地下水質和地質災害
⑴ 地質環境與地質災害的關系
地質環境是指自地表面下的堅硬殼層,即岩石圈。地質環境是地球演化的產物。岩石在太陽能作用下的風化過程,使固結的物質解放出來,參加到地理環境中去,參加到地質循環以至星際物質大循環中去。
地質災害是指在自然或者人為因素的作用下形成的,對人類生命財產、環境造成破壞和損失的地質作用(現象)。如崩塌、滑坡、泥石流、地裂縫、水土流失、土地沙漠化及沼澤化、土壤鹽鹼化,以及地震、火山、地熱害等。
二者沒什麼特別的關系吧,就是不好的地質環境易發生地質災害。
⑵ 下列與地下水作用關系不大的地質災害類型是:地面塌陷沉降 泥石流 土壤鹽鹼化 土地沼澤化
泥石流
鹽鹼化是因為地下水位下降
沼澤化是地下水位上升
塌陷是地下水抽取或流失太多形成空洞
⑶ 如何理解地下水與地質災害的關系
地下來水與地質災害的關系:水自文地質是導致地質災害發生的主要因素之一,基本所有地質災害及大部分地質環境問題都與地下水有關,主要有滑坡、泥石流、地面塌陷、地面沉降、海水入侵、土壤鹽漬化、土壤荒漠化、水土流失、濕地退化、地下水污染等等,每一個都與地下水有直接或間接的關系。
地下水的地質作用 是地下水對岩層破壞和建造作用的總稱。地下水在流動過程中對流經的岩石可產生破壞作用,並把破壞的產物從一地搬運到另一地,在適宜的條件下再沉積下來。因此,地下水的地質作用包括剝蝕作用、搬運作用和沉積作用。
⑷ 地下水與地質災害有關論文
寫的啥意思,請樓主明細
⑸ 地質環境與地質災害
隨著經濟的快速發展,生態環境變化日益引起人們的關注。自然災害不斷發生,使人類的生存和發展受到了嚴重的威脅。監測環境、保護環境和防治災害,提高人類生活質量,成為當代地球科學研究的重要前沿領域。為此,國土資源部加強了對造成環境變化的自然作用與人為作用影響的綜合研究,建立和開發了區域性環境監測預警系統,不斷提高對環境變化和自然災害的預測能力。
洞庭湖地區地質環境調查及治湖對策研究
運用考古學、第四紀地質學、新構造運動理論,綜合研究了洞庭湖區地殼沉降,確認湖區內存在不均衡的地殼沉降,進而進行了合理沉降分區,為規劃防洪工程及蓄洪垸區的布置指明了方向。運用遙感與計算機技術,准確計算出洞庭湖的湖泊面積、湖容量與湖邊界等基礎數據;採用綜合打分法對洞庭湖區防洪工程基礎穩定性作出了評價;建立了東洞庭湖、南洞庭湖湖底高程變化量與泥沙淤積厚度及地殼沉降量的平衡方程,預測了2010年和2034年湖區的空間形態特徵和泥沙淤積特徵;首次建立了洞庭湖地區綜合地質環境概念模型,認為現有的洞庭湖湖域由於被防洪大堤所圈定,當城陵磯水位達32米以後,調蓄洪功能主要取決於防洪大堤高度與城陵磯水位的差,即「杯子原理」,差值越大,湖蓄洪能力越強。本次研究將洞庭湖區洪澇災害綜合治理劃歸為8個治理區,並提出了平垸行洪、動態蓄洪、疏浚
河道等具體治理規劃方案。
九寨溝上季節海(枯水期)
⑹ 地下水資源帶來的地質災害
地下水資源帶來的地質災害
--超采地下水會誘發地質災害!
