟以至鬆散,物理力學性質變壞。
(二)岩石按堅硬程度分類
岩石按堅硬程度分類的定量指標是新鮮岩石的單軸飽和(極限)抗壓強度。其具體作法是將加工製成一定規格的進行飽和處理的試樣,放置在試驗機壓板中心,以每秒0.5~1.0M Pa的速度加荷施壓,直至岩樣破壞,記錄破壞荷載,用下列公式計算岩石單軸飽和抗壓強度:
深圳地質
式中:R為岩石單軸飽和抗壓強度,單位為MPa;p為試樣破壞荷載,單位為N;A為試樣截面積,單位為mm2。
對岩石試樣的幾何尺寸,國家標准《工程岩體試驗方法標准》(GB/T50266-99)有明確的規定,試樣應符合下列要求:①圓柱體直徑宜為48~54mm;②含大顆粒的岩石,試樣的直徑應大於岩石的最大顆粒尺寸的10倍;③試樣高度與直徑之比宜為2.0~2.5。
在此標准發布之前,岩石抗壓強度試驗的試樣尺寸要求如下:極限抗壓強度大於75M Pa時,試樣尺寸為50mm×50mm×50mm立方體;抗壓強度為25~75MPa時,試樣尺寸為70mm×70mm×70mm立方體;抗壓強度小於25MPa時,試樣尺寸為100mm×100mm×100mm立方體。
(G B/T 50266-99)的規定顯然是為了方便取樣,以金剛石鑽頭鑽探,取出的岩心進行簡單的加工,即可成為抗壓試樣。岩樣的尺寸效應對岩石抗壓強度是略有影響的。
岩石按堅硬程度分類,各行業的有關規定,雖然各自表述方式有所區別,但其標準是基本一致的(表2-2-1)。
表2-2-1 岩石堅硬程度分類
除了以單軸飽和抗壓強度這一定量指標確定岩石堅硬程度外,尚可按岩性鑒定進行定性劃分。國標:建築地基基礎設計規范(GB50007-2002)按表2-2-2進行岩石堅硬程度的定性劃分。其他規范的劃分標准大同小異。
表2-2-2 岩石堅硬程度的定性劃分
岩石堅硬程度的劃分,無論是定量的單軸飽和抗壓強度,還是加入了風化程度內容的定性標准,都是用於確定小塊岩石的堅硬程度的。岩石的單軸飽和抗壓強度是計算岩基承載力的重要指標。
(三)岩石按風化程度分類
關於岩石風化程度的劃分及其特徵,國家規范和各行業的有關規范中均有規定,其分類標准基本一致,表述略有差異。表2-2-3至表2-2-10是部分規范給出的分類標准。
表2-2-3《工程岩體分級標准》(GB50218-94)岩石風化程度劃分表
表2-2-4《岩土工程勘察規范》(GB50021-2001)岩石按風化程度分類表
續表
表2-2-5《公路橋涵地基與基礎設計規范》(JTJ024-85)岩石風化程度劃分表
表2-2-6《水利水電工程地質勘察規范》(GB50287-99)岩體風化帶劃分表
《港口工程地質勘察規范》(JTJ240-97)、《港口工程地基規范》(JTJ250-98)岩體風化程度的劃分按硬質、軟質岩體來劃分,硬質岩石岩體風化程度按表2-2-7劃分。軟質岩石岩體風化程度按表2-2-8劃分。
表2-2-7 硬質岩石岩體風化程度劃分表
表2-2-8 軟質岩石岩體風化程度劃分表
表2-2-9《地下鐵道、輕軌交通岩土工程勘察規范》(GB5037-1999)岩石風化程度分類表
續表
表2-2-10 廣東省《建築地基基礎設計規范》(DBJ15-31-2003)岩石風化程度劃分表
國家標准《建築地基基礎設計規范》(GB5007-2002)對岩石的風化只有第4.1.3條作如下敘述:岩石的風化程度可分為未風化、微風化、中風化、強風化和全風化。未列表給出風化特徵,但在岩石堅硬程度的定性劃分中(表A.0.1)把不同風化程度的岩石歸類到了岩石堅硬程度的類別中。
深圳市標准:《地基基礎勘察設計規范》(報批稿)關於岩石風化程度的劃分標准,基本採用了《地下鐵道、輕軌交通岩土工程勘察規范》GB(50307-1999)的表述形成和內容(表2-2-9),文字略有調整。
縱觀各類規范對岩石風化程度的劃分,可以看出:
1)除個別規范未列出未風化一類外,岩石風化程度的劃分均為未風化、微風化、中等(弱)風化、強風化和全風化。特徵描述簡繁不一,中等風化與弱風化相對應的風化程度略有差別。
2)風化程度的特徵描述,主要是岩石的結構構造變化、節理裂隙發育程度、礦物變化、顏色變化、錘擊反映、可挖(鑽)性等方面來定性劃定。部分規范用波速和波速比及風化系數來定量劃定是對岩石風化程度確定的有力支撐。
3)從新鮮母岩到殘積土的風化過程是連續的,有些規范把殘積土的特徵描述放在岩石風化程度劃分表中,有一定的道理。國際標准:ISO/TC182/SC,亦將風化程度分為五級,並列入了殘積土。從工程角度考慮,殘積土對母岩而言已經發生了全面質的變化,物理力學性質和對它的理論研究已屬松軟土,表中對殘積土特徵的表述對區別殘積土與全風化岩是有現實意義的。
4)國家標准:《工程岩體分級標准》中「岩石風化程度的劃分」(表2-2-3)看似簡單,規范「條文說明」解釋了這一現象,表2-2-3關於岩石風化程度的劃分和特徵的描述,僅是針對小塊岩石,為表2-2-2服務的,它並不代表工程地質中對岩體風化程度的定義和劃分。表2-2-2是把岩體完整程度從整個地質特徵中分離出去之後,專門為描述岩石堅硬程度作的規定,主要考慮岩石結構構造被破壞,礦物蝕變和顏色變化程度,而把裂隙及其發育情況等歸入岩體完整程度這另一個基本質量分級因素中去。
5)上述列表中可以看出,某些規范把硬質岩石和軟質岩石的風化程度劃分區別開來,而《工程岩體分級標准》中「岩石堅硬程度的定性劃分」表(2.2-2)將風化後的硬質岩劃入軟質岩中。這里有兩個概念不可混淆:一是從工程角度看,硬質岩石風化後其工程性質與軟質岩相近,可等同於軟質岩;二是新鮮岩石中是存在軟質岩的,如深圳的泥質砂岩、泥岩、頁岩等。
6)相鄰等級的風化程度其界線是漸變的、模糊的,有時不一定能劃出5個完整的等級,如碳酸鹽類岩石。在實際工作中要按規范的標准,綜合各類信息,結合當地經驗來判斷岩石的風化等級。
(四)岩體的結構類型
在物理學、化學及其地質學等學科中對「結構」這一術語的概念是明確的,但有各自的含義,如原子結構、分子結構、晶體結構、礦物結構、岩石結構、區域地質結構、地殼結構等等,岩體作為工程地質學的一個主要研究對象,提出「岩體結構」術語的意義是十分明確的。
岩體結構有兩個含義,可以稱之為岩體結構的兩個要素:結構面和結構體。結構面是指層理、節理、裂隙、斷裂、不整合接觸面等等。結構體是岩體被結構面切割而形成的單元岩塊和岩體。結構體的形狀是受結構面的組合所控制的。
事實上,所有與岩石有關的工程,除建築材料外,都是與有較大幾何尺寸的岩體打交道,岩石經過建造成岩(岩漿岩的浸入,火山岩的噴出,沉積岩的層狀成沉積,變質岩的混合與動力變質)及後期的改造(褶皺、斷裂、風化等),使得岩體的完整性遭到了巨大的破壞,成為了存在大量不同性質結構面的現存岩體。為了給工程界一個明朗的技術路線,不妨以建造性結構面和改造性結構面(軟弱結構面)為基礎,從各自側面首先對岩體結構基本類型進行研究,其次將兩方面的成果加以綜合,即可得出關於岩體結構基本類型的完整概念(圖2-2-1)。
(1)以建造性結構面為主的岩體結構基本類型的劃分(表2-2-11)
表2-2-11 建造性結構面的岩體結構分類
(2)以改造性結構面(軟弱結構面)為主的岩體結構類型的劃分(表2-2-12)
