當前位置:首頁 » 地質工程 » 工程地質信息技術及其應用

工程地質信息技術及其應用

發布時間: 2021-02-20 23:18:58

工程地質中的應用

大型建設工程(如核電站、港口、水庫、工廠等)、高層建築以及經濟技術開發區的選址工作必須考慮到地質條件,這里主要指的是區域的穩定性、城市供水條件以及環境的污染狀況等。

在城市開展地質工作,必須盡可能地避免對地表造成的破壞,為此,物探方法更受到人們的青睞。但是,在城市工作,工作場所受到很大的局限,接地條件差、已有建築物的阻擋、工業電磁場的影響、振動及雜訊干擾等,使得一些在野外行之有效的物探方法,在城市應用時,常感到束手無策。相反,放射性方法受上述不利因素的影響很小或完全無影響,近年來逐漸受到人們的重視。

應用放射性方法解決工程地質的地球物理前提是:不同的地質體或研究對象,其放射性元素的含量是不相同的,通過測定它們的放射性元素的含量、濃度或它們輻射出的放射性射線照射量率,就可以解決有關的工程地質任務。

(一)北京市區域穩定性研究

首都北京,是我國的政治、經濟和文化中心。城市發展十分迅速,市區范圍不斷擴大。城區人口密集,高層建築星羅棋布。然而,北京在歷史上是地震活動區,因此,研究北京市區域穩定性具有極為重要的意義。

北京市位於華北平原北端,覆蓋厚達數百米以上。因此,在北京市區內開展地質工作,必須更多地藉助於物探手段。但是,市內建築櫛比,道路縱橫,電網林立,管道密布。電磁干擾、振動、雜訊的影響相當嚴重,致使電法、磁法、地震等物探方法難以施展;重力測量只能在夜深人靜之時開展工作。相反,放射性方法不受上述因素影響,能正常進行。為驗證並追索航磁推斷的三條隱伏大斷裂,在測區內投入了γ總量、靜電α卡法及α杯法;測線總長度達數十千米。

在圖7-34中,0~600m之間,α卡、α杯法均出現明顯異常,峰位與已知F1斷裂相吻合,在推斷的F2斷裂附近,α卡、α杯所獲異常明顯,為F2斷裂的存在提供了證據;曲線表明,異常密度大,反映了F2斷裂破碎范圍較寬。在剖面0~1600m之間,α卡及α杯測定值跳變強烈,異常呈多峰狀,這可能反映該處構造發育,岩石破碎。可能是由F1以及F2影響所致。

在推斷斷裂F3及F4處,即剖面2400m及3600m處,α杯、α卡法均有異常顯示。但2400m處為高異常峰,而3600m處異常幅度則小得多。F4斷裂是否存在值得進一步研究。

(二)深圳市區區域穩定性研究

深圳市為我國重要經濟開放城市。從已有地質資料上分析,區內分布有一組北東東向的羅湖斷裂。過去曾認為羅湖斷裂縱貫市區,將是市區建築的不利因素。為查明區內構造格架的基本特徵,布置了400km2的靜電α卡法及甚低頻法等。

圖7-34 放射性勘探剖面

圖7-35是該區構造格架示意圖。工作查明區內除分布有羅湖斷裂外,新發現蓮花山斷裂和走向北西的斷裂,蓮花山斷裂是市內主幹斷裂,它位於羅湖鬧市區以北約5.6km處,並延伸入海。它對市政建設影響甚小。羅湖斷裂則是蓮花山斷裂的次級構造,且被後期北西向斷裂截成數段,使其難以再次發生較大活動。由此認為,深圳市的區域穩定性較好,為該市的城市規劃提供了重要的地質依據。

圖7-35 構造格架示意圖

❷ 地質信息技術的發展歷程

地質信息技術的發展始於20世紀60年代初。最初是物、化探數據處理和模型正、反演的計算機應用,接著是20世紀70年代中期基礎地質信息的RS技術和地質圖件編繪的CAD技術引進,再接著是80年代初測試數據和描述性數據管理的DBS(資料庫)技術引進,以及地質過程計算機模擬理論和技術的興起,然後是90年代初用於空間數據管理和空間分析的GIS技術引進,隨後是90年代後期野外地質測量的GPS技術和GPS、RS、GIS集成化概念的引進,最後是21世紀初用於地質數據分析二維、三維一體化技術及信息共享服務的雲計算技術。這里需要著重指出,地球空間信息科學在地質信息科學近期發展中所起的促進作用。所謂地球空間信息科學是一個以系統方式集成所有獲取和管理空間數據方法的學科領域,它是地球信息科學中較為成熟的分支學科,其技術體系由「GPS、RS、GIS——3S」及其集成化技術、計算機技術和網路通信技術等組成。地球空間信息科學為地球科學提供空間信息框架、數學基礎和信息處理技術。由於地礦勘查對象都帶有空間特徵,地球空間信息科學從理論、方法和技術等方面深刻地影響著地礦勘查工作。上述3S及其集成技術一出現,便被引進地礦領域。由於地質科學和地質勘查對象及技術的特殊性和復雜性,所引進的各種信息技術成果都經過了改造和再開發,並與原有的技術融合和集成——「多S」集成,才成為今天的地質信息科學技術體系。