⑺ 地質災害與地下污染探測
程業勛
(中國地質大學(北京))
「環境」一詞起源於18世紀,逐步被廣泛引用到自然環境、社會環境、經濟環境等。但當代環境科學研究的環境范疇,主要是指人類生存與可持續發展的外部條件。所以《中華人民共和國環境保護法》中明確指出:「本法所指的環境,是指人類生存和發展的各種天然的和經過人工改造的自然因素的總體,包括大氣、水、海洋、土地、礦藏、森林、草原、野生生物、自然遺跡、自然保護區、風景名勝區、城市和鄉村等。」地球物理學主要研究發生在岩石圈、水圈、大氣圈和地球空間的對人類生存和發展有重要影響的環境變化和供給條件。因此,從一定意義上講,地球物理學從產生的那一天起,就是一門研究人類生存與發展環境的科學。
西方工業化300年,已經消耗地球億萬年的資源儲備,而且日益加劇,造成資源緊缺,環境惡化。2007年10月25日聯合國環境規劃署(UNEP)發布集1400位科學家智慧寫成的《全球環境展望》(GE0-4)綜合報告指出,自1978年以來的30年,人類消耗地球資源的速度,已將人類自身置於岌岌可危的境地,到目前為止,已經超出地球生態承載能力近三分之一。每年有7.5萬人死於自然災害,全球一半以上城市的環境超出世界衛生組織(WHO)制訂的污染標准。
岩石圈(含土壤)、水圈(含地下水)、大氣圈和生物圈構成地球物質循環的整體,是人類生存不可或缺的各個組成部分。地下(土壤和岩層)一直是人類處置廢棄物和垃圾的場所。包括大氣沉降物在內,超過土壤自凈(降解)能力的時候,就會構成土壤污染,特別是難以被土壤生物降解的有毒物質,還會隨著水的蒸發和大氣環流,擴散到全球(稱蚱蜢效應)。這就告訴我們,對於難以降解的有毒物質來講,地球是一個封閉的生態系統,這些有毒的污染物,只能轉移而不會消失。即使遠離污染源上萬千米,生活在北冰洋的伊努特人體內也可以檢測到持久性污染物(POP)的存在。
美國上世紀30~40年代,就開始將工業廢棄物以及活水、污油注入地下。時隔二三十年後,由於地下地質環境的變遷,有些原來埋在河谷(山谷)地區的這些物質,經歷容器的腐蝕、洪水沖刷而擴散、深灌的污水上涌,造成泄漏污染。為進一步防治,在不得已的情況下,找到地球物理方法,探測再次造成的地下污染分布區域。這也是環境地球物理分支學科建立的起始。
1 自然地質災害的勘察
地球上山地面積占陸地總面積的四分之一,居住人口占總數的10%,道路總里程佔30%,是泥石流、滑坡、崩塌等自然災害主要分布區。我國地處自然地質災害集中的太平洋環帶和地中海至喜馬拉雅山帶的聚集部位,成為地震和各種地質災害多發國家之一。據報道,全國共有地質災害隱患地點22.92萬處,威脅著3500萬人的安全,財產超萬億元,以及重大工程、城鎮和村莊的安全。1965年11月23日發生在雲南祿勸縣火山泥溝的特大滑坡,總土方量達3.9億m3,滑體流速高達5~6km,在河中迅速堆積成長1100m,高167m的攔河大壩,形成5萬m3蓄水的堰塞湖。不久滑體大壩陷落,迅速淹沒5個村莊。1981年7月9日暴雨引發成昆鐵路線上利子依達溝發生的泥石流,使400噸重的巨石沖入溝口,將數節火車推入大渡河,迅速堆積成壩,形成回水5km,積水29萬m3的堰塞湖。長江三峽鏈子崖危岩體位於秭歸縣新灘鎮,長江南岸,兵書寶劍峽的出口處,屬於西陵峽崩塌隱患區。本區有歷史記載的崩塌滑坡造成重大自然環境破壞性災害的有14次。其中1030年崩塌滑坡體堵塞長江21年,1452年滑坡堵江82年,1985年6月12日凌晨3點45分至4點20分,歷時35分的大滑坡,使總計3,000餘萬立方米的崩塌堆積體整體滑移,高速飛下的土石將位於江岸的新灘鎮全部摧毀,在江內激起54m高的巨浪,將對岸上的建築捲入江中。由於幾年前的電磁測深和淺層地震為主查明了滑體的厚度和范圍。1977年開始連續監測,及時准確預報,撤離果斷,滑區內457戶,1,371人,無一人傷亡,僅航運中斷12天。這樣大規模的滑坡,及時准確預報成功,在國內外是罕見的,被譽為一起世界奇跡。[1]