表2-2-12 改造結構面為主的岩體結構分類
圖2-2-1 岩體結構示意圖
(3)由建造性結構面和改造性結構面形成的三維岩體
三維岩體表現出了復雜多變的岩體結構特徵,將其綜合歸納,形成了較系統的岩體結構類型(表2-2-13)。
表2-2-13 岩體結構類型及其特徵
表中表述的岩體結構類型及其特徵基本上涵蓋了深圳地區岩體的全部結構類型。
(4)岩體完整程度的劃分
地質岩體在建造和改造的過程中,岩體被風化、被結構面切割,使其完整性受到了不同程度的破壞。岩體完整程度是決定岩體基本質量諸多因素中的一個重要因素。影響岩體完整性的因素很多,從結構面的幾何特徵來看,有結構面的密度,組數、產狀和延展程度,以及各組結構面相互切割關系;從結構面形狀特徵來看,有結構面的張開度、粗糙度、起伏度、充填情況、水的賦存等。從工程岩體的穩定性著眼,應抓住影響穩定性的主要方面,使評判劃分易於進行。在國標:《工程岩體分級標准》(GB50218-94)中,規定了用結構面發育程度、主要結構的結合程度和主要結構面類型作為劃分岩體完整程度的依據,以「完整」到「極破碎」的形象詞彙來體現岩體被風化、被切割的劇烈變化完整程度(表2-2-14)。
表2-2-14 岩體完整程度的定性分類表
在1994版的《岩土工程勘察規范》中,未見此表。很明顯,此表在《工程岩體分級標准》中出現後,在2001版修訂後的《岩土工程勘察規范》中得到了確認和使用。
(五)岩體基本質量分級
自然界中不同結構類型的岩體,有著各異的工程性質,岩石的硬度、完整程度是決定岩體基本質量的主要因素。在工程實踐中,系統地認識不同質量的工程岩體,針對其特徵性採取不同的設計思路和施工方法是科學進行岩體工程建設的關鍵。
1994年,國家標准《工程岩體分級標准》(50218-94)給出了岩體基本質量分級的標准(表2-2-15)。在此之前發布的國家標准《岩土工程勘察規范》(GB50021-94),該表是作為洞室圍岩質量分級標準的。在2001年修訂的《岩土工程勘察規范》(GB50021-2001)中,岩體基本質量分級以表2-2-15的形式來分類,岩體基本質量等級按表2-2-16分類。
表2-2-15 岩體基本質量分級
表2-2-16 岩體基本質量等級分類
(六)岩體圍岩分類
地鐵、公路、水電、鐵路以及礦山工程等行業,均有地下洞室和隧道(巷道)開挖,工程勘察均需對工程所處的圍岩進行分類。不同的規范對圍岩的分類方法略有不同。
1.隧道圍岩
《地下鐵道、輕軌交通岩土工程勘察規范》(GB50307-1999)和《公路工程地質勘察規范》(JTJ064-98)規定,隧道圍岩分類按表2-2-17劃分。
表2-2-17 隧道圍岩分類
續表
2.圍岩工程地質
《水利水電工程地質勘察規范》(GB50287-99)規定,在地下洞室勘察時,應進行圍岩工程地質分類。分類應符合表2-2-18規定。
表2-2-18 圍岩工程地質分類
上表中的圍岩總評分T為岩石強度、岩體完整程度、結構面狀態、地下水和主要結構面產狀5項因素之和。各項因素的評分辦法在該規范中均有明確規定。圍岩強度應力比亦有專門的公式計算。
3.鐵路隧道圍岩
《鐵路工程地質勘察規范》(TB10012-2001)規定,隧道工程地質調繪時,應根據地質調繪、勘探、測試成果資料,綜合分析岩性、構造、地下水及環境條件,按表2-2-19分段確定隧道圍岩分級。
表2-2-19 鐵路隧道圍岩的基本分級
續表
該規范還規定,鐵路隧道圍岩分級應根據圍岩基本分級,受地下水,高地應力及環境條件等影響的分級修正,綜合分析後確定。關於岩體完整程度的劃分,地下水影響的修正,高地應力影響的修正及環境條件的影響,規范中都有明確的規定。
4.井巷工程圍岩
礦山工程中的井巷工程,其功能和結構更為多樣,所以井巷工程對圍岩的分類更加詳盡,各種定性和定量指標明顯多於其他標准。《岩土工程勘察技術規范》(YS5202-2004、J300-2004)規定,井巷工程評定圍岩質量等級按表2-2-20劃分圍岩類別。
表2-2-20 井巷工程圍岩分類
續表
續表
5.工程岩體
國家規范:《錨桿噴射混凝土支護技術規范》(GB50086-2001)從工程岩體支護設計和施工的需要出發,給出圍岩分級表,與表2-2-20相比,僅少了Ⅵ、Ⅶ兩類,主要工程地質特徵少了岩石質量指標RQD和岩體及土體堅固性系數兩欄,其他完全相同。
(七)岩質邊坡的岩體分類
《建築邊坡工程技術規范》(GB50330-2002)對岩質邊坡的岩體分類方法,見表2-2-21
表2-2-21 岩質邊坡的岩體分類(GB50330-2002)
續表
表2-2-22 岩體完整程度劃分
(八)深圳地區岩體分類、鑒定中存在的問題和改進意見
1)深圳地區的建築工程除大量的房屋建築外,公路(道路)橋梁、水利、地鐵、鐵路等均有大量的投資建設,各行業對岩體質量等級的劃分在執行不同規范的分類標准。在當前情況下,這一狀況將繼續下去。但是,對某一岩體的不同分類標准,僅僅是某一行業的習慣性作法。宏觀上看不同分類標準的具體內容並無原則性的區別。無論採用哪種標准都不應該影響岩體評價的正確性。
2)岩體工程特性的評價中,岩體的結構分類應該受到足夠的重視。尤其是高大邊坡、地質災害評估等岩體結構對岩體穩定起主導作用的工程項目。只有採取多種科學勘察手段和縝密地進行分析,岩體的結構特徵才能弄清楚。
3)岩石風化程度的判斷,現場工作除很具經驗的野外觀察和標准貫入試驗外,應多採用岩體波速測試方法,使之成為常用方法之一。准確的波速測試結果,可能比標貫試驗所得結果更能准確地判斷岩石的風化程度。
4)岩石的風化程度是隨埋藏深度的增加而減弱的,風化岩石的強度則是隨埋藏深度的增加而增加的。為了充分發揮地基承載力,深圳市地基基礎勘察設計規范(送審稿)將厚層花崗岩強風化帶分為上、中、下3個亞帶,其劃分方法見表2-2-23。
表2-2-23 厚層花崗岩強風化帶細分
需要指出的是,花崗岩的風化規律一般是上部風化嚴重,隨深度增加而減弱,但也有個別情況,有時隨深度增加風化程度並無明顯變化,故在劃分風化亞帶時,應視強風化帶的厚度和風化程度改變的深淺,也可以劃分一個亞帶或兩個亞帶,不可強求一律劃分為3個亞帶。
龍崗區的碳酸鹽類岩石——灰岩、白雲岩、大理岩等基本上不存在全風化和強風化層。由於構造的影響或是其他某種原因(如表面溶蝕劇烈),可能岩石的裂隙比較發育,塊度比較小。
二、土體
(一)土體的含義及其工程地質分類
土是泛指還沒有固結硬化成岩石的疏鬆沉積物。土是堅硬岩石經過破壞、搬運和沉積等一系列作用和變化後形成的。土多分布在地殼的最上部。工程地質學把土看作與構成地殼的其他岩石一樣,均是自然歷史的產物。土的形成時間、地點、環境以及形成的方式不同,其工程地質特性也不同。因此在研究土的工程性質時,強調對其成因類型和地質歷史方面的研究具有特殊重要意義。
土的工程地質分類有以下特點:①分類涵蓋自然界絕大多數土體;②同類或同組的土具備相同或相似的外觀和結構特徵,工程性質相近,力學的理論分析和計算基本一致;③獲取土的物理力學指標的試驗方法基本相同;④工程技術人員,從土的類別可以初步了解土的工程性質。
土的工程地質分類是以鬆散粒狀(粗粒土)體系和鬆散分散(細粒土)體系的自然土為對象,以服務於人類工程建築活動為目的的分類。分類的任務是將自然土按其在人類工程建築活動作用下表現出的共性劃分為類或組。
