圍堰工程地質評價
㈠ 工程地質評價
1、工程場地的穩定性與適宜性;
2、工程地質、水文地質條件;
3、預測工程對既有建築的影響,工程建設產生的地質環境變化,以及地質環境變化對工程的影響;
4、提出各類建築物工程措施建議意見;
5、預測施工、運營過程中可能出現的工程地質問題,並提出相應的防治措施和合理的施工方法。
㈡ 地基基礎工程地質評價內容具體有哪些求解
主要有:1、地基承載力;2、地基變形;3、地下水類型、埋深、補給;4、地震效應評價(砂土液化、震陷,特徵周期,地震加速度等);5、地基處理方案建議。
㈢ 建設工程地質環境適宜性評價
6.4.1 評價因子的選取
建設工程地質環境適宜性評價是城市建設功能區劃和城市規劃的基本依據之一。對環膠州灣城市建設工程來說,地質環境的適宜性評價因子主要有5個方面(第一層)的22項(第二層)評價因子:環境地質條件對城市建設的適宜程度,包括地貌、植被分布、地下水質量等;工程地質條件對城市建設的適宜程度,包括斷裂活動性、岩土體工程地質類型、軟土頂板埋深、軟土厚度等;地質災害和環境地質問題的發育程度,包括崩塌、滑坡、海(咸)水入侵、海岸侵淤、土壤污染、土壤鹽鹼化等;地質資源的豐富程度和合理開發利用程度,包括水資源、地熱資源、礦產資源、地質遺跡旅遊資源等;人類工程活動,主要表現在重大建設項目及其類型、主要交通干線、港口碼頭等的發達程度。部分地質環境因子見城市建設主要地質環境問題分布圖(圖6.3)。
㈣ 什麼是區域工程地質條件適宜性評價
一是補充評價復法。例制如,某地已全面開展了土壤等級的評價,如果要進行宜耕、宜林地的評價,只需在土壤等級的基礎上,增加對地形坡度、水源條件、交通條件等限制因子的評定,就可以綜合確定宜耕、宜林的適宜等級。
二是調查匯總法。就是規劃人員深入到基層。通過實地調查訪問。了解土地適宜性,然後逐級匯總。以宜耕荒地評價為例,調查人員深入到鄉或村裡,請當地有經驗的農民和熟悉情況的農業技術推廣站、土肥站的業務人員,在土地利用現狀圖上指明哪些荒地宜農,哪些是一等宜農荒地,哪些是二等宜農荒地,然後將宜農荒地的數量、質量及圖件匯總。
在有些地區,還可以採用更簡便的方法,即統一規定評價的重要技術指標,例如規定地形坡度、土層厚度、水源條件等主要評價指標及其評價等級,統一印製表格,由各鄉各村組織填寫,進行匯總即可。
㈤ 三門峽大壩增建工程的工程地質勘察工作及建成後的運行情況
1.根據水電部北京勘測設計院下達的「黃河三門峽水利樞紐增建工程地質勘察任務書」,北京勘測設計院勘測總隊於1962年6月組建第六地質勘探隊,負責該項勘察工作(註:黃河三門峽壩址的全部地質勘探工作已於1959年8月結束)。
第一階段為左右兩岸排沙隧洞位置選擇(1962年6月~1963年初)。該階段以收集分析前人地質資料為主,同時做一些校核性的地面地質工作。對擬建建築物的重點地段布置了物探工作和少量的山地、鑽探工作。通過上述工作,從工程地質條件看,右岸閃長玢岩底板受到下煤層采空影響,岩體裂隙張開嚴重,成洞條件差,故右岸方案相對不如左岸。最後綜合選定左岸隧洞方案。
第二階段為初步設計階段(1963年初~1964年初)。首先測量了1:2000隧洞區的地形圖;其次測繪了1:2000隧洞區工程地質圖。隧洞進出口、洞身和工作閘門井地段均布置了勘探坑、孔和各項試驗工作。分述如下:
進口段包括上游庫內圍堰、疊梁槽和進口漸變段。主要工程地質問題是查明壩前庫內水下淤砂層的空間分布、厚度和物理力學性質;進口290m岩面高程分布情況和完整程度;主要斷層和裂隙發育方向及充填情況;進口洞臉高邊坡的穩定等問題。
洞身段主要是查明各類岩體的分布情況,風化厚度,斷層破碎帶和裂隙密集帶的分布;特別要查明旁山洞的洞壁,在溝谷一側的有效厚度;地下水空間分布,滲透性,預測可能的最大涌水量,分析確定隧洞的外水壓力。
出口段主要是查明上覆岩層閃長玢岩、崩坡積層的分布和穩定情況,其次是查明下煤系地層的分布,預測建成後可能沖刷、回掏的范圍與深度,評價出口段岩體(包括挑流鼻坎、沖刷坑)的穩定。
天然建築材料調查。最後提出了儲量、開采條件與試驗報告。
地下水長期觀測。本階段對左岸隧洞區的閃長玢岩裂隙水,建立了長期觀測網,並定期取樣進行水質分析。主要是查明壩前庫水位的變化(長時間高水位情況下)對隧硐區內的閃長玢岩裂隙水位的影響和分析評價洞身的外水壓力。
第三階段是施工地質階段(1964年年初~1965年年底)。地質勘探六隊完成初設報告後被調走,北京勘測設計院勘測總隊在三門峽組建了施工地質組,並在三門峽設計組的統一領導下,承擔了施工地質工作。施工地質工作主要是將各工程開挖地段,按照一定的比例尺進行現場編錄成圖;超前預報各段開挖穩定條件和地下水活動情況;提供開挖穩定值、臨時支護措施、基坑最大涌水量;根據實際開挖的地質情況,復核初步設計階段所提供的各類圖紙和各項設計參數;並參加施工設計,選擇不同地質條件的洞段,開展現場各項原位測試,以及埋設各項長期觀測設施(如外水壓力觀測儀);最後提供施工地質報告。
三門峽左岸增建工程的施工地質工作的重點,是兩條主洞開挖的速度與安全問題。通過施工地質工作進行了山岩壓力測定和地質預報,不但大量節省了臨時支護材料,加快了施工進度,更主要的是兩條洞沒有發生一起人身傷亡事故,稱為「無血洞」,得到了上級的贊揚。
隧洞出口挑流鼻坎段底部的閃長玢岩厚度僅有9m左右,其下為下煤系地層,岩性軟弱,並有舊煤洞分布,對挑流鼻坎的地基穩定不利,建議採取加固處理措施。
2.關於在壩址左岸增建兩洞四管的泄洪工程,於1965年1月經國家計委和水電部批准。由北京勘測設計院負責設計,三門峽工程局繼續負責施工。1號隧洞提前兩年於1967年8月投入運用,2號隧洞提前一年於1968年8月16日投入運用。四管於1966年5月完工。
1968年汛期兩洞四管投入運用後,當壩前水位315m時,下泄流量由原來的3000m3/s增至6000m3/s,庫區淤積有所減緩,潼關以下庫區由淤積轉為沖刷;但泄排沙能力仍感不足,潼關以上及渭河仍繼續淤積。
㈥ 節理的工程地質評價要解決的三個基本問題是什麼
節理的工程地質評價要解決的三個基本問題是:節理的發育方向, 節理的發育程度, 節理的性質。
㈦ <工程地質與水文>常見的埡口有哪幾種類型試從工程地質條件方面做出評價
<工程地質與水文常見的埡口有哪幾種類型?試從工程地質條件方面做出評價
㈧ 工程地質穩定性評價方法——以麗江-香格里拉段為例
一、概述
