沖積層的工程地質特徵
A. 地質學中近代河流沖積層的符號怎麼打
第1章 工程地質概述自 一、知識點: 1.1 土的生成 1.1.1 地質年代的概念 1.2.1 地質作用的概念 1.2 礦物與岩石的概念 1.2.1 造岩礦物 1.2.2 岩石 1.2.3 岩石的工程分類 1.3 地質構造 1.3.1 褶皺構造 1.3.2 斷裂構造 1.4 第四紀沉積物(層) 1.4.1 殘。
B. 工程地質與水文地質 地下水有哪些類型
關於地下水按含水層介質類型的分類,目前存在著如下兩種分類方案。
第一種分類方案是以俄羅斯和中國為主的一些國家,承襲了原蘇聯水文地質學者的地下水分類的基本觀點,即以含水介質的空隙類型作為劃分地下水類型的基本依據。該種分類的基本觀點是岩石的基本類型和岩石中的空隙類型之間有著完全的對應關系;而一定類型的空隙(包括粒間孔隙、裂隙和溶蝕孔洞)則賦存一定類型的地下水。按照這一觀點,可把地下水劃分為孔隙地下水(鬆散未膠結岩石)、裂隙水(非可溶性堅硬岩石)和岩溶水(石灰岩、白雲岩等可溶性岩石)三種。由於這種分類能直接反應出岩石類型、貯水空隙類型和地下水類型三者之間的相互依存關系。因此這個分類便成為尋找、勘探、評價與開發地下水資源的理論基礎;也被廣泛用於水文地質教科書及各種地下水勘查規程和水文地質科研、生產中。
地下水按含水介質分類的第二種方案,可以歐美國家為代表,即直接以岩石的類型作為劃分地下水類型的依據。例如筆者從美國Davis和Dewiest所著「水文地質學」(1966年)、加拿大、R.A.Freeze和J.A.Cherry出版的「地下水」(1979年)、以色列J.貝爾所著「多孔介質流體動力學」(1979年)、日本山本藏毅所著「地下水水文學」(1992年)等專著中均可見到。書中雖然沒有專門的地下水分類的章節,但這些學者均按照岩漿岩和變質岩、火山熔岩、沉積岩(或進一步分為砂質岩石和碳酸鹽岩)、沖積層、永凍層等岩石類型來描述其中的地下水特徵,或者按岩石類型來命名含水層(如火成岩變質岩含水層,碳酸鹽岩含水層和碎屑岩含水層等等)。這種分類方案的優點是比較直觀,且易於掌握。但是岩石類型繁多,這種地下水分類就未免五花八門,缺少科學的系統性。同時,這種分類也不能反應出地下水貯、導水性質等重要特徵。
比較以上兩種地下水按介質條件的分類方案,顯然按岩石空隙類型的分類更具科學性。但是,近年來,隨著地下水勘探和開發工作的深入,發現這種單一按含水介質孔隙類型的地下水分類方案仍然不夠完善,主要存在以下幾方面的問題。
(1)岩石類型、空隙類型和地下水類型之間並無絕對的對應關系。例如裂隙空隙並非非可溶性的堅硬岩石所獨有,鬆散岩石中的黃土和某些粘土也存在大量的裂隙空隙;尺寸較大的孔洞空隙也並非可溶性的碳酸鹽岩石所獨有,某些含有可溶質成分的碎屑岩石(如膠結物或角礫為可溶性的角礫岩),甚至於火山熔岩中也存在各種孔洞及管道空間。
(2)在三大基本岩石類型(鬆散岩石、非可溶性堅硬岩石、可溶性岩石)之間存在一些過渡類型的岩石;它們常具有兩種類型的貯水空隙系統(即雙重孔隙介質)。如我國中生代和新生代第三系地層中的許多半膠結(半堅硬)的碎屑岩,既有粒間孔隙又有成岩和構造裂隙的存在。亦即,既含有孔隙地下水又賦存有裂隙地下水。前已提出的某些含可溶質成分的碎屑岩,也可能同時具有成岩、構造裂隙和溶蝕裂隙、孔洞以至管道空間,即既含裂隙水又賦存岩溶水。我國西北地區的黃土亦是如此,既是孔隙含水、也是裂隙(垂直裂隙)含水的雙重孔隙介質。在目前以含水層介質類型為基礎的地下水分類中,並未明確這部分過度類型岩石、雙重性質空隙類型地下水的位置。