因此,地質信息科學的技術體系是在借鑒和引進遙感技術、資料庫技術、計算機輔助設計技術和地理信息系統技術的基礎上發展起來的。由於地質信息及其處理本身極端復雜,需要有「多S」結合與集成,另外缺乏專門的技術體系和方法論體系研究,因此,至今也沒有形成一個如同「GIS」和「3S集成」對於地理信息科學那樣完整的技術體系和方法論體系,多數地質信息技術的應用仍然是孤立和分散的。近幾年,隨著「數字地球」的提出,各國政府和地礦部門紛紛把地礦勘查工作信息化的構想付諸實施,大大促進了地質信息技術的發展。

❸ 舉例說明工程地質學應用的領域 簡述滑坡的主要影響因素

2、簡述滑坡的主要影來響因素。(自30分)
答:滑坡是斜坡上土體 、岩體或其他碎屑堆積物沿一定的滑動面作整體下滑的現象。
影響滑坡的主要因素:
1.岩性:鬆散堆積層的滑坡主要和粘土有關。基岩滑坡主要與遇水容易軟化的岩石有關;
2.構造:滑坡與構造的關系主要有兩個方面:一是與軟弱結構面的關系,不論是鬆散堆積層還是基岩,滑動面常常發生在順坡的層面、節理面、不整和接觸面、斷面層(帶)及劈理頁理面上;二是與上部透水層和下部不透水層的構成特徵有關。
3.地貌:滑坡與地貌的關系主要是通過臨空面、坡度和坡地基部收沖刷來體現的。
4.氣候:氣候主要是通過降雨和溫度對滑坡產生影響。
5.地下水:絕大多數滑坡都是沿飽含地下水的岩體軟弱面發生的。
6.地震:地震可通過松動斜坡岩土體結構、造成破裂面和引起弱面錯位等多種方式,降低斜坡的穩定性。另外,地震作用力突然施加還會對斜坡的破壞產生觸發效應。
7.人為因素:人工切坡過陡、用大爆破方法施工等人為因素促使滑坡發生。為了了解滑坡的穩定性,要查明滑坡形態、范圍、結構特徵等。

❹ 地質信息技術專業是文科還是理科 就業方向有哪些

地質信息技術專業,
是理科。
地質信息技術專業面向地質礦產勘查、開發和國土資版源行業權,培養了解地質礦產勘查開發基本知識和地質工作一般的方法,熟練掌握地質信息技術基本原理和基本方法,使學生具備運用地質信息技術進行地礦資源數據處理、儲備計算、各類圖件編繪、空間數據分析與應用能力。

❺ 舉例說明工程地質學應用的領域

工程地質學主復要研究建設地區和制建築場地中的岩體、土體的空間分布規律和工程地質性質,控制這些性質的岩石和土的成分和結構,以及在自然條件和工程作用下這些性質的變化趨向;制定岩石和土的工程地質分類。由於各類工程建築物的結構、作用、所在空間范圍內的環境不同,所以可能發生的地質作用和工程地質問題也不同。據此,工程地質學往往分為水利水電工程地質學、道路工程地質學、采礦工程地質學、海港和海洋工程地質學和城市工程地質學等。工程地質學的研究方法有運用地質學理論和方法查明工程地質條件和地質現象空間分布、發展趨向的地質學方法;有測定岩、土體物理、化學特性,測試地應力等的實驗、測試方法;有利用測試數據,定量分析評價工程地質問題的計算方法;有利用相似材料和各種數理方法,再現和預測地質作用的發生、發展過程的模擬方法。隨著計算機技術應用的普及和發展,工程地質專家系統也在逐步建立。
至於其應用的領域,主要是鐵路、高速公路、隧道、橋梁、工業與民用建築、水利工程等。

❻ 在工程地質調查中的應用

一、在水利工程中的應用

水利工程有堤壩、堤岸、渠道、輸水洞等。地球物理方法在水利工程中的應用,一方面用於工程場地的選址勘查,查明被選區域的岩溶發育情況、覆蓋層厚度、風化層厚度以及地質構造等情況,對擬建工程場址的穩定性和建築適宜性作出評價;另一方面用於水利工程的質量隱患檢測,查明壩體是否存在有裂縫、空洞、動物巢穴、管涌等工程質量隱患,為水利工程的消險加固提供依據。目前,常用於水利工程隱患檢測的物探方法有地質雷達、自然電位法、高密度電阻率法、人工地震勘探以及聲波測試等方法。