隨著滇藏鐵路工程的分段實施,麗江-香格里拉段的規劃設計已納入日程。但是,由於該段地形地貌和地質條件非常復雜,雖然經過多輪論證,線路仍難最後確定。按照初期規劃(圖13-1),滇藏鐵路麗江-香格里拉段共有3個走向方案可以比選:①麗江-長松坪-虎跳峽上峽口-香格里拉方案(西線方案);②麗江-大具-白水台-小中甸-香格里拉方案(組合方案);③麗江-大具-白水台-天生橋-香格里拉方案(東線方案)。初步分析認為,西線方案工程地質條件相對較好,可以作為推薦方案,該方案需要新建鐵路隧道34座,總長87130 m,占該段線路總長的54.4%,最長的隧道是位於麗江西北的玉峰寺隧道,全長10970 m;需要新建鐵路大橋39座(10253 m),涵洞182座(4547 m),橋涵占線路總長的9.2%。復雜的工程地質條件使得該方案仍存在許多問題,且工程建設難度大。
為了更好地指導該段鐵路選線,我們在區域地殼穩定性評價的基礎上,將基於GIS技術的層次分析法引入到麗江-香格里拉段鐵路規劃區的工程地質穩定性評價(工程地質條件評價)。在評價過程中,綜合考慮地形坡度、工程地質岩組、斜坡結構、地質災害發育現狀、地殼穩定性、微地貌類型(地形與鐵路設計高程高差)、人類工程活動、降水量、距離溝谷距離等因素,充分利用GIS技術處理海量數據信息的優勢,採用層次分析法模型,進行麗江-香格里拉段鐵路規劃區的工程地質穩定性評價。基於評價結果,可以很好的指導該段線路比選和優化。
二、基於GIS的層次分析法原理
層次分析法(Analytical Hierarchy Process,簡稱AHP)是美國數學家SattyT.L.在20世紀70年代提出的一種將定性分析和定量分析相結合的系統分析方法。它適用於多准則、多目標的復雜問題的決策分析,可以將決策者對復雜系統的決策思維過程實行數量化,為選出最優決策提供依據(圖13-2)。經過多年的應用實踐,不少研究者開始將GIS技術與AHP方法相結合,大大提高了傳統的AHP方法在地學研究中的應用效果(Harris et al.,2000;劉振軍,2001;彭省臨等,2005)。基於GIS的層次分析法充分利用GIS技術的空間分類和空間分析功能,在評價指標數據採集、處理和自動成圖方面具有明顯的優勢,不僅可以對工程地質穩定性的相關影響因素進行更細致的逐次分析,而且在計算過程中不受計算單元數量的限制,因而評價結果更直觀、更便於應用。
圖13-1 滇藏鐵路麗江-香格里拉段線路方案示意圖
圖13-2 基於GIS的層次分析法技術路線圖
基於GIS層次分析法的工程地質穩定性分區評價過程大致可分為以下步驟:
(1)確定研究區、研究對象及研究目標,並進行數據分析,確定進行工程地質穩定性分區所需要的數據,包括數據來源、數據質量指標等。
(2)將收集的各種資料進行數據處理,包括在MapGIS 6.7軟體平台上進行數字化、格式轉換、投影轉換、分層及屬性編碼等,建立研究區、研究對象的空間資料庫。
(3)根據研究目標的特徵,分析影響目標的因素,建立目標的層次指標模型和層次結構,構造判斷矩陣,由專家對影響因素進行綜合評分,並進行層次單排序、求解權向量和一致性檢驗,從而獲得各指標因素值,並運用GIS空間分析功能提取分析因子。
(4)採用ArcGIS 9.2軟體平台,對評價區域進行柵格化,每一個柵格作為模型評價的一個運算單元,並將資料庫中的數據按照規則進行柵格化處理。再採用圖形疊加的模型評價方式,將參與評價的各個因素權值分配到不同的柵格上。將各個因素進行圖形疊加,對屬性值進行代數運算,再將疊加後的柵格數據化,生成新的圖形,並形成最終評價結果。