合理的工程地質分類,具有以下實際用途:①根據土的分類,確定土的名稱,它是工程地質各種有關圖件中劃分土類的依據;②根據各類土的工程性質,對土的質量和建築性能提出初步評價;③根據土的類型確定進一步研究的內容、試驗項目和數量、研究的方法和方向;④結合反映土體結構特徵的指標和建築經驗,初步評價地基土體的承載能力和斜坡穩定性,為基礎和邊坡的設計與施工提供依據。
土的工程地質分類有普通的和專門的兩類。普通分類的劃分對象包括人類工程活動可能涉及的自然界中的絕大多數土體,適用於各類工程,分類依據是土的主要工程地質特徵,如碎石土、砂土、黏性土等。專門分類是為滿足某類工程的需要,或者根據土的某一或某幾種性質而制定的分類,這種分類一般比較詳細,比如砂土的密實度分類,黏性土按壓縮性指標分類等等。應當指出的是,普通分類與專門分類是相輔相成的,前者是後者的基礎,後者是前者的補充和深化。
(二)國外土的工程分類概況
近幾十年來,國外在土的工程地質分類研究方面有很大進展,工業和科學技術發達的主要國家,都分別先後制定了各自全國統一的分類標准(表2-2-24)。其中英國、日本、德國的分類均以美國分類為藍本,結合各自國情適當調整、修改而制定的。
表2-2-24 一些國家的土質分類簡況
上述各國的土質分類,都採用了統一分類體系和方法,不僅使各自國內對土質分類有了共同遵循的依據,而且體現了國際統一化的趨勢,以促進國際交流與合作。
下列美國的統一分類法(表2-2-25)作為樣本,以了解國外分類的標准和方法。
表2-2-25 美國的土的統一分類法
續表
(三)國內土的工程分類
1.統一分類法
1990年,國家標准《土的分類標准》(GBJ 145-90)發布,並於1991年8月起執行。在此之前或之後,水利水電、公路交通等行業土的分類標准與GBJ 145-90標准沒有明顯區別。(GBJ 145-90)土的分類如表2-2-26和表2-2-27所示。
表2-2-26 粒組的劃分
表2-2-27 土質分類表
2.建築分類法
國標《建築地基設計規范》(GB50007-2002)土的分類方法(簡稱:建築分類法)如表2-2-28。這是從早期《工業與民用建築地基基礎設計規范》(TJ7-74)(試行)到《建築地基基礎設計規范》(GBJ7-89)一直延續下來的土的分類標准。在TJ7-74規范之前,我國一直沿用前蘇聯規范(HИTY127-55)。建築分類法在房屋建築地基基礎工程或類似的工程中廣泛運用,這在不少行業規范中得以反映,此分類方法也為廣大工程技術人員所熟知。目前深圳除公路、鐵路行業外,大多採用此分類標准,並納入到深圳市的地方標准之中。
表2-2-28 土的分類
(四)土的狀態分類
土的狀態分類屬專門分類。對於某種行業或某類工程,土的狀態標準是有所區別的,現以《岩土工程勘察規范》(50021-2001)中規定的最常用的分類標准,對碎石土、砂土、粉土的密實度和對粉土的濕度及黏性土的狀態進行分類,見表2-2-29至表2-2-34。
表2-2-29 碎石土密實度按M63.5分類
表2-2-30 碎石土密實度按N120分類
表2-2-31 砂土密實度分類
表2-2-32 粉土密實度分類
表2-2-33 粉土濕度分類
表2-2-34 黏性土狀態分類
(五)土的現場鑒別方法
1.碎石土密實度現場鑒別方法(表2-2-35)
表2-2-35 碎石土密實度現場鑒別
2.砂土分類現場鑒別方法(表2-2-36)
表2-2-36 砂土分類現場鑒別
3.砂土密實度現場鑒別方法(表2-2-37)
表2-2-37 砂土密實度現場鑒別
4.砂土濕度的現場鑒別方法(表2-2-38)
表2-2-38 砂土濕度現場鑒別
5.粉土密實度現場鑒別方法(表2-2-39)
表2-2-39 粉土密實度現場鑒別
6.粉土濕度現場鑒別方法(表2-2-40)
表2-2-40 粉土濕度現場鑒別
7.黏性土狀態現場鑒別方法(表2-2-41)
表2-2-41 黏性土狀態現場鑒別
8.有機質土和淤泥質土的分類
土按有機質分類和鑒定方法,《岩土工程勘察規范》(GB50021—2001)的分類方法見表2-2-42。深圳市沿海近岸地區存在大量淤泥或淤泥質土,在上更新統(Q3)的雜色黏土中,有一層泥炭質土,局部有泥炭層發育。
表2-2-42 土按照有機質分類
(六)土的定名和描述
1.統一分類法定名
1)巨粒土和含巨粒的土、粗粒土按粒組、級配、所含細粒的塑性高低可劃分為16種土類;細粒土按塑性圖、所含粗粒類別以及有機質多寡劃分16種土類。
2)土的名稱由一個或一組代號組成:一個代號即表示土的名稱,由兩個基本代號構成時,第一個代號表示土的主成分,第二個代號表示副成分(土的級配或土的液限);由3個基本代號構成時,第一個代號表示土的主成分,第二個代號表示液限;第三個代號表示土中微含的成分。
《土的分類標准》(G B J145-90),對特殊土的判別,列出了黃土,膨脹土和紅黏土。對花崗岩殘積土並沒有特別加以說明。根據深圳有關單位的經驗,花崗岩殘積土中的礫質黏性土相當於G B J145-90中的含細粒土礫,代號GF;砂質黏性土相當於細粒土質礫,代號GC-GM;黏性土相當於高液限粉土一低液限粉土,代號M H-M L。對淤泥和淤泥質土,G B J145-90分的不細,從工程需要出發,淤泥和淤泥質土的分類宜按建築行業標准。
2.建築行業定名
建築行業定名依照下列幾個標准:
1)土名前冠以土類的成因和年代。
2)碎石土和砂土按顆粒級配定名。
3)粉土以顆粒級配及塑性指數定名。
4)黏性土以塑性指數定名。
5)對混合土按主要土類定名並冠以主要含有物,如含碎石黏土,含黏土角礫等。
6)對同一土層中有不同土類呈韻律沉積時,當薄層與厚層的厚度比大於三分之一時,宜定為「互層」;厚度比為十分之一至三分之一時,宜定為「夾層」;厚度比小於十分之一的土層且多次出現時,宜定為「夾薄層」。當土層厚度大於0.5m時,宜單獨分層。
3.土的描述內容
(1)當按統一分類法(GBJ145-90)定名時,應按下列內容描述
1)粗粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;土顆粒形狀(圓、次圓、稜角或次稜角);土顆粒的礦物成分;土顏色和有機質;所含細粒土成分(黏土或粉土);土的代號和名稱。
2)細粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;潮濕時土的顏色及有機質;土的濕度(干、濕、很濕或飽和);土的狀態(流動、軟塑、可塑或硬塑);土的塑性(高、中或低);土的代號和名稱。
(2)當按建築分類法(GB50007-2002)定名時,應按下列內容描述
1)碎石土:名稱、顆粒級配、顆粒排列、渾圓度、母岩成分、風化程度、充填物的性質和充填程度、膠結性、密實度及其他特徵。
2)砂土:名稱、顏色成分、顆粒級配、包含物成分及其含量、黏粒含量、膠結性、濕度、密實度及其他特徵。
3)粉土:名稱、顏色、包含物成分及其含量、濕度、密實度、搖振反應及其他特徵。
4)黏性土:名稱、顏色、結構特徵、包含物成分及其含量、搖振反應、光澤反應、干強度、韌性、異味及其他特徵。