1.探測堤壩蟻巢與洞穴

土體堤壩中因碾壓不實、庫水浸透或動物危害等因素,在壩體中常出現土洞、動物巢穴等危害壩體安全的隱患。在我國南方各省(區)水利工程中白蟻巢穴是一種常見的隱患,白蟻主巢直徑一般在40~60 cm,大者可達數米,主巢周圍分布著幾十個甚至數百個衛星菌圃,其間由四通八達的蟻道溝通,且有的貫穿堤壩的內處坡。因此,深藏於堤壩中的白蟻危害造成的堤壩險情和潰堤率遠高於其他原因,找出堤壩白蟻巢是消除堤壩白蟻隱患的關鍵。地質雷達和高密度電法是對壩體中的土洞、動物巢穴探測的有效方法。圖5-1-1是埋深約3m的白蟻主巢的地質雷達圖像,白蟻巢在圖像上的反射波形態特徵為多重強弱交錯的凸形條紋區,與周圍土壤有明顯的分界。

圖5-1-1 某堤壩白蟻巢穴的地質雷達圖像

2.水壩滲漏的地球物理探測

滲漏是水壩常見的隱患,是造成水壩發生事故的主要原因。水壩滲漏可分為壩基滲漏和壩體及附屬結構滲漏,壩基滲漏較為常見。造成水壩滲漏的原因與水壩基礎處理的好壞、壩體施工質量、壩基下方地質構造等因素有關。

自然電位法探測水壩滲漏點和滲漏通道是一程常用的方法。由於庫水具有天然吸附帶電離子的能力,當水庫發生滲漏時,帶電離子也一起運動,形成電流場,在滲漏位置上自然電位出現負異常,其負異常的大小與滲漏水量有關。圖5-1-2是利用自然電場法確定地下水和地表水補給關系的實例。當地下水補給地表水時,在地面上觀測到自然電位正異常。圖5-1-2(a)為灰岩和花崗岩接觸帶上的上升泉的自電正異常;圖5-1-2(b)為水庫滲漏地點上出現的自然電位負異常。

圖5-1-2 用自然電位法確定地下水與地表水的補給關系

地質雷達方法用於探測水壩滲漏點和滲漏通道也具有較好的效果。滲漏部位土體的含水量變大,與未發生滲漏的土體形成明顯的介電常數上的差異,為採用地質雷達方法探測水壩滲漏位置提供了地球物理條件。黑龍江省某水壩為均質土壩,1998年遭受百年不遇的洪水後,在水壩後坡出現多處面積不等的漏水點。為了查明漏水點在壩體內的分布情況,採用地質雷達在壩頂、壩前坡和後坡進行了探測。圖5-1-3為壩頂測線K0+240—K0+400的地質雷達剖面。圖中強振幅異常推斷為壩體內受到水浸較重的部位,異常埋深為10~12 m。鑽探結果表明地質雷達推斷的異常區域是發生滲漏的嚴重區段。

圖5-1-3 黑龍江省某水壩地質雷達探測剖

3.壩基帷幕灌漿效果檢測

對病險水庫的維護處理一般採用帷幕灌漿等方法,灌漿效果的好壞需要採用物探方法檢查。某電站大壩岩基帷幕灌漿前後進行超聲波探測,圖5-1-4是質量檢查孔在灌漿前、後的超聲波檢測曲線,圖中可見,在檢查孔中上部,灌漿前和灌漿後的波速值差異非常明顯,灌漿前岩體的裂隙率高,波速較低;灌漿後岩體裂隙被水泥漿填充,且粘結牢固,波速明顯升高。在檢查孔的下部,灌漿前和灌漿後波速差異微小,波速較高,這說明岩體本身比較完整,滲透性小。

圖5-1-4 質量檢查孔灌漿前後聲波檢測結果

地質雷達對水壩帷幕灌漿質量檢測也有較好的探測效果,根據地質雷達圖像上灌漿物的影像可計算出有效灌漿深度和水泥漿擴散半徑。根據壩體土體和基岩處的強反射弧形影像,可判別已被灌漿物充填的溶洞的大小、形態和深度以及未被灌漿物充填的溶洞、土洞等隱患。

4.古河道的地球物理勘查

古河道常引起大量滲漏,在水庫建壩時需對壩基下古河道的地質情況進行詳細勘查,了解古河道的分布范圍,埋深以及砂礫石厚度等。探測古河道常用的物探方法是電測深法、自然電位法、地震勘探和地質雷達等方法。

圖5-1-5 用對稱四極剖面法追索古河道的ρs剖面平面圖

圖5-1-6 橫穿古河道的對稱四極剖面ρs曲線

圖5-1-5和圖5-1-6為對稱四極剖面法探測和追索古河道的實例。由圖5-1-5中各對稱四極剖面特徵可以看出,在低阻背景上有一高阻異常帶。該高阻異常帶推斷為古河道的反映,該河道由一條主流和一條支流組成。此外,利用ρs曲線特徵可大致確定出古河道的形態、中心位置和寬度。若ρs曲線具有對稱性,ρs曲線極大值對應於古河床最深的中心位置。若ρs曲線不對稱,可根據曲線兩翼陡緩推斷古河道兩岸坡度的大小(圖5-1-6),其視寬度可由ρs曲線的拐點位置大致確定。通過等ρs斷面圖上的等值線形狀可反映出古河道的斷面形態。由圖5-1-7可見,在371號點附近ρs等值線呈高阻閉合圈。結合當地的水文地質條件,推斷該異常為一淺層古河道引起。經ZK8、ZK10、ZK11孔驗證,證實了古河道的存在,ZK11打到了富含地下水的砂礫石層。