(5)工程地質穩定性分區評價的數學模型:
滇藏鐵路沿線地殼穩定性及重大工程地質問題
式中:B——工程地質穩定性指數,aj——權重,Nj——指數。
(6)通過分析計算獲得的工程地質穩定性指數值的分布范圍,結合野外實際調查結果驗證,對不同區域的鐵路工程建設適宜性進行綜合分區評價。
㈨ 岩漿岩,沉積岩,變質岩的工程地質性質如何評價
這個要具體情況 具體分析的 不能一概而論 同一種岩類因其化學成份、礦物組成、岩石結構、結晶方式的不同以及形成後所受構造活動的影響不同 工程地質性質差異會很大的 例如同為岩漿岩花崗岩和玄武岩 沉積岩中的礫岩、砂岩、頁岩 變質岩中的石英岩、片麻岩、大理岩、片岩、角岩等 但總的來說岩漿岩的硬度和耐磨性較高 沉積岩硬度較低
㈩ 區域環境工程地質評價
4.3.1區域穩定性分析
黃河三角洲是在基底構造甚為破碎、濟陽凹陷的一個次級負向構造單元上發育形成的。由於區內東北部位於北西向的燕山——渤海地震帶及北東向的沂沫斷裂地震帶的交匯部位,因而與新構造運動有關的構造地震異常活躍。據山東省地震局1985年10月布設的東營—墾利、陳家莊—河口的現代形變及牛庄—新刁口的兩次a徑跡測量結果,埕子口斷裂、孤北斷裂、陳南斷裂、勝北斷裂和東營斷裂的現代活動都有顯示,說明區內的區域穩定性較差。區內新生代以來的斷裂活動表現為具有繼承性脈動活動的特點。尤其是5號樁,樁西至海港一帶位於上述兩條活動斷裂地震帶的交匯復合部位,新生代以來斷陷幅度最大,歷史上曾發生過3次7~7.5級地震,區域穩定性差。根據以上的地震預測,影響烈度一般都在Ⅶ度以上,5號樁一帶為Ⅷ度。根據我國建築規范規定,一切建築物都應設防加固,以保安全。
區內飽和砂土、飽和粉土具有液化的宏觀條件。在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
由於黃河三角洲地質體物質組成主要是粉砂,且孔隙度較高,加之形成期堆積速率快,造成地質體中含水量高。隨著時間推移,在上覆沉積物擠壓下,孔隙中水逐漸被擠壓,造成地質體壓縮,導致地面下沉。根據1988年在黃河海港地區實測,該地區壓實下沉速率可達6cm/a,因此由於地面下沉所引起的海面相對上升則更加劇了海岸侵蝕。
另外,近幾十年來的人為活動加劇了本區地面沉降的發展,如:建築地基承載力不足引起的土體壓縮,地下水、石油、鹵水的開采所引起的含水層、儲油層壓縮等。
由此可見,黃河三角洲地區環境工程地質問題頗多,本節將對直接影響東營市經濟發展和規劃的地表下25m土體工程地質類型及其物理力學性質、工程地質性質的區域性變化等進行深入研究。
4.3.2土體的工程地質分類及工程地質特徵
區內小清河以北為黃河三角洲平原,小清河以南多為山前沖洪積平原,基岩埋深在數百米以下,表層均為第四系鬆散沉積物,鑒於一般工業與民用建築物地基持力層一般均在15m以上,一般中高層建築物持力層一般在25m以上的特點,下面僅以0~25m的土體為對象,進行分析和研究(圖4-6)。
圖4-6地表土體類型示意圖
1.土體的岩性與結構特徵
(1)土體岩性分類