我國山地多,滑坡、泥石流、崩塌等地質災害的分布區域占國土總面積的65%。隨著自然的變遷和人為的致災作用,各種地質災害逐年增加。據四川省統計,泥石流致災的縣市:20世紀30年代有14個;50~60年代76個;70年代109個;1981年135個;1990年達200個。70年代以前地面沉降、地面塌陷和海水入侵還是少數地區,近年來由於對地下水的過度開采,至2008年有70多個城市出現地面沉降,總面積達6.4萬km2,上海、天津、西安等城市有的降幅達2m,天津塘沽達3.1m;地面塌陷3000多處,總面積300多km2;海水入侵總面積達1000km2。
各種地質災害的發生都是地質環境變化引發致災岩體內部結構變異,穩定性受到破壞的結果。因此,自然地質災害勘察的目的在於查明致災岩體(土)的地質環境和內部結構,研究致災岩體的結構變異和穩定狀態,圈定致災岩體范圍,評價發生發展趨勢。在滑坡、崩塌、泥石流、地面塌陷以及海水入侵等地質災害勘察中[2],應用地球物理勘查主要是查明致災的地質條件,為防治或預測預報提供依據。
表1 自然地質災害地球物理勘查的主要任務和可用的技術方法一覽表
為了進一步說明地球物理勘查在自然地質災害防治中的作用,列舉三個實例如下。
1.1 滑坡體和滑坡面的勘察
滑坡勘查的主要任務是查明滑坡體的深度和范圍,以及滑動面的深度與形態[3]。
黑海沿岸高加索地區是滑坡發育地區之一。滑坡所處的地形高約為20~25m,滑坡體主要由砂質粘土加碎石構成,下伏泥岩風化殼。選用電阻率法以及淺層地震進行勘察。電阻率測量結果如圖1所示。
圖1 電阻率與地震劃分的滑體與滑床
可劃為三層:地表層電阻率ρ1=13~29Ω●m,相當於滑體。中間層電阻率ρ2=2~4Ω●m,為風化岩,可認為相當於滑動帶。最下層電阻率ρ3=8~12Ω●m,是未風化的泥岩,為該滑坡的滑床;淺層地震資料解釋,可劃為上下兩層:上層縱波速度VP=340~360m/s,可認為是滑體和滑動帶,下層:VP=1360~1400m/s,為堅硬的未風化泥岩。在未風化的泥岩頂部用電阻率和地震測量得到的速度躍變界面和電性界面在深度上比較一致(相差1~1.5m),構成的過渡帶(弱帶)可能形成滑坡的滑動面。
1.2 滑坡的監測與預測研究
山區佔地球陸地總面積的四分之一,加上礦山開采構成的人為坡地,滑坡每年造成的經濟損失和人員傷亡巨大。對滑坡的監測和預測引起重視[3]。1985年6月12日凌晨3點45分發生在長江三峽新灘鎮大滑坡預報成功。其監測工作中的地質、物探和測量工作是從1962年開始的,基礎調查工作完成後,於1977年設置四條視准線,連續觀測滑坡堆積體的水平位移。前後監測研究23年。多年來設想主要用地球物理方法預報滑坡的研究也不在少數。其中南烏克蘭露天開采鐵礦的斜坡滑動研究是以視電阻率(ρs)觀測和礦山測量聯合研究提出的。滑坡地點如圖2(a)所示,視電阻率(ρs)觀測,採用不同供電極距的對稱四極裝置與水準點礦山測量共同布置在滑動體上。連續觀測得到三種極距視電阻率曲線如圖2(b)所示,兩種極距的視電阻率比值ρs*/ρso—t曲線;反映地電斷面變化非常靈敏。圖2中t1,t2,t3時刻視電阻率出現異常,反映t1時刻斜坡岩石形成微小裂隙;t3時刻斜坡岩石產生滑落。