圖5-1-7 雲南某地尋找淺層砂礫石富水地段(古河道)成果圖

圖5-1-8為地震橫波法探測古河道的實例剖面圖。根據鑽探資料推測該區域一帶有一條古河道,河道埋深為20~30 m,為了查明古河道的位置,採用橫波地震勘探。圖中可見,40 ms左右的同相軸為第四系地層內部的反射,同相軸連續性好、起伏小;140~220 ms為古河道及兩岸附近地層的反射,同相軸連續性好、起伏較大,其形態特徵反映了古河道的形態,河道埋深為28 m左右,視寬度約為130 m。

圖5-1-8 橫波t0時間剖面

二、在交通建設和維護中的應用

1.公路質量檢測

公路質量檢測的原始方法是採用鑽探取心法,該方法不僅效率低、代表性差,而且對公路有破壞。為了快速、准確和科學地評價公路質量,必須採用無損檢測方法。目前,常用於公路檢測的物探方法有地質雷達、瞬態面波法、高密度電阻率法和人工地震等方法。在這些物探方法中,由於地質雷達方法具有快速、連續、無損檢測的特點。因此,在公路質量檢測中得到更加廣泛的應用。

圖5-1-9 電磁波在公路剖面中的傳播

高速公路是由土基礎、二灰土、二灰碎石、面層等構成,由於空氣、瀝青面層、二灰碎石、土壤等介質的介電常數不同,電磁波將在其介質發生變化的界面產生反射波。圖5-1-9為電磁波在公路剖面中各界面的傳播、反射途經示意圖。圖5-1-10為電磁波在公路剖面中各界面的掃描示意圖。

圖5-1-10 電磁波在公路剖面中各界面的掃描

長春至四平高速公路採用瀝青路面,路面下為碎石墊層。路面分三次鋪設完成,設計路面厚度為25 cm。在工程竣工前採用地質雷達進行了路面厚度檢測。

工作中使用的地質雷達為SIR-2型,工作天線頻率為900 MHz。圖5-1-11為長春至四平高速公路上某段路面的地質雷達檢測剖面圖,圖中5.8 ns附近的強反射為瀝青面層與碎石墊層界面的反射,根據反射界面的雙程走時和電磁波在瀝青路面中的傳播速度計算出路面厚度。瀝青路面的電磁波速度採用實驗標定並進行統計後得到。檢測結果表明,由於二灰石墊層凸凹不平,導致瀝青路面厚度有較大變化,最薄為26 cm,最厚為43 cm。達到了設計的要求。路面厚度評價按國家公路路面結構層厚度評價標准進行。在經數據處理後的地質雷達剖面中讀取電磁波在面層中的反射波雙程走時,計算出面層厚度並作出厚度評價結果。

地質雷達方法在公路質量檢測中除可進行路面厚度檢測外,還可進行路基隱患(脫空、裂縫等)的檢測以及橋涵的質量檢測。有些學者開展了地質雷達對公路壓實度、強度及含水量的檢測研究,也取得了較好的檢測效果。

圖5-1-11 長春至四平高速公路某段路面的地質雷達檢測剖面

2.鐵路路基病害勘查

鐵路路基病害一般指鐵路路基平台頂部結構不堅實而且滲水,以及原填充物的不均勻性,經長期雨水沖刷和滲透,行車振動等所形成的一定規模的充坑,洞穴或渣石填充物。路基病害比較隱蔽,一旦受到外界因素影響造成塌陷,將直接威脅行車安全,因此,鐵路病害的勘查十分重要。

路基勘查中,由於受到電磁干擾、鐵軌干擾及行車震動干擾的影響,限制了一些地球物理方法的應用。因此,目前常用於對鐵路病害檢測的物探方法是微重力測量。

由於路基的病害地段和完整地段有一定的密度差異,為微重力測量提供了前提。圖5-1-12是法國波爾多至塞特鐵路線上路堤下喀斯特溶洞的微重力異常等值線圖,測量位置位於鐵路線巴爾薩克處,勘查對象是5 m高的路堤和路基部。圖中可見,在該帶中部有一處密度較大的地段(異常達3×10-1g.u.),這是一處過去曾進行過灌漿處理的地段。在過去處理時,由於突然塌陷,未能進行專門研究。在地段兩端出現-2×10-1~-6×10-1g.u.兩處異常,位於邊坡基部並向路基底下延伸。經對異常的解釋和鑽探驗證,證實在路基下3~6 m深處的灰岩中存在喀斯特溶洞。