5)特殊性土:除應描述上述相應土類的內容外,尚應描述其特徵成分和特殊性質,如對淤泥尚需描述臭味、有機質含量;對填土尚需描述物質成分、堆積年代、密實度和均勻程度等。
6)互層(夾層)土:對具有互層、夾層、夾薄層特徵的土,尚應描述各層的厚度及層理特徵。
『叄』 殘積土怎樣描述
殘積土是岩石風化復後未被搬運而制殘留在原地的鬆散岩屑和土形成的堆積物,該風化層稱為殘積層。殘積層向上逐漸過渡為土壤層,向下逐漸過渡為半風化岩石的弱風化層。土壤層、殘積層和風化岩層形成完整的風化殼。
殘積土形成於過去某一時期成土環境條件下的土壤,其成土環境和土壤特徵不同於現代土壤。所屬學科:地理學(一級學科);地貌學(二級學科)
定義:岩體經風化作用後殘留在原地形成的土、殘積土表部土壤層孔隙率大、強度低、壓縮性高,而其下部常常是夾碎石或砂粒的粘性土,或是孔隙為粘性土充填的碎石土、砂礫土,其強度較高。
(3)殘積土工程地質擴展閱讀
影響因素
氣候條件和母岩岩性是影響殘積層物質成分的主要岡素。不同地區的殘積層,往往具有某種特定的粒度成分、礦物成分和化學成分。
乾旱或寒冷地區以物理風化為主,岩石破碎成粗碎屑物和沙礫,缺乏黏土礦物,具有礫石類土的工程地質特徵;半乾旱地區.在物理風化的基礎上會發生化學風化,使原生的硅酸鹽礦物(如長石)變成黏土礦物。
可溶鹽類對土的工程性質也影響較大,氣候潮濕地區易形成含蒙脫石、伊利石、高嶺石等黏土礦物的黏性土。鋁土礦和鐵的氫氧化物含量高,常為紅色。
『肆』 根據地質成因條件的不同有幾類土
根據地質成因,土可以分為:殘積土,坡積土,洪積土,沖積土,湖積土,海積土,冰積及冰水沉積土和風積土。
土的成因類型特徵
根據土的地質成因,土可分為殘積土、坡積土、洪積土、沖積土、湖積土、海積土、冰積及冰水沉積土和風積土等類型。一定成因類型的土具有一定的沉積環境、具有一定的土層空間分布規律和一定的土類組合、物質組成及結構特徵。但同一成因類型的土,在沉積形成後,可能遭到不同的自然地質條件和人為因素的變化,而具有不同的工程特性。
1. 殘積土 形成原因:岩石經風化後未被搬運的原岩風化剝蝕後的產物,其分布主要受地形的控制,如在寬廣的分水嶺地帶及平緩的山坡,殘積土較厚。
工程特徵:一般呈稜角狀,無層理構造,孔隙度大;存在基岩風化層(帶),土的成分和結構呈過渡變化。
工程地質問題:
(1)建築物地基不均勻沉降,原因土層厚度、組成成分、結構及物理力學性質變化大,均勻性差,孔隙度較大;
(2)建築物沿基岩面或某軟弱面的滑動等不穩定問題,原因原始地形變化大,岩層風化程度不一。
2. 坡積土
形成原因:經雨雪水洗刷、剝蝕、搬運,及土粒在重力作用下順著山坡逐漸移動形成的堆積物,一般分布在坡腰上或坡腳下,上部與殘積土相接。
工程特徵:具分選現象;下部多為碎石、角礫土;上部多為粘性土;土質(成分、結構)上下不均一,結構疏鬆,壓縮性高,土層厚度變化大。
工程地質問題:建築物不均勻沉降;沿下卧殘積層或基岩面滑動等不穩定問題。
3. 洪積土 形成原因:碎屑物質經暴雨或大量融雪驟然集聚而成的暫時性山洪急流挾帶在山溝的出口處或山前傾斜平原堆積形成的洪積土體。山洪攜帶的大量碎屑物質流出溝谷口後,因水流流速驟減而呈扇形沉積體,稱洪積扇。
工程特徵:具分選性;常具不規劃的交替層理構造,並具有夾層、尖滅或透鏡體等構造;近山前洪積土具有較高的承載力,壓縮性低;遠山地帶,洪積物顆粒較細、成分較均勻、厚度較大。
工程地質問題:洪積土一般可作為良好的建築地基,但應注意中間過渡地帶可能地質較差,因為粗碎屑土與細粒粘性土的透水性不同而使地下水溢出地表形成沼澤地帶,且存在尖滅或透鏡體。
4. 沖積土 形成原因:碎屑物質經河流的流水作用搬運到河谷中坡降平緩的地段堆積而形成,發育於河谷內及山區外的沖積平原中。根據河流沖積物的形成條件,可分為河床相、河漫灘相、牛軛湖相及河口三角洲相。
工程特徵:古河床相土壓縮性低,強度較高,而現代河床堆積物的密實度較差,透水性強;河漫灘相沖積物具有雙層結構,強度較好,但應注意其中的軟弱土層夾層;牛軛湖相沖積土壓縮性很高、承載力很低,不宜作為建築物的天然地基;三角洲沉積物常常是飽和的軟粘土,承載力低,壓縮性高,但三角洲沖積物的最上層常形成硬殼層,可作低層或多層建築物的地基。
5. 湖泊沉積物 形成原因:分湖邊沉積物和湖心沉積物兩類,湖邊沉積物由湖浪沖蝕湖岸形成的碎屑物質在湖邊沉積而形成的,近岸帶多為粗顆粒的卵石、圓礫和砂土,遠岸帶為細顆粒的砂土和粘性土;湖心沉積物由河流和湖流挾帶的細小懸浮顆粒到達湖心後沉積形成的,主要是粘土和淤泥,常夾有細砂、粉砂薄層。
工程特徵:湖邊沉積物具有明顯的斜層理構造,近岸帶土的承載力高,遠岸帶則差些;湖心沉積物壓縮性高,強度很低;若湖泊逐漸淤塞,則可演變為沼澤,形成沼澤土,主要由半腐爛的植物殘體和泥炭組成的,含水量極高,承載力極低,一般不宜作天然地基。
6. 海洋沉積物
海洋沉積物可分為如下四類:
濱海沉積物:主要由卵石、圓礫和砂等組成,具有基本水平或緩傾的層理構造,其承載力較高,但透水性較大。
淺海沉積物:主要由細粒砂土、粘性土、淤泥和生物化學沉積物(硅質和石灰質)組成,有層理構造,較濱海沉積物疏鬆、含水量高、壓縮性大而強度低。
陸坡和深海沉積物:主要是有機質軟泥,成分均一。
海洋沉積物:在海底表層沉積的砂礫層很不穩定,隨著海浪不斷移動變化,選擇海洋平台等構築物地基時,應慎重對待。
7. 冰積土和冰水沉積土
冰積土和冰水沉積土是分別由冰川和冰川融化的冰下水進行搬運堆積而成,其顆粒以巨大塊石、碎石、砂、粉土及粘性土混合組成。一般分迭性極差,無層理,但冰水沉積常具斜層理。顆粒呈稜角狀,巨大塊石上常有冰川擦痕。
8. 風積土
風積土是指在乾旱的氣候條件下,岩石的風化碎屑物被風吹揚,搬運一段距離後,在有利的條件下堆積起來的一類土。顆粒主要由粉粒或砂粒組成,土質均勻,質純,孔隙大,結構鬆散。最常見的是風成砂及風成黃土,風成黃土具有強濕陷性。
『伍』 工程地質的圖書目錄
1緒論
1.1地質學與工程地質學
1.2工程地質學的任務和研究方法
1.3工程地質學的分類
1.3.1工程岩土學
1.3.2工程地質分析學
1.3.3工程地質勘察學
1.3.4區域工程地質學
1.3.5環境工程地質學
1.4工程地質條件與工程地質問題
1.4.1工程地質條件
1.4.2工程地質問題
1.5工程地質學在土木工程建設中的作用
1.6本課程學習要求
本章小結與學習指導
思考題
2地質作用與地質構造
2.1地殼結構
2.2礦物
2.2.1 礦物的物理力學性質
2.2.2主要造岩礦物
2.3地質年代
2.3.1地質年代的表示方法
2.3.2 時間地層單位與地質年代表
2.4地質作用
2.4.1地質作用與分類
2.4.2外力地質作用
2.4.3內力地質作用
2.5地質構造
2.5.1地層與岩層產狀
2.5.2水平構造與傾斜構造
2.5.3褶皺構造
2.5.4斷裂構造
2.5.5新構造運動與活斷層
2.6第四紀地質與地貌
2.6.1第四紀地質
2.6.2地貌
本章小結與學習指導
思考題
3土的工程地質性質
3.1土的成因類型
3.1.1 殘積土
3.1.2坡積土