圖2 傾斜露天礦場滑坡上的動態觀測
1.3 海水入侵的勘察
近年來由於地下水的過度開采,造成地下漏斗100多個,面積達15萬km2;70多個城市地面沉降達6.4萬km2;沿海城市的海水入侵達1000km2以上。萊州灣、遼東半島歷來最為嚴重。中國科學院地球物理所利用電測在這一地區進行了勘察[4]。研究了海水入侵與電阻率關系(表2)。根據電阻率分布劃出海水入侵平面圖(圖3)。該區海水入侵可分為入侵嚴重區(ρ1=2~17Ω·m);輕度區(ρ1=17~30Ω·m);受入侵影響區(ρ1=30~100Ω·m)。在王河和朱橋河地區為兩個地下漏斗區,地下水位分別為–15m和–10m,這一地區海水入侵面積最大,致使50萬畝耕地不能使用地下水灌溉。
表2 海水入侵程度與電阻率關系
圖3 山東萊州三河下游海水入侵分布圖
2 地下污染物的勘查
近30年來,隨著經濟和城市人口的迅速增長,廢棄污染物的排放量逐年增加:1999年工業廢棄物排放量7.8億噸,2007年達17.6億噸,增長率15%,截至2009年廢棄物積存量已達80億噸;城市生活垃圾2000年總量為1.4億噸,2005年為1.95億噸,2010年將達2.0億噸[5]。據調查,全國668座大中城市中2/3被垃圾圍城,1/4城市已沒有堆放場地。全國有近億輛汽車在開動,加油站林立。據北京1000多座加油站調查,有1/2存在漏油現象。
所有排放的污染物,無論是氣體、液體和固體,最終的歸宿都是土壤和水體(地表水和地下水)。截至20世紀末,我國受污染土壤的耕地面積達2000萬公頃,約占總耕地面積的1/5,每年因污染導致糧食減產1000萬噸。水污染更為突出:「70年代水質變壞,80年代魚蝦絕跡,90年代身心受害」,成為水污染的真實寫照。600座大中城市淺層地下水都不同程度地遭受污染,其中一半城市地下水已不能直接飲用。農村已有3.6億人喝不上符合標準的飲用水。
地下污染,往往不易及時發現,直到危及生產和生活。如吉林工業廢渣堆淋濾液滲入地下,導致幾十平方千米內1800眼水井被污染而報廢。佳木斯140多萬噸工業和生活垃圾堆放場,產生的硝酸基荃污染地下水,使6個自來水廠停產。北京天通苑是20世紀60~70年代的垃圾堆放場,停用後掩埋,改建住宅小區,2008年一名綠化工人下井(在三區22樓外)接水管時中毒昏倒井內,另一名下去營救也倒在井內,經查為硫化氫中毒。這就是垃圾堆掩埋產生的「定時炸彈作用」。宋家莊三位地鐵工人挖探井(2009年4月28日),3m深時聞到臭味,5m深時感到不適,一人嘔吐,醫院檢查三人為中毒,經查該地20世紀70年代曾是一家農葯廠,未作土壤污染處理,毒氣在地下土壤中積累。
人的眼力有限,不可能看清地下污染。地球物理勘查就是幫助人們即時了解地下污染存在空間以及遷移狀況。美國20世紀40年代開始在幾個河谷和山谷填埋工業廢棄物,幾十年後這些當時認為處置安全的廢棄物開始泄漏,到80年代開始,感到非治不可,但時至今日,地下污染物的空間位置及其污染流變范圍都不清楚,於是通過地球物理勘查,重新圈定地下污染物的空間位置。
應用地球物理探測方法,對地下污染物的探測和監測,防止污染擴散,保護環境。概括來看,目前主要用在以下幾個方面:
(1)用於廢物填埋場選址調查[6]。工業生產廢物和人類生活垃圾不僅量大而且成分復雜,有毒有害物質混雜其間,經雨水淋濾產生滲漏液侵入地下污染土壤和地下水水源。因此,選擇遠離地下水且緻密的防滲岩(土)層作為垃圾填埋場地是重要的。主要用電阻率法、瞬變電磁法、探地雷達、折射地震和放射性測井。目的在於查明地下:①基岩面形狀;②地表粘土層的結構;③地下水位及含水層分布范圍及地下水流向;④基岩結構及構造;⑤地下暗河及河道分布。
(2)一些發達國家常以地球物理監測作為垃圾填埋場和廢物堆放場的檔案資料。從垃圾填埋(堆放)開始,直至垃圾填埋場終止封場後延續30年進行監測,跟蹤監測表明,固體垃圾降解很緩慢,以固體垃圾溶解物總量(TDS)為例,前10年降解1/2,20年時餘1/5,30年後餘1/10;氯離子、硫酸鹽等30年只降解1/10。一旦發現泄漏且有擴散危險,應立即進行處理。所用的探測方法主要是電阻率法和瞬變電磁法。激發極化法也有良好的效果。而我國還沒有建立監測制度。
(3)追蹤污染源。根據地下環境中水流與污染物遷移模型以及地層滲透率的差異,或者存在地下古河道、斷裂、裂隙,使地下水和污染物在地下形成一定的遷移軌跡。在某井位或河邊、海岸發現污染可以利用地球物理方法追蹤探測出遷移路線,查出污染源所在地,為污染防治提供資料,主要利用電阻率法。
(4)探查垃圾填埋場襯底塑料膜出現漏洞位置。由於受壓、承重等原因使襯底塑料出現漏洞,使填埋場的滲漏液外泄。為了修復需要及時找到漏洞位置。主要利用直流電阻率法。
(5)地下廢棄物的調查。故舊廢棄物和垃圾堆放場填埋多年,現移作他用,為了重新處理,需了解其分布范圍和確定深度。主要採用電阻率法、地震雷達法等。
(6)廢棄物堆放場對土壤和地下水污染的監測。礦山廢棄物、選礦和冶金廢棄物,化工廠和葯廠等可能成為污染源的堆放場進行監測。主要使用電法、磁法和土壤氡測量方法等。
(7)地下儲油罐和輸油管泄漏探測。加油站世界林立,僅北京市就有1100多處。美國探測證實上世紀70年代以前建的加油站幾乎全部有泄漏。因此,加油站是土壤和地下水的主要污染源之一,對加油站進行常規監測是必要的。常用的探測方法有自然電位、電阻法以及揮發性氣體(CH4)法等。用土壤氡氣測量法也有良好效果。我國也做了試驗監測工作。
(8)深埋廢液處理場的監測。隨著區域地質結構變化和地下水位變化,廢液可能發生遷移和外溢,所以監測是必要的。一般用自然電位法圈定二次污染范圍。
(9)核電廠對核廢物處置場有深埋和淺埋兩種,其選址要求和方法各不相同。淺埋與垃圾場選址類似。深埋選址是永久性的,要進行深部選擇勘查。選址是極為慎重的地質勘查工作。深埋選址一般要選擇區域地層穩定,沒有裂縫斷層、滲透系數極小的岩層。主要使用深部探測的重力、磁法和電磁法以及地震方法。
現舉兩個應用實例如下。
2.1 保定韓村地下垃圾填埋場勘查
保定韓村垃圾堆放場,佔地200m×200m,後來加蓋1.5m原土層,掩埋了垃圾堆多年,成為平地。四周已有建築。急需查明地下垃圾堆的污染區域,以利整治(楊進,劉兆平等,2006)[7]。
為了取得好的效果,探測工作以高密度電阻率法和探地雷達為主。用了5種探測方法,測線以東西方向3條,南北方向4條,均勻分布,每條測線長度為200m。
2.1.1 高密度電阻率法