圖5-1-12 波爾多至塞特鐵路線上路堤下喀斯特溶洞的測定和處理

鐵路路基多是用耕土堆墊壓實而成,如果出現路基病害,必將引起電性差異。路基位於地面以上(或潛水面以上),所以無論是洞穴或渣石充填物都可使勘探體積所涉及范圍內的視電阻率增大,由此對稱四極剖面會出現高阻異常。路基病害越嚴重,規模越大,高阻異常越明顯。例如,圖5-1-13是隴海路某段採用對稱四極剖面法實測曲線,採用AB=7 m,MN=1 m裝置,由圖可見,全線有三種病害形式:①較大洞穴或渣石填充物的嚴重病害段,視電阻率曲線值很高;②病害較重段,視電阻率曲線呈高低交錯;③輕度病害段,視電阻率較高,視電阻率曲線呈高低交錯。病害嚴重段的影響可至路基外側鋼軌下,是亟需處理部位。輕度病害段,短期內不會形成大的病害,可作為今後雨季的防範對象。

根據物探測量和鑽孔所提供的資料,可以確定出需要灌漿地帶,得出最佳的工程計劃。灌漿處理後,除打鑽檢查外,還可以進行微重力測量,以圈出灌漿不足或灌漿過量的地層。圖5-1-14是在一已知灌漿地帶,對灌漿後地層的重力異常變化,與計算機根據模型(用灌漿前的鑽孔資料製作的地質模型)計算出來的理論異常曲線對比圖5-1-14(a),可以看出,該地帶的右半部灌注未超出預計范圍,也未出現重力異常。在模型左半部出現剩餘異常,表明灌漿不足。圖5-1-14(b)是灌漿容量對比圖,圖5-1-14(c)是地質模型(沿Ⅰ號測線的剖面)。

圖5-1-13 路基勘查剖面圖(選段)

圖5-1-14 巴黎—斯特拉斯堡鐵路線上瓦朗吉維爾處

近年來,使用瞬態面波進行鐵路路基承載力的檢測也取得了較好的結果,為路基病害的確定和治理提供了可靠數據。

利用瞬態瑞雷面波法測試線路路基承載力時,由於受到行車影響,在測線布置時只能在枕軌外側或路肩上進行。由於瑞雷面波是一個體波,具有體積勘探的特點,因此可代表路基道心的實際情況。瞬態面波數據採集時使用面波儀和低頻檢波器測量。震源採用18磅大錘和鐵板。道間距隨著勘探深度的增大而相應增大。數據處理主要是求取頻率—速度頻散曲線,對頻散曲線經過反演擬合並結合路基的實際情況進行分層,計算出各層厚度及瑞雷波的層速度。通過頻散曲線上vR數值的大小可以定性地判斷測點處瑞雷波速度隨深度的變化情況和路基的相對強度特徵,vR較高區域反映路基強度較高,vR較低區域反映路基強度較低。

在部分瑞雷波測點上作輕型動力觸探(N10)值,根據鐵道部輕型動力觸探技術規定(TBJ18—87)將N10值換算為乘承載力σ0(σ0=8N10-20),然後將瑞雷面波速度vR與相對應測點的輕型動力觸探(N10)擊數進行數學統計分析,得到vR與N10的相關關系式:

環境地球物理教程

式中A、B為常數。當相關系數r>0.7時,說明vR與N10是相關的,可用vR代替N10來計算承載力σ0的大小,即:

環境地球物理教程

根據此式可用vR定量計算路基的承載力。

圖5-1-15 承載力等值線圖

圖5-1-15為京廣線部分區段K2011+170—K2100+270段路基瑞雷波測試,並按上述換算關系(取A=91.07913,B=2.940517)換算得到的承載力等值線圖。圖中在K2011+230附近路基的承載力偏低,約為80 kPa。而在其兩側的路基的承載力相對偏高,約為180 kPa。此結果與現場實際的情況非常吻合。

3.隧道掌子面前方地質情況預報

在隧道挖掘過程中常因掌子面前地質情況不詳,在不良地質地段經常出現塌方、涌水等現象,嚴重時會造成人身傷亡和設備損壞等重大事故,造成巨大的經濟損失。因此,在隧道掘進過程中及時了解掌子面前方地質情況,特別是斷層、破碎帶等不良地質構造的規模和特徵,這對確保施工安全、合理安排掘進方案、掘進速度和支護措施至關重要。

隧道掌子面前方地質情況預報可分為中長距離預報和短距離預報,中長距離預報採用的物探方法一般是人工地震,短距離預報可採用地質雷達或聲波探測。

吉林省某公路隧道岩石以花崗岩為主,其中穿插有角閃岩及綠泥角閃岩破碎帶,岩石節理裂隙發育。在掘進方向上有兩組斷裂(走向為NNE及NNW)交替出現,與EW向小斷層及破碎帶相切割,形成屋頂形,易產生大塊脫落體。為了施工安全及合理設計掘進方案,採用人工地震和地質雷達相結合進行掌子面前方地質情況預報。人工地震方法的實施是在掌子面不同高程上水平布置幾條地震測線,用石膏在掌子面上等距離粘接檢波器,使用大錘在測線兩側激發和接收地震波。地質雷達方法的實施是在掌子面兩側洞壁及掌子面上水平布置雷達測線,使用100MHz天線等距離點測採集。