區內0~25m深度內的地層多為第四系全新統地層,其沉積環境受黃河和海洋交互或共同影響,形成了以細顆粒為主的地層。所表現出的岩性以粉土最為廣泛,其次為粉質粘土、粉砂、粘土,局部有細砂,其主要岩性特徵見表4-6。
表4-6黃河三角洲0~25m地層岩性分類及主要特徵表
(2)土體結構特點
區內土體結構無單層結構,多為多層結構,(多層結構是指一定深度內由3層或3層以上的地層構成),這也是區內的沉積環境所決定的,該區瀕臨渤海,是河流的最下游段,河道游盪較頻繁,古地貌特點反復變化,攜帶泥、砂的水動力特點也隨之變化,因此,區內一般無巨厚的單層岩性沉積。
2.土體工程地質特徵
(1)山前沖洪積平原區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、洪積(
(2)古黃河三角洲區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、海積、湖沼相沉積(
(3)現代黃河三角洲平原區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積海積物(
3.地表下0~25m土體物理力學指標的變化規律
(1)古黃河三角洲區的物理力學性質總體上好於現代黃河三角洲,這正是由於現代黃河三角洲的成陸時間晚於古黃河三角洲,其自重固結的程度差於前者。
(2)無論是古黃河三角洲區還是現代黃河三角洲區各類岩性土層的物理力學指標顯示出一個較明顯的規律,即從地表向下隨深度的增加土層的物理力學指標以較好—較差—好發生變化。一般較差的深度段在5~10m和10~15m。這一變化規律也與區內的沉積環境相吻合,力學指標較差的深度段為1855年黃河改道以前沉積的沖湖積、沖海積相為主的地層。
4.3.3天然地基承載力、飽和砂土液化及軟土與鹽漬土
1.天然地基承載力
黃河三角洲地區基土承載力在不同位置、不同層位均有較大變化,從小於80kPa到大於300kPa。天然地基承載力指自地表算起的第一層或第二層基土(當第一層厚度小於3m,且第二層基土承載力高於第一層時,取第二層承載力數據)的承載力。區內天然地基承載力可分為4個等級(表4-7),其分布與變化規律與地貌單元有較密切的相關關系(圖4-7)。
(1)承載力低區(fk<80kPa)的分布
① 呈條帶狀分布於現代黃河三角洲工程地質區內。如利津縣虎灘鄉西南—河口區義和鎮南部、河口東南孤河水庫—渤海農場總場北以及現代黃河入海口北側等地,以上各地帶多為1855年以後成陸,且位於濱海低地或窪地內,排水條件差,自重固結程度低。
表4-7天然地基承載力分區特徵表
② 呈小片狀分布於古黃河三角洲平原區。如東營區勝利鄉南部,利津縣王莊鄉南部等。
(2)承載力較低區(80≤fk<100kPa)的分布
① 沿海岸線分布,寬度不一。
② 沿黃河泛流主流帶邊緣、前緣和窪地展布。如利津縣大趙鄉—虎灘—羅鎮—河口區一帶、集賢鄉—渤海農場總場、孤北水庫北部、利津前劉鄉—東營區西城,以及東營區龍居鄉—西范鄉一帶。
(3)承載力中等區(100≤fk<120kPa)的分布
① 分布於決口扇的頂部及緩平坡地區。如利津縣南宋—北宋—明集,東營區龍居鄉—油郭鄉—六戶鎮—廣饒縣丁庄鄉以及勝坨鄉—高蓋鄉等地。
② 分布於現代黃河三角洲頂點附近。如寧海鄉—汀河鄉、寧海鄉—傅窩鄉一帶。