沿測區7條測線:4條南北向(HCH.1.4.7.10),3條東西向(HCH.11.12.13)進行剖面測量。使用電極64,點距3m。根據北京市北神樹等3個垃圾填埋場滲瀝液的實測電阻率資料,對比本區土壤的電性特徵,每個剖面圖可劃分出4個電性層。其對比數值列於表3。可見視電阻率小於15Ω·m的區域為垃圾及其污染區。本區掩埋的故垃圾堆及其形成的污染區分帶圖如圖4所示。
表3 工作區污染帶異常劃分表
2.1.2 探地雷達法
共測6條剖面,南北向4條,東西向2條,與高密度電阻率法同步進行。使用SIR-3000儀器,100MHz天線。探測深度10~15m。剖面圖電磁波信號分區明顯。根據本測區電性特徵,進行對比。可以認為視電阻率1~10Ω·m,相對應的介電常數均為5~100;電磁波傳播速度均在0.047~0.13m/ns。為此得到本測區垃圾污染區埋深在2.5~3.5m以下,如圖5所示,為資料解釋結果。
對已掩埋多年的韓村地下垃圾場探測後根據異常區,用洛陽鏟和挖掘的方法進行了驗證,證明在深1.5m以下見到垃圾,說明探測結果是可靠的。
圖4 韓村測區HCH.1.4.7.10線剖面污染異常分帶圖
圖5 韓村測區HCH.1.4.7.10線雷達資料解釋
2.2 安家樓第三加油站漏污染探查
北京市朝陽區安家樓住總第三加油站,1995年春發現泄漏,致使位於東南的自來水廠部分停產。7月某物探與化探研究所以氧化還原電位法、磁化率以及氣烴(CH4和C2H4)測量方法,同時進行了面積勘查。由於周圍都是道路和建築,測線基本上沿馬路兩側以及住總三公司停車場院內,寶馬汽車維修中心院內空曠地區布置。
氧化還原電位,設備輕便,在人行雜亂的市區工作方便。其測量結果的等值圖(5mV間隔)列於圖6。由圖可見,地下漏油的展布與該地區的地下水流方向一致(南偏東方向)。
土壤磁化率方法,土壤氣烴方法測量獲得的油污染展布與氧化還原電位測量結果非常吻合,展布方向的趨勢也基本一致。
輕烴(CH4)和重烴(C2H4)是直接抽取土壤中CH4(甲烷)和C2H6(乙烷)測量的結果,其平面等值圖與氧化還原電位也完全一致。
經過加油站核實,先後泄漏柴油78噸。開挖對污染土壤進行清理、更換。證明柴油逐步漏入地下包氣帶和潛水層,其地下分布於探測結果完全相符。
圖6 北京朝陽某加油站漏油污染氧化還原電位等值圖
美國楊百翰大學用探地雷達在亞利桑那州的Tuba城探測汽油罐漏油污染土壤和地下水。首先用探地雷達圈出漏油污染區,其次是鑽孔取樣分析油的含量,監測孔確定地下水位和流向,第三步是將雷達探測結果與鑽孔土樣、水分析結果進行對比,最終確定漏油引起的污染范圍和深度。研究認為,由於油污一部分出現在潛水面之上,另一部分流入淺水面下方的飽水帶,使電磁波反射變得模糊不清。所以,圖7中雷達信號反射增強部分對應於漏油處。探地雷達用的80MHz天線頻率。
圖7 石油罐泄漏區上的探地雷達記錄(中心頻率80MHz)
主要參考文獻
[1]陸業海.新灘滑坡徵兆期及成功的監測預報[J].水土保持通報,1985,(5):1~8.
[2]郭建強.地質災害勘查地球物理技術手冊[M].北京:地質出版社,2003.
[3]程業勛,楊進.環境地球物理學概論[M].北京:地質出版社,2005.
[4]蔣宏耀,程業勛.環境與地球物理,地球物理科普文選(第三集)[M].北京:地震出版社,1997.
[5]中國環境科學學會.2008—2009環境科學技術學科發展報告[M].北京:中國科學技術出版社,2009.
[6]余調梅,朱百里編譯.廢棄物填埋場設計[M].上海:同濟大學出版社,1999.
[7]劉兆平.地球物理方法在垃圾填埋場的應用研究[D].北京:中國地質大學(北京),2010.