3.1.3洪積土
3.1.4 沖積土
3.1.5海相沉積物
3.1.6湖泊相沉積物
3.1.7冰磧土
3.1.8風積土
3.2土的物質組成及工程分類
3.2.1 土的物質組成及結構構造
3.2.2土的工程分類
3.3特殊土的主要工程地質性質
3.3.1軟土
3.3.2濕陷性黃土
3.3.3膨脹土
3.3.4 紅粘土
3.3.5 凍土
本章小結與學習指導
思考題
4岩體的工程地質性質
4.1岩體結構與地質特徵
4.1.1岩體結構概念
4.1.2結構面
4.1.3 結構體
4.1.4岩體結構的類型
4.1.5岩體的地質特徵
4.2岩塊的工程地質性質
4.2.1 岩塊的物理性質
4.2.2岩塊的水理性質
4.2.3岩塊的力學性質
4.2.4影響岩塊工程地質性質的因素
4.3結構面特徵及力學性質
……
5 地下水
6 不良地質現象及防治
7 工程地質勘察
8 工程建設中主要工程地質問題
9 環境工程地質
參考文獻
『陸』 土木工程地質名詞解釋 孤石
岩石在風化應力的作用下,其結構、成分和性質已產生不同程度的變異,應定名為風化岩。根據風化程度的不同劃分為全、強、中、微四類。已完全風化成土而未經搬運的應定名為殘積土。
一般來說,全風化裡面的強風化、強風化裡面的中風化、中風化裡面的微風化定名為風化夾層。
全風化、強風化裡面的微風化定名為風化球。
殘積土、全風化裡面的中風化、微風化定名為孤石。
(6)殘積土工程地質擴展閱讀:
岩土分類:
從岩土的分類來看有不同的方面以及標准,主要的分類有成因的分類,還有按堅硬的程度來進行劃分、按完整度來進行劃分、岩土按風化程度進劃分、按岩體結構類型進行劃分、岩體按岩石的質量指標進行劃分、以及按岩體基本質量等級來進行分類。
從開挖的岩土的分級來看,主要的類別是一類土也可以說是松軟土,這種土也叫砂土、粉土、沖積砂土層、疏鬆的程度可以達到種植土、淤泥或是泥炭,堅固系數可以達到0.5-0.6左右,平均容重是6.0-15.0之間,開挖的方法用杴、鋤頭等進行挖掘就可以了。
對於二類土來說也叫普通土,這種土是粉質粘土,也可以是潮濕的黃土、夾有碎石、卵石的砂,粉土混卵碎石的植土或是填土,堅固系數是0.6-0.8之間,平均的容重是11.0-16.0之間,開挖的方法可以用杴、鋤頭進行挖掘,少用鎬翻鬆處理。
三類土是堅土,這種土是軟及中等密實的粘土,重粉質粘土、礫石土、干黃土、含有的碎石卵石的黃土、粉質粘土、壓實的填土,堅固系數是0.8-1.0之間,平均的容重是17.5-19.0之間,開挖的方法主要是用鎬,很少用杴,鋤頭等方式來挖掘,對於部分用撬棍來進行挖掘。
『柒』 常見的工程地質問題和對工程危害程度的評述
一、常見的工程地質問題
深圳地區常見的工程地質問題有軟土地基不均勻沉降,岩溶地面塌陷,砂頁岩互層軟弱地層的崩塌、滑坡和對工程樁的影響,中生代晚期花崗岩中北西向斷裂對工程樁的影響,北東向斷裂對工程的影響。
二、對工程危害程度的評述
(一)軟土地基不均勻沉降對工程的影響
深圳灣沿岸、珠江口東岸的沙井-媽灣、鹽田港區、壩光西岸等地廣泛分布著淺海相或海-陸交互相淤泥、淤泥質黏性土、泥炭、泥炭質土等,一般厚度為5~10m,部分為10~16m,最厚達22 m,加上填海造地時填土為5~10m,總厚度為15~25m。軟土的特點是含水量高,壓縮性高、強度低、透水性差,具有流變性和不均勻性,其工程特性遠不能滿足建築物的變形和承載力及地面使用要求,必須進行加固處理。深圳地區近十多年來進行了皇崗口岸、福田保稅區、深港西部通道口岸、後海填海區、濱海大道及其北部填海區、前海灣填海區、銅鼓航道填海區、深圳國際機場、鹽田港填海區、壩光化工基地等大面積的填海造地,已經或將要填海總面積60km2以上,必須對厚5~22m的淤泥或淤泥質土進行加固處理,否則將會出現地基沉降或不均勻沉降,總變形量達軟土總厚度的20%~30%。目前填海造陸普遍採用的方法是先拋石擠淤或爆破擠淤形成海堤或隔堤,然後抽排海水,晾曬淤泥、鋪砂墊層、插塑料排水板,堆載預壓或強夯加固等方法處理。
工程實例一福田保稅區的賽意法(超大)廠區軟土地基不均勻沉降對工程的影響
該廠位於福田保稅區西部,地貌單元為海積平原,軟土厚度10~15m。在進行保稅區大面積軟基處理時,未對該廠區的軟基進行插塑料排水板,堆載預壓或強夯加固處理,直接進行樁基礎和上部建築物施工,建築物竣工後出現室內外地面不均勻沉降,造成室內隔牆嚴重變形開裂、設備傾斜下陷、室外道路嚴重下沉,管線變形斷裂,無法按期交付使用。經國內外岩土專家論證分析,認為是因樁間軟土未進行加固處理引起地面不均勻沉降。
工程實例二益田中學軟土地基不均勻沉降對工程的影響
益田中學位於益田村東側,地貌單元為海積平原、軟土厚度5~10m。設計建築地面採用攪拌樁處理,設計樁長均為14m,上部建築基礎採用樁基礎,以殘積土中下部或強風化岩為持力層。建築物竣工後,在使用的初期,禮堂、部分教室及連廊地面出現不均勻下沉、傾斜、開裂,無法按期提供使用。經檢測,部分攪拌樁未穿過淤泥層,樁底殘留淤泥1~3m,因淤泥的沉降變形引發部分地面下沉。
(二)岩溶及岩溶地面塌陷對工程的影響
深圳市龍崗區的橫崗、龍崗、坪地、坪山、坑梓、葵涌等地面覆蓋層下,廣泛分布有石炭系下統石磴子組灰岩、白雲質灰岩、大理岩,多為厚層狀、質純。分布面積100km2以上。可分為覆蓋型和埋藏型兩種,覆蓋型岩溶分布於橫崗-龍崗-坪地河谷平原,碧嶺-坪山-坑梓河谷平原和葵涌盆地中,覆蓋層厚度一般10~25m,部分5~10m,覆蓋層上部為第四系沖洪積粉質黏土,厚度8~20m,下部為含卵石礫砂,厚度1.0~5.0m。埋藏型岩溶分布於上述河谷平原的兩側及葵涌盆地周邊,埋藏於石炭系下統測水組砂頁岩的下部,多呈假整合接觸,即石磴子組海相灰岩形成後,地殼上升,灰岩露出地表,接受風化剝蝕,地表水的沖刷溶蝕,形成溶溝、溶槽、石芽、石筍和石柱等岩溶地貌,並在溝槽中堆積了坡積物。地殼又緩慢下降形成淺海,接受淺海相砂泥質沉積,形成測水組砂岩、頁岩、炭質頁岩、泥岩等互層。埋藏深度一般大於30 m。據大量工程場地岩土工程勘察資料,鑽孔見溶洞率為40%~80%,溶洞高度一般為0.5~3.0m,個別大於20m,可分為3~5層,上部溶洞大多為開口型,多被沖洪積或坡洪積含碎石粉質黏土全充填,分析可能屬溶溝或溶槽堆積。下部溶洞較小,多為閉合型,半充填,深部溶洞為無充填。沿斷裂帶溶洞更為發育,溶洞和溶蝕裂隙中含豐富的岩溶裂隙水,且一般連通性好,與地表水聯系密切。據志聯佳、龍躍大夏場地群孔抽水試驗,水位降深1.58~11.90m時,單井涌水量173.15~4968.00m3/d,滲透系數28.3~83.1m/d。
強岩溶發育區因地下岩溶和土層內土洞的不斷發育和抽取地下水,引發地面塌陷。從1990年起該區發生多起地面塌陷災害。例如:1990年冬在坑梓鎮深汕公路兩側約10km范圍陸續發生10餘處大小不一的突發性地面塌坑;人民大道塌陷約10m2,深5m,造成一輛正在行駛的汽車掉入坑內;田心村在建的四層民居的中心柱下突然塌陷,陷坑面積30 m 2,深度4 m。1992年3月4日晚,龍崗鎮巫屋村商業一條街剛封頂不到一個月的一棟三層樓的一角牆基突然塌陷,陷坑直徑3 m,1994年6月龍崗鎮盛平村一棟施工到三層的宿舍樓,突然倒塌,造成數十人傷亡。