③ 分布於現代黃河三角洲北部、東部。如河口區新戶—刁口鄉、孤東水庫—五號樁、墾利縣建林鄉—孤東水庫、建林—西宋鄉。
(4)承載力較高區(fk>120kPa)的分布
① 分布於古黃河三角洲的南部。如牛庄—陳官—小清河一帶。
② 分布於小清河以南的山前沖洪積平原區。
③ 零星分布於近代黃河三角洲平原區的地勢較高處。
2.飽和砂土液化
砂土液化是指處於地下水位以下鬆散的飽和砂土,受到震動時有變得更緊密的趨勢。但飽和砂土的孔隙全部為水充填,因此,這種趨於緊密的作用將導致孔隙水壓力驟然上升,而在地震過程的短暫時間內,驟然上升的孔隙水壓力來不及消散,這就使原來由砂粒通過其接觸點所傳遞的壓力(有效壓力)減少,當有效壓力完全消失時,砂層會完全喪失抗剪強度和承載能力,變得像液體一樣的狀態,即通常所說有砂土液化現象。
區內的飽和砂土、飽和粉土具有液化的宏觀條件,在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
液化判別就是根據土的物理力學性質及其他工程地質條件,對土層在地震過程中發生液化的可能性的判別。國家標准《建築基礎抗震設計規范》(GBJ11-89)中規定了飽和砂土、飽和粉土的液化判別方法,在對區內飽和砂土、飽和粉土的液化判別時,即依照了前述規范提供的方法,在液化勢宏觀判定的基礎上,採用了原位測試資料——標准貫入試驗進行了液化臨界值和液化指數的計算。根據液化指數對地基液化等級的劃分見表4-8。區內液化砂土的分布規律見圖4-8。
(1)嚴重液化區
① 分布於現代黃河三角洲頂點,向北向東呈扇形展布的黃河泛流主流帶的中上游部位,主要在陳庄鎮—六合鄉、虎灘鄉—義和鎮一帶。
圖4-7天然地基承載力分區示意圖
表4-8地基液化等級表
② 零星分布於廢棄河道帶和決口扇,如下述地帶:東營區永安鄉—廣北水庫一線,呈條帶狀分布,為廢棄河道帶;利津縣店子鄉—前劉鄉,呈片狀分布,為決口扇的中部;東營區史口鄉附近、東營區六戶鎮西側、河口區新戶鄉東北等地。
該區內的飽和粉土、飽和粉砂顆粒均勻,粘粒含量低,沉積厚度較大,形成年代新,固結程度差,因此是最易發生液化的地區。
(2)中等液化區
① 分布於較大的決口扇及決口扇前緣坡地地帶,利津縣城東—明集鄉—大趙鄉、東營區勝利鄉—董集鄉—油郭鄉一帶。
② 分布於黃河泛流主流帶或其邊緣地帶。寧海鄉—墾利縣城;陳庄鎮—傅窩鄉;渤海農場總場東—建林鄉—新安鄉;義和水庫南—河口區。
③ 在濱海低地帶內有零星片狀分布,五號樁及以東地區;刁口碼頭東北—孤北水庫北部;新戶鄉以西及以北的近海地帶。該區一般位於嚴重液化區的外圍及決口扇頂部位或零星分布於小規模的黃河主流帶,飽和粉土、粉砂的粘粒含量較低,固結程度較差,因此是較易發生液化的地區。
(3)輕微液化區
① 分布於古黃河三角洲泛濫平原及決口扇邊緣,如下述地帶:利津縣南宋鄉—北宋鄉;東營區龍居鄉—廣饒縣陳官鄉—丁庄鄉。
② 分布於現代黃河三角洲的非黃河泛流主流帶區,如下述地帶:利津縣王莊鄉—墾利縣勝坨鄉;利津縣集賢鄉—墾利縣城東部;河口區太平鄉—義和水庫。
該區粉土、粉砂的沉積厚度較小,粘粒含量較高,因此液化程度較輕。
(4)非液化區
① 分布於工作區小清河以南的山前沖洪積平原,該區地下水位埋藏深,水位以下的飽和粉土,粉砂密實程度較好,因此不易液化。