(3)近年來在地下水勘探、開發中,發現了一些新的貯水空隙類型。如具有十分重大含水意義的基性熔岩中的大尺寸熔岩隧道、堅井和孔室空間,以及某些玄武岩中的大孔洞層(可能為埋藏的火山灰碴),這些空隙和地下水類型在目前通用的地下水介質分類中也沒有位置。以上問題說明,簡單的按照岩石類型和空隙特徵來劃分地下水類型,既不完全符合地下水賦存形式的客觀實際狀況;也不能概括自然界存在的所有地下水類型。因此,對目前廣泛使用的這個地下水分類仍有必要進一步完善和改進;對三大類地下水的概念,特別是裂隙水的概念也需重新進行定義。
C. 地質中沖積層是什麼意思/
沖積層:河床、洪水淹沒的平原或三角洲中的流水淤積所產生的沉積層。
沖積平原:河流挾版帶的泥沙權進入低地堆積而成的平原。主要特徵是地勢低平,起伏和緩,海拔大部分在200米以下,相對高度一般不超過50米,有的僅10~20米;坡度一般在5°以下,有的不到1°或0.5°。
沖積扇:當山地河流至山麓出口進入開闊平坦地區,由於河床坡度變緩,流速減小,水流呈放射狀向外流動,搬運能力減弱,攜帶碎屑物質堆積下來時,形成上窄下寬的扇形沖積堆,外形似扇,叫沖積扇。
D. 地質勘察中的 坡積層、坡洪積層、沖洪積層、沖積層、海陸交沖積層,形成的地質成因那個知道 能說下嗎
在地質勘察中,坡積層是指沉積物在沉積時沉積地形為斜坡狀,如果沒有後期構造運動,形成的應該是斜坡狀地層;沖洪積層是指沉積物在沉積時趁機地形為坡狀,而沉積物則是被沖下來的,不是像坡積物那樣自然沉積的;沖積層是沉積物在沉積時是被大水沖下來而沉積,最後演變為岩層。
E. 三門峽水利樞紐主要建築物地區的工程地質條件(總的結論)
黃河三門峽地質勘探總隊
(一)
1.從大的區域看,三門峽是處於中條山和秦嶺之間的山間盆地中。從沉積物的性質上看,三門峽地區正好是一個基岩和第四紀沉積物的分界處。由於三門峽以西主要的沉積物是第四紀岩層、三門峽以東則完全是基岩區,所以三門峽以西地區的黃河兩岸在地貌上表現出來的特徵是由黃土類土形成的級級階地,河谷較寬,而且有廣大的渭河平原;在三門峽以東則大多是高山深谷,河谷狹窄,由黃河所形成的階地是很少的。因此三門峽被選為根治黃河水害、開發黃河水利的第一期工程地點,在地理地貌上是非常合適的。
2.三門峽主要建築物地區及其外圍地區,分布著下奧陶紀頁岩、中奧陶紀白雲質石炭岩、石炭紀煤系、石炭二疊紀煤系、二疊紀砂質頁岩、中生代閃長玢岩、老第三紀紅色岩系、老第四紀三門系砂、砂卵石、粘土、中新第四紀黃土類砂質粘土及近代的砂、砂卵石層。所有上述古生代的岩層在主要建築物地區,都是以15°左右的傾角傾向上游,而且厚達90~130m的中生代閃長玢岩也恰好以岩床狀侵入於石炭紀及石炭二疊紀煤系岩層之間。因此,三門峽的河床中就出現了橫跨黃河而寬達700m的閃長玢岩岩體。這種堅硬岩石的出現,毫無問題,它必定是我們選擇為大壩基礎的唯一對象。
(二)
3.作為主要建築物基礎的閃長玢岩是一種很堅硬的岩石,它的飽和抗壓強度平均為1042kg/cm2,但是它並不是只有一些構造裂縫,而實際上它已經被以北東方向為主的破碎帶斷層切穿而形成了許多大塊,所以這就帶來了一個主要問題——這些破碎帶、斷層究竟是什麼時候產生的?它們產生後繼續活動過沒有?如果今後發生Ⅷ度以上的地震烈度時,會不會由於這些斷層和破碎帶的繼續活動,使主要建築物遭受到嚴重的破壞?