上述強岩溶發育區為建設用地適宜性差區,被判定為不適宜建高層、超高層建築區,如要興建高層建築則地基處理難度大,處理費用相當高。
工程實例一 龍崗中心城志聯佳大廈岩溶塌陷對工程的影響
志聯佳大廈原設計地上27層,地下2層,採用挖孔樁基礎,先挖兩層地下室基坑,再進行挖孔樁施工,基坑挖至沖洪積含卵石礫砂層時涌水量並不大,可用明溝及集水井和常用水泵排除。當各挖孔樁至灰岩頂板時則涌水,水頭高約4m,一般涌水量5~20m3/h,最大50m3/h,整個基坑總涌水量大於3000 m 3/d,基坑很快被水淹,深約4 m。後採用封閉式降水井方案,在基坑周邊布置18口大口徑降水井,19個觀測井,先進行試驗性抽水試驗,最大水位降深7.5m,觀測井水位降低1.58~4.96m,平均3.72m,涌水量4968.0m3/d,降落漏斗半徑約40m。然後選5口降水井,採用大排量水泵同時抽水,21個觀測井,水位降低5.9~11.9m,平均8.28m,觀測井水位降低1.71~7.58m,平均5.95m,總涌水量10841m3/d,平均單井涌水量2168.26m3/d,降落漏斗半徑50m。數天後,基坑底及降水井周圍出現5處地面塌陷,塌陷面積0.84~14.8m2,體積0.72~36.0m3。為了將地下水位降下去,滿足挖孔樁施工要求,持續降水近一個月,每天排水量保持在11000m 3/d左右,後來引發場地南部800m處的西瓜鋪村中道路突然塌陷,直徑約15m,深度大於3m,四周30~40m范圍內的房屋出現不同程度裂縫和傾斜。在村民集體向龍崗區政府強烈要求下,區建設局下令志聯佳大廈停止降水。就此宣告志聯佳大廈人工挖孔樁失敗,直接經濟損失400多萬元人民幣,間接經濟損失難於估量,延誤工期1年多。此後龍崗區政府一直未批准過在龍崗中心區(強岩溶發育區)超過20層的建築物。
工程實例二 深圳市東部供水地下干線橫崗西坑段地面塌陷對工程的影響
深圳市東部供水網格干線工程用於統籌解決深圳市的缺水問題,是深圳市城市供水系統的重要組成部分。取水點設在東江的惠州市東部水口鎮,經惠陽縣的馬安、永湖、秋長、至龍崗區坑梓,引入松子坑水庫。干線起點在松子坑水庫11號壩下部,終點為南山區的西麗水庫和寶安區的鐵崗水庫。輸水建築以隧洞為主,全線採用重力流輸水方式。一號隧洞從碧嶺谷地南緣湯坑村附近進洞,在深圳水庫沙灣大望橋北側出洞,全長17958m。隧洞斷面凈寬4.2m,凈高5.3m。隧洞穿越橫崗鎮西坑村北側,該段地面標高82.0m,設計隧洞底板標高40.2m,埋深42.0m。隧洞頂部地層自上而下為第四系全新統沖洪積砂卵石層,厚度1.3~11.2m;上更新統沖洪積含礫粉質黏土,厚度2.9~23.8m;石炭系下統測水組絹雲母片岩、泥質粉砂岩風化殘積土;石炭系下統石磴子組大理岩化灰岩或大理岩,西坑段隧洞位於灰岩部位。一號隧洞由東向西掘進至西坑村東北部F38斷裂破碎帶時(2000年5月3日)洞內突然涌水,涌水量約200 m 3/h。因大量地下水被排出地表,引起西坑老屋村水井水位大幅下降或乾枯,大面積地面下沉開裂,民居牆壁傾斜開裂,一處民居突然倒塌,地面塌陷、陷坑直徑大於4m,深度不詳,總變形面積約7.3×104m2,地面普遍下沉2~5cm。塌陷出現在晚上,「轟」的一聲巨響,振動新老屋村幾平方公里范圍,當地居民以為是發生地震。村、鎮領導立即將老屋村村民緊急疏散,撤離到高處空曠地帶,涌水事件震動了省、市政府各部門及大、小報媒體。市領導責令市水務局邀請在深圳的地質專家,研討涌水原因和處理方法。並請深圳市勘察研究院對西坑盆地隧道段和老屋村受影響范圍進行詳勘,布置鑽孔46個,群孔抽水試驗2組,隧道段鑽孔結合跨孔CT進行探測。請深圳市地質建設工程公司進行地表地質測繪和地面物探。總勘察費用80多萬元人民幣,隧洞停止施工長達半年以上,後採用徑向全斷面小導管超前注漿加固的堵水方法,逐段掘進,獲得成功。直接經濟損失近千萬元人民幣,延誤工期近一年。
(三)軟弱地層的崩塌、滑坡對工程的影響
深圳市龍崗區的橫崗、平湖、龍崗、坪地、坪山、坑梓及葵涌鎮等廣泛分布的石炭系下統測水組泥質粉砂岩、石英砂岩、泥岩、頁岩、炭質頁岩互層。地貌單元一般為低丘陵或殘丘谷地。當道路建設和開發建設用地的削坡坡度大於30°時則極容易出現崩塌或滑坡,多為順層(順層面或裂隙面)崩塌或滑坡,支護治理很困難,工程費用高,且難於根治,在台風暴雨季節極易復發。
工程實例 深圳市龍崗區坑梓街道北通道市政工程的主道和匝道路塹邊坡,分東西兩側邊坡,坡長180m,坡高12~42m,分3~5級,每級高約8m,坡角45°~60°。除坡頂有薄層坡殘積土層外,均為強-中風化泥質粉砂岩、泥岩、頁岩、炭質頁岩互層。在道路建設中已採用漿砌石格構梁+植草進行支護。在交付使用前又出現多處崩塌及滑坡(圖2-2-17至圖2-2-20)。崩塌及滑坡長15~24m,高10~15m,厚2~3m,總體積300~500m3,多為順層或順裂隙面滑動或崩塌。
圖2-2-17 北通道匝道區東側邊坡崩塌
圖2-2-18 北通道匝道區西側邊坡崩塌
圖2-2-19 北通道匝道區東側邊坡順節理面崩塌
圖2-2-20 北通道主道路塹北段沿炭質岩崩塌
(四)石炭系下統測水組砂頁岩對工程樁的影響
深圳市龍崗區大面積分布石炭系下統測水組石英砂岩、泥質粉砂岩、泥岩、頁岩和炭質頁岩互層。因各種岩性的礦物成分不同,其風化程度相差懸殊。石英砂岩難於風化,一般呈中風化狀態,泥質粉砂岩呈強風化狀態;泥岩、頁岩、炭質頁岩容易風化,多呈泥狀、土狀軟弱夾層,相互組成軟硬互層。軟岩風化深度大,深達百米,硬夾層難於風化,呈中等風化夾層。有的場地地表就見到中風化石英砂岩,但鑽穿後數米,甚至上百米見不到中風化地層,造成一棟建築物的樁長相差很大,甚至找不到穩定的中風化地層。
工程實例 深圳市龍崗區歐景花園三期10、11號樓石炭系下統測水組砂頁岩對工程樁的影響
歐景花園三期10、11號樓位於龍崗區中心城,龍崗區人民醫院與婦幼保健院之間,建築物高度為地上17~28層,地下3層的商住樓。場地原始地貌為殘丘坡地。地層岩性:①第四系殘積粉質黏土,層厚3.05~36.00m,由炭質粉砂岩、頁岩風化殘積而成,普遍夾強—中風化石英砂岩;②石炭系下統測水組炭質粉砂岩、頁岩全風化帶,厚度4.00~15.70m,夾較多強—中風化石英砂岩薄層;③強風化炭質粉砂岩、頁岩,厚度3.20~36.00m,夾中風化石英砂岩;④中風化炭質粉砂岩,厚度2.30~20.10m,層頂埋深0.00~39.00m;⑤微風化炭質粉砂岩,揭露厚度1.74~13.30m,頂板埋深3.20~40.80m;⑥石炭系下統石磴子組灰岩,層頂埋深14.00~55.00m。場地處於構造小背斜的軸部,背斜軸為北東向。場地屬埋藏型岩溶區,其軸部埋藏淺,場地東西兩側(兩翼)埋藏深,由軸部向兩翼逐漸加深,深達55.00m以下。兩翼岩層傾角約75°,且地層撓曲現象明顯。灰岩中岩溶發育,其中有13個鑽孔見溶洞,洞高0.60~5.40m,大部分為無充填溶洞。