圖5-1-16為在樁號K241+138掌子面上人工地震中長距離預報的解釋結果,在K241+138—K241+063段有斷層3處,岩性異常帶一處。推斷位置為K241+115、K241+120、K241+136和K241+068。挖掘證明,有斷層2條(F115、F136),出露位置與推測位置相差1 m左右,走向近EW,斷距0.3 m。樁號K241+068處為破碎帶,寬度約10 m,系由偉晶岩及角閃岩多次侵入造成。

圖5-1-16 樁號K241+138地震中期預報結果示意圖

圖5-1-17 樁號K241+247雷達短期預報結果示意圖

圖5-1-17為K241+247掌子面上地質雷達短距離預報的解釋結果。洞兩壁檢測到斷層3條(F1、F2、F3),走向為NNE和NNW。按幾何關系推測,F1與F3在掌子面前方10 m附近相互交會,F2與F3在掌子面前方約35 m附近相互交會。掌子面上測量到前方斷裂5條,分別為F242、F239、F235、F230、F225,走向近EW,與F1和F3斷層相切割,洞頂極易形成塌落的塊體,對施工安全有嚴重危害。挖掘證明,掌子面上地震與地雷達探測所預報的結果與地質構造出露位置接近。根據預報的結果,施工單位及時調整掘進方案和掘進速度,採取了更合理的安全防範措施。

4.隧道襯砌質量檢測

隧道襯砌後,受諸多因素影響,襯砌混凝土可能出現厚度未達到設計要求或有脫空等質量問題。為及時發現襯砌質量問題,需對隧道襯砌質量進行快速和高解析度的檢測,為隧道工程的科學管理提供依據。在隧道質量檢測中最常用的地球物理方法是地質雷達方法。

地質雷達法進行隧道襯砌質量檢測的主要內容是混凝土密實性、脫空和襯砌厚度。檢測中一般採用500 MHz 或900 MHz高頻天線,檢測厚度可達幾十厘米。測線一般布置在隧道的拱頂、拱腰及邊牆三個部位(圖5-1-18),拱頂為隧道的正頂部附近,拱腰為隧道的起拱線以上1 m左右,邊牆為排水蓋板以上1.5 m左右。測量方式採用剖面法,測點間隔一般為幾厘米~幾十厘米,由測量輪跟蹤測量里程。

圖5-1-18 測線分布圖

隧道襯砌厚度檢測中,相關介質的物理參數如表5-1-1所示。

襯砌厚度評價,首先在地質雷達剖面上確認出混凝土與岩石界面間的反射波同相軸,讀取反射波雙程旅行時間,按公式h=v×計算出混凝土襯砌厚度,速度V可通過明洞地段或鑽孔資料標定。密實度的評價可根據探地雷達剖面反射波振幅、相位和頻率特徵劃分為密實和不密實兩種類型。不密實的混凝土體在雷達剖面上波形雜亂,同相軸錯斷;脫空體在雷達剖面上在混凝土與圍岩交接面處反射波同相軸呈弧形,與相鄰道之間發生錯位,依此特徵可計算出空洞的范圍。由於爆破使圍岩表面凹凸不平,因此,在確定脫空時應對剖面上的異常加以細致的分析和確認。

表5-1-1 隧道襯砌厚度檢測中相關介質的物理參數表

某公路隧道全長約1.6 km,為全面了解襯砌質量,在隧道即將貫通前開展了地質雷達檢測。該隧道襯砌類型有:Sm3、Sm4、Sm5,設計襯砌厚度分別為40 cm、35 cm、30 cm。圖5-1-19為里程號K21+390—K21+430區段邊牆測線的地質雷達剖面。該區段襯砌類型為Sm5。圖中10 ns附近起伏變化的同相軸為圍岩界面反射波同相軸,圖5-1-20為計算出的混凝土襯砌厚度曲線。

圖5-1-19 K21+390K21+430區段邊牆測線的地質雷達剖面

圖5-1-20 K21+390K21+430區段邊牆測線混凝土襯砌厚度解釋曲線

❼ 舉例說明RS,GIS想結合在工程地質中的應用有哪些方面

GIS應用於工程地質,應該主要側重於其空間分析和三維設計兩個方面。
1、空間分析版,這是GIS特有的優勢,特別權是針對空間位置的分析,而相關研究主題的空間位置也是工程地質研究的重要內容。
2、三維設計,GIS的另一優勢就是良好的可視化表達,工程地質的研究成果可以經由GIS軟體予以體現。
至於遙感,在工程地質中的應用主要有以下兩個方面:
1、地質調查,利用高光譜遙感技術,可以實現對特定區域的地表岩層進行某些精細的分析,從而為地質研究提供有效的數據支持,減少人力與物力的投入,可以不到現場就可以詳細指導當地的信息。
2、地質監測,可以對大范圍區域的地質災害等進行調查與檢測……等
對於兩者的結合那是顯而易見的,GIS與RS不分家,RS是GIS重要的數據元。