② 分布於沿海地帶的濱海低地,該區除河口相沉積外,地層粘粒含量較高或以粘性土為主,因此不易液化。
3.軟土與鹽漬土
(1)軟土
軟土一般是指天然含水量高、壓縮性大、承載力低的一種軟塑到流塑狀態的粘性土。如淤泥、淤泥質土以及其他高壓縮性飽和粘性土、粉土等。黃河三角洲地區地處渤海之濱,具有軟土的沉積環境,鑽探資料亦證明,區內呈片狀分布著軟土。
① 軟土的劃分標准
本次劃分軟土時採用如下方法:當滿足下列條件之一時,並且厚度大於0.50m,將其確定為軟土:承載力標准值fk<80kPa;標貫錘擊數N63.5≤2;靜力觸探錐頭阻力qc<0.5MPa;流塑狀態。
② 軟土的空間分布
軟土主要分布於區內的東北部濱海地帶、河口—刁口碼頭一帶。利津縣羅鎮—黃河故道西、墾利縣下鎮鄉東部,另外在利津縣明集鄉—廣南水庫一線呈不連續片狀、碟狀分布。
③ 軟土的成因及主要物理力學性質
區內的軟土具有兩種成因:①爛泥灣相沉積:在歷次河口的兩側,沉積的以細粒成分為主的土層,一直處於飽和狀態,排水固結過程進展緩慢,所以土的力學性質很差。顏色以灰褐色為主,流塑態,土質細膩,岩性以粉質粘土為主,夾粉土和粘土薄層。②濱海湖沼相沉積:顏色以灰—灰黑色為主,有機質含量較高,具腥臭味,為淤泥或淤泥質土。
圖4-8地基砂土液化分區示意圖
表4-9軟土的主要物理力學指標統計表
從表4-9中可以看出:區內軟土具有含水量高、孔隙比大、壓縮性高、承載力低的特點,在荷載作用下變形較大,對建築物極為不利。因此,在工程建設規劃時,應盡量避開有軟土分布的地區。在無法避開軟土的建築物,應對區內的軟土有足夠的重視,採取一定的處理措施,對於一般工業民用建築可採取粉噴樁法進行處理,對於高層重型建築物應採取深基礎,如沉管灌注樁等,以避開軟土的不利影響(圖4-9)。
(2)鹽漬土
當土中的易溶鹽含量大於0.5%,且具有吸濕、松脹等特性的土稱為鹽漬土。區內的鹽漬土為濱海鹽漬土,按含鹽性質則大部分屬氯鹽漬土,局部為硫酸鹽漬土,鹽漬土按含鹽量可分為弱鹽漬土(0.5%~1%),中鹽漬土(1%~5%)、強鹽漬土(5%~8%)和超鹽漬土(>8%),區內的鹽漬土主要為弱鹽漬土,局部地段有中鹽漬土(見圖4-10)。
4.3.4工程地基適宜性評價
工程建築地基適宜性受多種因素的影響,為達到評價結果清晰簡潔、合理反映出區內建築適宜性等級的目的,選用了專家聚類法(亦稱總分法)進行評價。評價過程為:首先擬定評價因子,對各評價因子量化、分級並給定各級別的標准分,其次用傅勒三角形法確定各評價因子的權重,然後計算各勘測點單項因子分值和總分值,再按各點的總分值進行分區。最終的評價結果見表4-10、4-11、4-12、4-13。
圖4-9軟土分布示意圖
圖4-10鹽鹼土分布示意圖
表4-10一般工業與民用建築地基適宜性評價方案(評價深度10m)
① 沉降因子
② DⅠ——山前沖洪積平原;DⅡ——古黃河三角洲平原;DⅢ——現代黃河三角洲平原。
表4-11一般工業與民用建築地基適宜性評價分區說明表
表4-12高層重型建築物地基適宜性評價方案(評價深度25~30m)
表4-13高層重型建築物地基適宜性評價分區說明表
一般建築、高層建築物地基適應性評價分區見圖4-11、4-12。
圖4-11一般建築物地基適宜性評價分區示意圖
圖4-12高層建築物地基適宜性評價分區示意圖