該工程採用沖孔樁基礎,以微風化灰岩或微風化炭質粉砂岩作持力層,施工前進行了施工勘察,基本上採用一樁一孔,復雜部位為一樁2~3個超前鑽孔。發現同一根樁各超前孔見微風化灰岩頂板埋深一般相差1~3m,多者相差5.0~7.2m;見微風化炭質粉砂岩頂板埋深相差12.6~13.4m。說明同一根樁的微風化灰岩或微風化炭質粉砂岩頂板埋深相差懸殊,起伏變化很大,極難將樁端嵌入穩定完整的微風化基岩中。各樁在終樁時均檢驗岩樣後才下鋼筋和澆灌混凝土。達到規范規定的齡期後才進行鑽心法抽心檢測,檢查結果發現樁身混凝土質量完好,但有40多根樁的樁底持力層沒有達到設計持力層(微風化灰岩或微風化炭質粉砂岩)要求,甚至部分樁底基岩仍為強風化或全風化炭質粉砂岩。後採用補樁處理,基本上是一根不合格樁補二根樁,增加基礎費用200多萬元人民幣。綜上所述,證實在石炭系下統測水組砂頁岩分布區不適宜採用端承樁和以微風化砂岩夾層為持力層,宜採用摩擦樁或摩擦端承樁,應盡量採用天然地基基礎或復合地基,以避開下伏灰岩強岩溶發育帶對基礎的影響。
(五)中生代晚期花崗岩中的北西向斷裂對工程樁的影響
中生代晚期花崗岩中的北西向斷裂一般規模較小,且多被第四系掩蓋,地表很難見到露頭,但對山間溪谷有較明顯的控製作用。斷裂走向多為北西30°~50°,大部分傾向北東,個別傾向南西,傾角60°~75°。該組斷裂形成於晚中生世以後和喜馬拉雅期,幾乎切截了北東向和東西向斷裂,水平斷距一般50~200m,多屬張扭性斷裂,構造岩為壓碎岩、碎裂岩、角礫岩夾薄層糜棱岩,視厚度10~35m,為富水斷裂。構造岩風化強烈,上部為土狀,中部為砂礫狀,下部為碎石狀。斷裂破碎帶部位中、微風化岩埋深比斷裂兩側正常基岩埋深大10~35m,對高層建築工程樁持力層選取造成很大困難,且施工難度大,造價高。
工程實例一 深圳市國通大廈(原名無線大廈)北西向斷裂對工程樁的影響
國通大廈位於深圳市福田區濱河大道與新洲二路交匯處的西南側。設計建築為四足鼎立的單體塔樓,主塔樓43層(其中地下3層),正方形、邊長45m×45m,框架結構,基礎砌置深度10m,單位荷重7500kN,屬一級建築物,對差異沉降敏感;副樓9層,矩形,框架結構,基礎砌置深度5m,單位荷重180kN。場地地貌為殘丘坡地,地面標高7.10~10.10m,下伏基岩為中生代晚期粗粒花崗岩。據詳勘資料,主樓微風化花崗岩頂板埋深大部分地段為32.5~46.9m,標高-22.17~-38.3m。主樓的西南角見北西向斷裂破碎帶,斷裂傾向南西,傾角約65°,構造岩為壓碎岩,角礫岩夾薄層糜棱岩,厚度11.0~17.3m,鉛直厚度24.3~38.2m,構造岩中可見綠泥石化和擠壓現象,構造岩自上而下可分為土狀、礫狀和塊狀。主樓基礎設計為人工挖孔樁,90%樁端以微風化岩作持力層,有效樁長23.0~36.5m,西南角位於斷裂破碎帶之上,完整基岩埋深81.0m,地下室底板以下埋深為71.0m,無法採用人工挖孔樁。經勘察、設計單位論證,借鑒已建成高層建築在構造岩中的成樁處理經驗,將西南角的樁端置於礫狀構造岩之上,樁長40.0~45.0m,礫狀構造岩的樁端承載力標准值取3700kPa。主樓西南角可節約樁長25~30 m,節約基礎投資數百萬元人民幣。建築物早已建成,安全使用近10年,主樓四角沉降量12.0~15.0mm,相差3.0mm,核心筒沉降量13.8~19.7mm,相差5.9mm,絕對沉降量及沉降差均滿足規范要求。
工程實例二 深圳市福田區賽格群星廣場北西向斷裂對工程樁的影響
賽格群星廣場位於深圳市華強北商業街北部,華強北路與紅荔路交匯處的東南側,建築物由一棟40層寫字樓及兩棟32層商住樓組成,裙樓4層,局部8層,設3層地下室,基礎埋深14.5m,建築結構採用框剪-核心筒結構。建築結構荷載大且差異大,單柱單樁荷載10000~152500 kN。場地地貌為殘丘坡地,地面標高13.1~14.5m,下伏基岩為中生代晚期粗粒花崗岩、微風化基岩頂板埋深一般為27.5~38.8m,標高-14.0~-34.8m。寫字樓西側受北西向斷裂影響,微風化基岩頂板埋深50.8~60.5m,標高-36.9~-46.6m,微風化基岩面與一般地段微風化基岩面相差22.9~11.8m,構造岩厚度10.0~14.2m。設計採用人工挖孔樁基礎,一般樁端以微風化岩作持力層,寫字樓西側樁端以礫狀構造岩帶作持力層,取樁端承載力標准值3500kPa,經設計計算可滿足單樁承載力及布樁要求,縮短了樁長,節約了基礎投資400萬元人民幣。建築物已建成使用7年,沉降量20~32mm,建築物東西端沉降差6mm,絕對沉降量及沉降量差均滿足規范要求。
『捌』 土木工程地質的目錄
前言
緒論
0.1 工程地質學的研究內容和任務
0.1.1 工程地質學的研究內容
0.1.2 工程地質學的研究任務
0.2 工程地質與地質工程
0.3 工程地質在土木工程建設中的作用
0.3.1 工程地質條件
0.3.2 工程地質問題
0.4 工程活動與地質環境
0.4.1 地質環境對工程活動的影響
0.4.2 工程活動對地質環境的影響
0.5 本課程的學習方法和要求
0.6 小結
復習思考題
第一章 礦物與岩石
1.1概述
1.2造岩礦物
1.3岩石
1.4岩石的工程地質性質
1.5小結
復習思考題
第二章 地質構造
2.1地質作用
2.2地質年代
2.3岩屋產狀
2.4褶皺構造
2.5斷裂構造
2.6地質圖
2.7小結
復習思考題
第三章 第四紀地質
3.1概述
3.2風化作用及殘積土
3.3暫時性水流的地質作用及其沉積土
3.4河流的地質作用及沖積土
3.5海洋的地質作用及海相沉積物
3.6其他成因的鬆散堆積物
3.7小結
復習思考題
第四章 地下水
4.1概述
4.2地下水的類型
4.3地下水的物理性質與化學性質
4.4地下水運動的基本規律
4.5地下水的補給、徑流和排泄
4.6地下水對土木工程建設的影響
……
第五章 常見地質災害
第六章 地下洞室圍岩穩定性分析
第七章 公路地質勘查方法
第八章 城市規劃和建設工程地質勘察
第九章 工程地質在土木工程中的應用實例
附錄
主要參考文獻
『玖』 珠江口外伶仃防波堤堤址工程地質特徵
葉廣惠
(廣州海洋地質調查局,廣州,510760)
作者簡介:葉廣惠,男,1950年生,工程師。1977年畢業於成都地質學院石油及天然氣勘探專業。現從事石油地質綜合研究、地震資料解釋、海洋地質、工程地質等工作。
摘要根據珠江口外伶仃防波堤堤址18個鑽孔岩性特徵,自上而下分為7層。本文根據這些鑽探成果和實驗資料,經過綜合分析認為,中粗砂混淤泥層和中粗砂混粘土層宜做建築物的持力層,花崗岩殘積土層是建築物最佳持力層。
關鍵詞工程地質持力層外伶仃
1堤址的地理地質概況
外伶仃島位於珠江口萬山群島中最靠北的一個島嶼,地理位置十分優越,與香港隔海相望。石涌灣位於外伶仃的北邊(圖1),距香港水域僅4~5km,眾多的粵港澳漁船常年在這里停泊、棲息。
石涌灣是一個近似「牛軛」狀的基岩質海灣。根據海底的地形特徵,可將海灣分為兩個區:斜坡區和平坦區。斜坡區位於灣岸至13m等深線,斜坡區內,東北岸陡峻,西南岸平緩。從13m等深線至17m等深線為地形平坦區。
石涌灣有伶仃峰作天然屏障,且為基岩質海岸,水深、沉積速率低(約0.08cm/a),可謂天然良港。待防波堤建成後,這里將是一個十分理想的避風港口。
鑽探揭露的基岩和島內裸露的岩石一致,為燕山期花崗岩(