❽ TDR技術及其工程地質應用

史彥新張青孟憲瑋楊麗萍

中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051)

【摘要】時間域反射測試技術(Time Domain Reflectometry)是一種電子測量技術,許多年來,一直用於各種物體的空間定位和形態特徵的測量。本文簡要描述了TDR的原理,介紹了其在水位監測、岩石及土壤變形監測、土壤濕度測量方面的應用,提出了TDR技術應用於滑坡監測的技術方法。

【關鍵詞】時間域反射測試技術同軸電纜工程地質滑坡監測

1前言

時間域反射測試技術(Time Domain Reflectometry)簡稱TDR,是一種電子測量技術,許多年來,一直被用於各種物體形態特徵的測量和空間定位。早在20世紀30年代,美國的研究人員開始運用時間域反射測試技術檢測通訊電纜的通斷情況。在80年代初期,國外的研究人員將時間域反射測試技術用於工程地質勘查和監測工作,尤其在煤田地質方面應用較為廣泛,常用於監測地下煤層和岩層的變形位移等。到90年代中期,美國的研究人員將時間域反射測試技術開始用於滑坡等地質災害變形監測的研究,針對岩石和土體滑坡曾經做過許多的試驗研究[1]。在國外,TDR技術的應用研究已經引起研究人員的廣泛關注和政府部門的極大重視;國內在這方面的研究工作尚屬於起步階段。

2TDR的原理

TDR的早期形式是雷達,可以追溯到19世紀30年代,多數人比較熟悉。雷達通常由無線電發送裝置、天線和無線電接收裝置三部分組成,發射裝置向外發射電磁波短脈沖,接收裝置接收從被測物體返回的反射波,通過測量入射波與反射波的間隔時間,就能判定該物體的空間位置;對反射波進行細致的分析(例如振幅分析),可以得出更多的關於被測物體的信息。時間域反射測試(TDR)就是採用電纜中的「雷達」測試技術(Andrews,1994),在電纜中發射脈沖信號,同時進行反射信號的監測。

在TDR中,一個脈沖波(快速的階躍信號)被發射入同軸電纜(如圖1所示)中,脈沖信號在同軸電纜中傳播的過程中,能夠反映同軸電纜的阻抗特性。電纜的特性阻抗是電纜固有的屬性,它取決於電纜內部的介質以及電纜的直徑等因素。當電纜發生扭絞、拉長、中斷等變形或者遇到像水之類的外界物質時,它的特性阻抗將發生變化。當測試脈沖遇到電纜的特性阻抗變化時,就會產生反射波。對入射波與反射波進行比較,根據兩者的異常情況就可以判別同軸電纜的狀態(斷路、短路以及變形等)。如果TDR測試脈沖信號在測試電纜中的傳播速度為Vp,發射信號與反射信號的時間間隔為Td,那麼電纜至變形處的距離 d可由式(1)來表示:

圖1同軸電纜示意圖

地質災害調查與監測技術方法論文集

由此可以推斷出同軸電纜的狀態發生變化的位置。

另外,如果測試脈沖信號為V1,反射信號為V2,那麼其反射系數為:

地質災害調查與監測技術方法論文集

根據線性傳輸理論,可以知道:式中:Rt——變形後電纜的阻抗;

地質災害調查與監測技術方法論文集

R0——變形前電纜的阻抗。

由(3)式可以得出:

地質災害調查與監測技術方法論文集

因此可以得出結論:①當 p=0時,Rt=R0,表示電纜的特徵阻抗與電纜末端等效阻抗相匹配,發射信號得到了很好的傳輸,沒有反射信號產生。②當ρ=+1時,Rt→∞,表示電纜末端處於開路狀態,發射信號完全被反射。③當 p=-1時,Rt=0,表示電纜末端處於短路狀態,發射信號完全被吸收。④當-1<p<+1(ρ≠0)時,表示電纜發生變形,並且產生反射波信號。這樣,通過測量反射系數ρ,即測量反射信號的振幅,就可以判定電纜變形量的大小。

3TDR技術在工程地質中的應用

根據TDR測試信號遇到電纜阻抗發生變化時產生反射波的原理,可把TDR用於工程地質的很多方面。

3.1TDR用於監測水位的變化[2]

選擇空氣作填充介質的電纜,把電纜安裝在監測井內,在空氣與水的接觸面,電纜的特性阻抗會大大減小。若向電纜內發射TDR測試脈沖,在空氣與水的接觸面處,就會產生反射波。測量反射波的時間,就可以推算出水位。當井內水位發生變化時,反射波到達的時間也發生變化:當水位上升,反射波到達的時間提前;當水位下降,反射波到達的時間延長(如圖2所示)。這樣通過監測反射信號的變化,就可以達到監測水位的目的。3.2 TDR用於監測岩石及土的變形