⑻ 水與地質災害
一、降雨
黃土由粉土、粉質粘土組成,透水性一般較差,降雨一般不容易滲入形成上層滯水或潛水,一次降雨所引起的潛水位上升幅度不大,而且滯後現象明顯。所以,單純就降雨而言,似乎不會觸發滑坡、崩塌地質災害。但是,在黃土構造節理、卸荷與風化裂隙、落水洞、陷穴等發育部位,降雨可沿空隙下滲甚至灌入,在相對隔水部位形成上層滯水或飽水帶,增大岩土體重力、甚至形成孔隙水壓力,降低岩土體強度,從而觸發黃土滑坡、崩塌的發生。
據本次調查資料,地質災害主要發生在6~10月,與降雨量以及降雨特徵關系密切。如1986年6月調查區持續陰雨天,月降雨量達全年最高,日降雨量達35.9mm,在城區連續觸發寶塔山和鳳凰村2個滑坡。區內近年發生滑坡和崩塌頻次與多年月平均降水量呈明顯的正相關關系。
二、地表水
地表水與地質災害關系密切,這里主要指河流與水庫中的地表水。
黃土高原土質疏鬆,夏秋季多暴雨和大雨且時間集中。降雨在短時間內匯集,形成具有較強侵蝕能力的地表水流,塑造了黃土高原千溝萬壑的地貌形態,也常引發地質災害。河流發育期不同對地質災害的影響不盡相同。區內的延河、南川河及汾川河等幹流及較大的一級支流已進入老年期,河谷已達百米—數百米寬,河流下切進入基岩數米,基岩出露亦高達十數米,河谷內沖淤趨於平衡,流水對兩側坡腳侵蝕作用減弱,對地質災害的形成影響不明顯。在二三級支流內,基岩多有出露,河流下蝕受阻,側蝕作用較強,對谷坡的穩定性具有明顯的影響,在歷史上已引發較多的滑坡。滑坡堵塞河谷,滑體受流水沖刷侵蝕,大部不復存在;谷坡滑動後,亦達到較為穩定的狀態。在三四級或更小的溝谷內,主要為黃土溝谷,流水的下蝕和側蝕均存在,兩岸谷坡較陡,目前仍處於流水的侵蝕中,是滑坡、崩塌的多發地段,但這些地區由於地形條件差,人類活動相對較少,滑坡崩塌形成地質災害的概率較低。自實施退耕還林(草)政策以來,區內植被得到有效的保護和發展,河流溝谷中的水流明顯減少,地表水的侵蝕強度有所削弱,流水對地質災害的影響也漸趨緩和。
水庫或淤地壩附近,地表長期積水,最直接的影響是使地下水位抬升,在較大范圍內形成地下水,通過地下水對斜坡穩定性造成明顯影響。
三、地下水
研究區地形破碎,水土流失嚴重,地下水十分貧乏。但是,由於黃土節理裂隙發育,在斜坡地帶,在原生節理和構造節理的基礎上,發育了密集的風化、卸荷裂隙,甚至演化為黃土陷穴、落水洞,在暴雨過程中,降水匯集,沿節理、裂隙、陷穴、落水洞等通道快速下滲,在古土壤或基岩之上形成局部上層滯水,甚至潛水。地下水活動降低了黃土強度,改變了坡體應力狀態,常常觸發斜坡變形失穩。據研究,當黃土含水量<18%時,黃土力學強度較高,坡體在直立的狀態下也可保持穩定;但如果>20%,則強度降低很快,坡體穩定性亦變差。所以,地下水活動對斜坡變形失穩的影響作用十分明顯。地下水活動的影響作用主要表現在以下幾個方面:
一是斜坡上的上層滯水的存在,降低了土體強度,增加了土體的重量,易觸發斜坡變形失穩。
二是在連陰雨過程中或大雨之後,水分入滲途中在古土壤層受阻,使古土壤以上的土體含水量增大,雖尚未飽和或形成上層滯水。但是,由於含水量增大,降低了土體強度,也同樣觸發斜坡變形失穩。
三是水庫地表水轉化為地下水,影響地質災害。如河庄坪鎮趙家岸水庫蓄水,引起坡體內地下水位上升,在坡體前部形成泉水,斜坡變形導致居民房屋變形及牆體開裂,嚴重威脅居民安全。