Q3後期,勘查區域進一步沉降,海水侵入,成為海陸交互作用的潮間帶環境,沉積了一套含有大量生物碎屑的粉細砂(層Ⅱ)。此後,逐漸形成石涌灣今日之面貌,沉積了一套含生物碎屑的青灰色淤泥(層Ⅰ)。
2堤址的工程地質特徵
珠江口外伶仃防波堤堤址鑽孔18個。根據堤址的土(岩)層結構,在垂直剖面上,自上而下依次為(圖2):淤泥、粉細砂、中粗砂混淤泥、粘土、中粗砂混粘土、殘積土(砂質粘性土)、微-中風化花崗岩。
表1地層岩性及土的主要物理力學性質綜合統計表
圖1鑽孔位置圖
Fig.1Location map of drilling holes
層Ⅰ:淤泥
青灰色,含生物碎屑。據代表性樣品分析(數據見附表,下同),淤泥的含水量63.2%,孔隙比1.752,液性指數1.64,均呈飽和流塑狀。本層厚4.6~7.Om,橫向變化較穩定。至岸邊斜坡帶變為貝殼碎屑沉積。據樣品分析主要指標含水量判定,淤泥的承載力基本值為50kPa,若回歸修正系數為0.75,則標准值為37kPa。
層Ⅱ:粉細砂
青灰色,含大量生物碎屑,鬆散,層厚0.8~2.4m,橫向變化較大,在D9孔為貝殼碎屑沉積,往東北岸坡帶D12孔為中細砂沉積,西南岸坡帶的D1、D2該層孔缺失。
樣品分析主要指標:孔隙比介於0.819~1.373之間,平均1.04,液性指數介於0.8~1.77之間,平均1.14。
據5個樣品分析結果統計,求得回歸修正系數ψf=0.7123,承載力基本值f0為180kPa,標准值為128kPa。
層Ⅲ:中粗砂混淤泥
灰白、黃褐色,含礫,礫徑2~3mm,稍密至鬆散,飽和,層厚0.5~3.4m,厚度變化較大。東北岸坡帶的D12孔為礫砂沉積,西南岸坡帶的D1、D2孔該層缺失。
樣品分析主要指標:孔隙比介於0.462~1.619之間,平均0.77,壓縮系數0.021~0.165之間,平均0.056。
據3個樣品分析結果統計,求得回歸修正系數ψf=0.612,承載力基本值f0為250kPa,標准值為150kPa。
層Ⅳ:粘土
灰白,可塑,很濕,層厚0.6~3.9m。該層僅在D1~D6和D12孔有分布。
樣品分析主要指標:孔隙比介於0.711~1.705之間,平均1.08,液性指數介於0.5~0.97之間,平均0.69。
據4個樣品的分析結果統計,求得回歸修正系數ψf=0.7213,承載力基本值f0為180kPa,標准值130kPa。
層V:中粗砂混粘土
灰白色,含礫,礫徑2~3mm,可塑,中密,稍濕,層厚0.7~3.4m,橫向變化較大。該層在西南岸坡D1、D2孔缺失。
樣品分析主要指標:孔隙比介於0.524~0.904之間,平均0.68,液性指數介於0.39~0.66之間,平均0.47。
據4個樣品的分析結果統計,求得回歸修正系數ψf=0.7312,承載力基本值f0為280kPa,標准值200kPa。
層Ⅵ:殘積土(砂質粘性土)
紅褐到黃褐色,有棕色斑紋,為基岩經強風化形成殘積土。硬塑到可塑,稍濕,在岸坡帶D1、D2孔該層缺失。
樣品分析主要指標:孔隙比介於0.534~0.972之間,平均0.69,液性指數介於0.14~0.84之間,平均0.476。
據5個樣品的分析結果統計,求得回歸修正系數ψf=0.7421,承載力基本值f0為320kPa,標准值230kPa。
圖2外伶仃石涌灣防波堤堤址工程鑽孔地質剖面圖
Fig.2Engingeeing geological drilling columnar section
層Ⅶ:微-中風化花崗岩
褐黑、灰白、棕紅等雜色,為燕山期(
3結論
1)防波堤堤址的工程鑽孔地質剖面自上而下為淤泥、粉細砂、中粗砂混淤泥、粘土、中粗砂混黏土、殘積土,基岩為燕山期花崗岩(
2)層Ⅰ為淤泥,工程地質力學條件很差,不能作任何建築物的持力層。
3)層Ⅱ,粉細砂,鬆散,孔隙比介於0.819~1.373之間,平均1.04,液性指數介於0.8~1.77之間,平均1.14,呈飽和流塑狀態。疏鬆的砂性土(特別是粉細砂)經外力作用將趨向密實。如果砂性土被地下水飽和,這種趨於密實的作用將導致孔隙水壓力的驟然上升,使原來通過砂顆粒接觸點所傳遞的壓力減小,砂顆粒所受的荷載壓力全部過渡為中性壓力。這樣,砂土結構便遭到破壞,當有效壓力全部消失時,砂體極易達到液化狀態,導致地裂縫、錯位、滑坡、不均勻沉降等地基失穩現象。因此,該層不能作任何建築物的持力層。
4)層Ⅲ,中粗砂混淤泥。承載力150kPa。孔隙比介於0.462~1.619之間,平均0.77,壓縮系數0.021~0.165之間,平均0.056。鬆散,高壓縮性。其下伏層為局部分布的可塑粘土層。這些因素易引起建築物的不均勻沉降。因此,考慮將本層作建築物的持力層時,必須充分考慮這些不利的工程地質條件。
5)層Ⅳ,粘土層,僅分布在局部地段,不宜作建築物的持力層。
6)層Ⅴ,中粗砂混粘土層,承載力200kPa,較大,宜作建築物的持力層。
7)層Ⅵ,殘積土(砂質粘性土),為基岩經強風化形成的砂質粘性土,承載力較大,宜作建築物的持力層。
參考文獻及資料
陳希哲.1989.土力學基礎.北京:清華大學出版社
馮志強,薛萬俊,馮文科,陳俊仁,劉宗惠等.1996.南海北部地質災害及海底工程地質條件評價.南京:河海大學出版社
河北省建委.1977.工業與民用建築工程地質勘察規范.北京:中國建築工業出版社
Engingeering Geological Features for Dike of Wailing ding Island in the Pearl River Mouth
Ye Guanghui
(Guangzhou Marine Geology Survey,Guangzhou,510760)
Abstract:Eighteen drilling holes for dikes are located in Shichong Gulf of WaiLingding Island that is in the Pearl River's Mouth.Based on the litho logical characters,7stratums of the dams are divided from shallow to deep of the sea floor.According to massive drilling results,experiment data and comprehensive analysis,conclusion can be drawn as following:medium-coarse sand with sludge layer and medium-coarse sand with clay layer are able to be the foundation's compressed layer,while loan-sand clay layer is the best choice to be the foundation's compressed layer.
Key Words:Engineering geologyCompressed layerWailingding Island