經過調查研究分析,說明主要建築物地段的斷層破碎帶是中生代燕山造山運動末期生成的,它們在第三紀之後喜馬拉雅造山運動期受到輕微的影響,但在整個第四紀的時期內是沒有重新活動過,而近代所發生的Ⅹ度以上的地震烈度時,也沒有使這些破碎帶和斷層復活。這就進一步說明主要建築物地段至少一百多萬年以來就是一個構造斷裂方面的穩定區。因此,我們就有理由說在今後大壩運用期間,不會因任何地質構造斷裂的發生而引起建築物的破壞。
4.新的構造斷裂究竟在三門峽地區有沒有呢,並不是沒有,只是這些新的構造斷裂沒有影響到主要建築物地段。從馬家河底至壩頭的鐵路路塹上所見到的新構造斷裂帶向東逐漸減輕,而到史家灘一帶則完全消失的情況看,可以充分地說明新構造斷裂主要是發生在第四紀沉積區的邊緣區,而基岩區則沒有受到任何的影響。
(三)
5.主要建築物地段閃長玢岩中裂隙一般有三組:第一組走向30°~50°,傾向南東,傾角70°~85°;第二組走向320°~350°,傾向北東或南西,傾角70°~80°;第三組走向30°~60°,傾向北西,傾角20°~40°。這三組裂隙以第一組和第二組為最發育,第三組為數很少,而且延長也很短。這些事實說明做為壩基的閃長玢岩中可以說基本上是沒有近乎水平的構造裂隙的。另外從閃長玢岩與混凝土的抗剪試驗結果看,混凝土與新鮮的、弱風化的閃長玢岩的摩擦角為51°~66°。因此上面這兩種事實,可以充分說明大壩由於受庫水的壓力而沿著基礎岩石面或者角度小的構造裂隙產生滑動的可能性是沒有的。
6.主要建築物地區右岸的老鴉溝口至角胡同一帶的閃長玢岩陡壁,由於近代地震引起了閃長玢岩的大量崩塌,形成了這一帶廣泛的崩塌堆積區。這種崩塌在古代曾經在主要建築物的下游兩次堵塞了河流,形成了天然的水庫。那麼這種情況在今後水庫運用期間會不會還發生,以至影響到我們水電站的運轉呢?根據現在情況,我們認為今後即使發生Ⅷ度以上的地震時也是不會發生的。這是因為這一個地段經過歷史上幾次大崩塌後,已經形成了一個距離較長、也比較穩定的邊坡;這個邊坡的形成不但減低了崩塌陡崖的高度,更重要的還是對崩塌陡崖起了良好的支撐作用。
7.在主要建築物地區右岸的山頭村、老鴉溝、永久變電站(指原設計永久變電站)及臨時變電站一帶的閃長玢岩及其上覆的黃土類砂質粘土中產生了不少較大的裂縫。這些裂縫的造成主要是閃長玢岩下伏石炭紀煤系岩層中廢煤洞的存在以及在受到近代地震的作用下形成的。但必須指出這些裂縫在右岸非溢流壩以外150~200m的地方亦已發現,那麼將來會不會繼續發展,使整個右岸非溢流壩受到影響呢?這是不會的。因為廢煤洞在水平方向上的挖掘深度不會達到右岸非溢流壩下邊,而且這一建築物下邊的石炭紀煤系岩層埋藏很深,因此閃長玢岩就有了足夠的不受崩塌影響的支撐。
(四)
8.根據鑽孔壓水試驗和抽水試驗,說明主要建築物地段岩面5m以下的閃長玢岩,絕大部分屬於不透水的岩石,只有以構造塊狀岩為主的破碎帶或斷層帶才能達到微透水至中等透水的程度。一號豎井下穿河平硐曾經遇到一兩個以構造塊狀岩為主的破碎帶,但是通過破碎帶進入平硐內的水只有0.42L/s。1958年在溢流壩基礎的開挖中,雖然基坑面已經低於河水位,但通過一般裂隙滲到基坑中的水還是沒有看到,而通過破碎帶、斷層帶滲入基坑中的水的總量也只有0.5~1.0L/s,第二期基坑開挖後,地下水流入基坑中的水量為0.6L/s。這種種事實都有力地說明閃長玢岩基本上是一個不透水的岩層。