⑼ 與地下水有關的地質災害與地質環境問題有哪些
基本所有地質災害及大部分地質環境問題都與地下水有關,主要有滑坡、泥石流、地面版塌陷、地面沉降、海水權入侵、土壤鹽漬化、土壤荒漠化、水土流失、濕地退化、地下水污染等等,每一個都與地下水有直接或間接的關系,哪個有疑問我可以祥答
⑽ 地下水開采引發的地質災害
在天然條件下,長期的地下水循環過程已經與岩石圈的地質過程建立了相對穩定的平衡關系。人類對地下水的開發利用一般會降低局部地區乃至大范圍內的地下水位,從而打破天然平衡狀態,使水圈與岩石圈朝著新的平衡狀態演變,其中的某些演變以地質災害的方式出現。
在一些斷陷盆地的平原區,開采鬆散沉積物中的地下水容易導致地面沉降。嚴重的地面沉降特別是不均勻地面沉降屬於地質災害。根據有效應力原理,含水層的水壓力在被開采之後將下降,沉積物承受的有效應力將增加並發生垂向壓縮,從而導致地面下沉。地面沉降並不全都是地下水開采引起的,也可能有構造沉降的影響,但地下水開采導致的災害性地面沉降要比其他原因所致的沉降速率大很多。發生這種災害性地面沉降的條件是:①含水系統具有較大厚度的欠固結軟弱岩士層,特別是發育大量黏性士夾層,這些地層的厚度往往是不均勻分布的;②區域性的地下水開采導致地下水位持續多年下降,下降幅度和地下水位漏斗的擴展范圍都很大;③地面上存在對地面沉降敏感的人類建築物。這些條件在國內外的許多地區都已經滿足。美國亞利桑那州的井灌平原區發育很厚的黏性士層,在1948~1969年間,地下水位下降了70~100m,地面下沉普遍超過1.2m,最大沉降量達到2.5m,嚴重的不均勻地面沉降破壞了輸水管線和道路。大型城市往往大量開采地下水作為生活用水,容易誘發地面沉降並對大城市的發展構成威脅。一些典型城市的最大累計沉降量為:美國長灘市9.5m,墨西哥城6.0m,日本東京4.6m,天津3.3m,上海2.6m。我國的長江三角洲、華北平原、西安地區等都受到地面沉降災害的困擾。表10.1給出了華北平原典型地區的地面沉降、地下水開采層和地下水位埋深等情況,從中可以看出,地下水位每下降1m會導致10~40mm的地面沉降量。
地裂縫是地下水開采引發地面沉降之後伴生的又一地質災害。地裂縫原本是構造地質活動形成的地表裂縫,但是不均勻地面沉降加劇了地裂縫的發育。截至2006年,河北省已經發現的地裂縫有482條,影響到70個縣市。河北柏鄉縣的一條地裂縫延伸長度達到8km,最寬超過1m,目視深度可達2m。西安地區到1999年為止,共發現11條地裂縫,基本呈北東走向,延伸長度多數超過5km,最長的超過20km。地裂縫對建築物有很大的危害。
表10.1 華北平原典型地區的地面沉降情況(截至2005年)
(據李國和等,2008)
碳酸鹽岩地區地下水的開采還可能誘發地面塌陷等具有一定突發性的地質災害。在石灰岩分布地區發育的溶洞和落水洞往往被第四系砂礫石、黏士等覆蓋,在地下水位較高的情況下,這些覆蓋物的有效荷重在承載范圍內。地下水開采或礦井的疏干會降低這些岩溶含水層的地下水位,同時降低對覆蓋物的承載能力或增加覆蓋物的有效荷重,從而可能誘發地面塌陷(圖10.1)。地下水的長期溶蝕和侵蝕、地下水在豐枯季節的水位大幅度波動都是岩溶塌陷的自然誘發因素,而地下水的強烈開采可以增加岩溶地面塌陷的發生頻率。據統計,我國岩溶塌陷區分布面積約為330×104km2,已發生岩溶塌陷900餘處,塌陷坑約32000個(賀可強等,2005)。