圖2TDR監測水位

把電纜澆鑄在鑽孔中,使之與周圍地層緊密結合。當周圍岩石或土發生位移時,會對電纜進行剪切,使電纜發生變形,通過測量電纜變形的位置及變形量,就可判定周圍地層發生形變的位置及位移量。

向電纜中發射TDR測試脈沖,當測試脈沖遇到電纜變形處時,就會產生反射波。通過測量反射波到達的時間和幅度,就可知電纜變形的位置及變形量,進而判定周圍岩石及土的變形。

3.3 TDR用於測量土壤濕度[3]

TDR用於測量土壤濕度,是基於電纜中TDR測試信號的傳播速度對電纜所接觸的外界環境敏感的特性。由於水、空氣、土壤顆粒的相對介電常數有很大差別,所以含水率不同的土壤,其介電常數是不同的,TDR信號在其中傳播的速度也就不同。通過測量TDR反射波到達的時間,又已知同軸電纜感測器探桿的長度,就可求出TDR信號的傳播速度,進而求出土壤的介電常數,這樣,根據土壤介電常數與含水率的對應關系,就可以確定土壤的濕度。

4 TDR用於滑坡監測

在自然地質作用和人類活動造成地質環境惡化的條件下,斜坡發生變形破壞乃至整體移動就會產生滑坡。為了分析滑坡的形成機理、活動狀態及其發展趨勢,位移與變形的長期觀測是滑坡動態監測的重要組成部分。由於TDR技術可用於監測岩石及土的變形,因此採用TDR技術對滑坡進行監測,就可以了解和掌握滑坡深部的位移與變形的動態變化過程。從理論上來說,TDR技術可以完成大量程的滑坡監測,其量程的大小隻與測試電纜的特性有關,與監測鑽孔的受損壞程度無關。

在滑坡的長期監測過程中,根據滑坡的實際情況,用鑽孔打穿滑動面後直達穩定的地層,並且將同軸電纜放入監測鑽孔,然後回填鑽孔,使同軸電纜與周圍地層緊密結合,對滑坡進行深部定位監測,以確定滑動面位置及其上部不同深度滑坡體的位移動態(如圖3所示)。

在安放好測試電纜之後,滑坡體一旦產生滑移,其位移就會引起電纜產生形變,電纜變形導致電纜阻抗特性的變化,這時,安裝在地面的滑坡監測系統對鑽孔內測試電纜的這種形變進行監測。在發射測試脈沖信號的同時,對反射波信號進行數據自動採集,通過對監測數據(包括時間和幅度等)進行分析和自動處理,就能得到電纜變形處地層的變化過程,實現對滑坡的動態監測,為滑坡預測、預報、評價以及防治研究等提供可靠的數據基礎。

圖3TDR滑坡監測示意圖

5結束語

由上可見,根據TDR技術的基本原理,可將其用於工程地質的許多方面。中國地質調查局水文地質工程地質研究所在潛心研究TDR技術原理的基礎上,研製了TDR滑坡監測系統,並應用到長江三峽地質災害監測的實際工程中,取得了不錯的效果。

參考文獻

[1]張青,史彥新.TDR滑坡監測技術的研究.中國地質災害與防治學報,2001,6(2)

[2]史彥新,張青.TDR技術監測地下水位.嚴重缺水地區地下水勘查論文集(第2集),北京:地質出版社,2003

[3]孫玉龍,郝振純.TDR技術及其在土壤水分及土壤溶質測定方面的應用.灌溉排水,2000,(2)

❾ 什麼是地質信息技術

地質信息技術指在各類地質調查、礦產資源勘查和工程地質勘察領域應用的信息技術原理、版方法權與應用,其中包括地質信息科學與信息系統的基本概念,地礦勘查的數據管理、空間分析、信息處理、地質信息三維可視化、地質過程計算機模擬等方面的基本原理、設計知識與應用技能。

❿ 哪些專業學工程地質學這門課

地質工程專業是研究人類工程活動與地質環境之間相互制約關系,主要研回究如何獲取地質環境條答件,並分析研究人類工程活動與地質環境相互制約形式,進而研究認識、評價、改造和保護地質環境的一門科學,是地質學的一個分支,是地質學與工程學相互滲透、交叉的邊緣學科。主要課程《高等數學》、《大學外語》、《大學物理》、《大學化學》、《工程制圖》、《大學計算機信息技術》、《程序設計語言》、《概率論與數理統計》、《普通地質學》、《礦物岩石學》、《構造地質學》、《第四紀地質與地貌學》、《地史古生物》、《工程物探化探》、《工程力學》、《測量學》、《土力學》、《岩體力學》、《工程地質原理》、《工程地質勘察》、《水文地質學基礎》、《地下水動力學》、《水文地質勘察》、《地質工程設計》等。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864