9.破碎帶及斷層中有微透水至中等透水帶,這些地帶僅存在於那些構造塊狀岩的分布地段,而構造塊狀岩在水平方向上,也常過渡為構造碎屑岩,成為不透水地帶。破碎帶、斷層帶的寬度變化往往也大,一般都是呈一連續的凸鏡體伸延的。這些地質條件都大大地減低了庫水沿破碎帶及斷層帶產生滲漏的可能。因此,我們認為壩基下的破碎帶和斷層帶沒有進行任何灌漿處理工作的必要。
我們對溢流壩、電站壩體、電廠部分及右岸非溢流壩部分的壩基滲漏做簡略的計算,計算結果,說明其總滲漏量為654m3/d,顯然這個數字與正常高水位360m時水庫庫容640億m3相比是很小的。
但必須指出黃河水含有大量的泥沙,水庫充水後,這些泥沙必將沉澱於壩前,而形成一層天然防滲的鋪蓋,因之滲漏的通道也會為泥沙所堵塞。從神門河截流後上圍堰上游的泥沙迅速淤塞看,這種計算的總滲漏量恐怕基本上是不會有的。
至於沿破碎帶及斷層是否產生機械管涌呢?我們認為可能性是很小的。因為斷層及破碎帶在水平方向上的分布,並不是寬窄一致,而且具有一透鏡狀延續的特點,另外一般破碎帶、斷層帶中的產物又是以構造塊狀岩為主,所以由於地下水的機械搬運作用,把這些構造塊狀岩帶走,形成管涌現象是不會存在的。
10.三門峽的大壩將全部建在閃長玢岩之上,而大壩的延長方向也基本上和閃長玢岩岩床的走向是一致的,所以繞壩滲漏的問題也就是通過大壩兩端以外地區閃長玢岩的滲漏問題。壩址右岸大壩上游有一個三門溝,下游有一個老鴉溝,左岸大壩下游又有一個南山溝,而三門溝與老鴉溝的分水嶺寬500m,南山溝與大壩上游黃河的分水嶺為200m,因此繞壩滲漏問題又可以說是從三門溝通過閃長玢岩滲向老鴉溝和直接由黃河滲向南山溝的問題。既然通過鑽探、水平探硐、豎井以及基坑開挖都說明了閃長玢岩是一種不透水的岩石,所以我們就可以根據這些事實來進一步說明庫水在水平方向上通過200~500m長的閃長玢岩,而滲漏到南山溝和老鴉溝去基本上是不可能的。
11.至於在壩址附近庫水可能通過南溝門里滲向南山溝及岳家河的問題,只要打開比例尺1:10000的地質圖就可以初步地說明這種滲漏是不可能的。因為庫水要向南山溝滲漏,就必須通過全部老第三紀厚達110m、而極少裂隙、膠結又很好的底礫石和厚達70m的石炭二疊紀砂岩、砂質頁岩互層,向岳家河滲漏就必須通過水平距離近2000多米的老第三紀紅色砂質頁岩、頁岩和底礫岩;這些岩層經地質調查及鑽探都說明它們基本上都是不透水層。因此,這種在壩址附近向鄰谷滲漏問題是完全不必考慮的。
12.壩址上下游各1000m的地方有史家灘斷層和七里溝斷層。這兩個斷層都穿過整個古生代各紀的岩層,而七里溝口上游又出現了不少具有喀斯特溶洞的奧陶紀白雲質石灰岩。因此,人們很容易想到會不會今後通過史家灘大斷層,庫水向下游七里溝一帶大量的滲漏呢?我們認為也同樣是不可能的。這不但從斷層帶本身的性質上看可以說明這一問題,另外從閃長玢岩、石炭紀煤系岩層以及奧陶紀石灰岩中的地下水性質、地下水位標高以及水文化學方面,也可以找出不可能滲漏的有力證據。
(五)
13.按地下水分類,主要建築物地區內有河漫灘砂層或砂卵石層中的潛水,老第三紀底礫岩、閃長玢岩及石炭二疊紀煤系岩層中的裂隙水,石炭紀岩層中的承壓裂隙水及中奧陶紀白雲質石灰岩中的喀斯特水。經過鑽探證明除了喀斯特水而外,其他各層水的涌水量都是極小的,因此,喀斯特水就變成了整個工區用水的唯一供水水源。但是這種喀斯特水質有一個很重要的缺點,那就是水中SO4離子含量為440mg/L,超過了飲用水中SO4離子含量的標准。這種多量的 SO4離子究竟是從那裡來的呢?到現在還沒得到一個滿意的解釋。
14.根據水文化學主要建築物地段閃長玢岩中的裂隙水可以分為三個地區:溢流壩、電廠、右岸非溢流壩段的重炭酸鹽鈉鎂水,左岸非溢流壩段的硫酸鹽氯化物鈉鈣鎂水和右岸非溢流壩以東地區的硫酸鹽重碳酸鹽鈉鎂水。上述溢流壩、電廠、右岸非溢流壩段及左岸非溢流壩以東地區的地下水,對任何水泥都無侵蝕性,只有左岸非溢流壩段地下水,SO4離子含量達1123mg/L,超過了規范允許含量350mg/L很多。因此,這一段的地下水對於一般水泥拌成的混凝土是具有硫酸侵蝕性的。由於SO4離子含量還沒有超過3500mg/L,所以對耐硫酸水泥所拌製成的混凝土是沒有侵蝕性的。因此我們建議修建左岸非溢流壩段時,應當用抗硫酸性水泥來拌制混凝土。
(六)
15.主要建築物地段閃長玢岩的風化程度可分為四類:全風化帶、強風化帶、弱風化帶及新鮮岩石。全風化帶內的岩石一般已變成碎礫,但是這種風化岩石厚度一般是極小的,而且只是在閃長玢岩的岩面上零星地分布著。強風化帶的岩石的特點是具有較密的水平風化裂隙,但是它的厚度一般為0.5~2.0m,最大的不超過4m。弱風化帶中的岩石則僅僅是裂隙的兩壁,由於地下水的活動,造成1~5cm寬的黃褐色風化色帶,色帶本身的岩石還是很堅硬的。根據上邊這種情況可以很清楚地說明只有全風化帶、強風化帶岩石在基坑開挖時必須加以清除,但弱風化帶的岩石則可以和新鮮岩石一樣看待。
16.作為大壩基礎的閃長玢岩中的裂隙大部分是閉合裂隙。經過鑽探過程中的壓水試驗都說明閃長玢岩基本是一個不透水層。因此灌漿帷幕是完全沒有必要的。
(七)
17.根據勘察資料證明中生代閃長玢岩裂隙水,漫灘沖積層潛水,水質雖好,但水量極少,因此沒有供水價值,只有奧陶紀喀斯特水,它具有豐富的地下水源。已有的74號、213號及373號供水孔總的出水量可達130L/s,因此,已有的三個供水孔已經可以滿足了大部分的設計用水量。在水質方面喀斯特水基本上是符合於施工用水的要求,但對生活用水,由於含SO4離子較多,是有缺點的。關於生活用水的部分,三門峽工程局已經在七里溝溝口修建了兩級沉砂池,將採取黃河水,經沉澱處理後加以使用。這樣三門峽水利樞紐施工場地各個方面的用水就得到完全解決。
註:這份「總的結論」既是三門峽壩址工程地質條件總的評價,也是針對當時社會各界所擔心的問題(歸納為七大問題)的答復。
(摘自黃河三門峽水利樞紐工程地質勘察報告第一冊第二卷「總的結論」P.180~183)
(原載於《三門峽工程》1959年第8期)
F. 簡述洪積層與沖積層的區別
沖積層:河床、洪來水淹沒的平原或源三角洲中的流水淤積所產生的沉積層,是由沖積物組成的沉積層,主要含有卵石、砂粒或粘土。
洪積層:由洪積物形成的沉積層。組成洪積層的泥沙、石塊顆粒粗大, 磨圓度差,層理不明顯,透水性較強。
所以,從工程角度講,這是一種結構不穩定的地層,建築物樁基必須穿過該地層,且穿越施工時要特別注意。
G. 地質勘察中的 坡積層、坡洪積層、沖洪積層、沖積層、海陸交沖積層,形成的地質成因那個知道 能說下嗎
坡積層一般是來殘積源成因,其下多為風化基岩;坡洪積層是坡積與洪積兩種沉積物構成的鬆散層;沖洪積層是河流沖積作用與洪水泛濫形成的沉積物;沖積層一般指河流沉積;海陸交沖積層一般發生在河流入海口處,為河流與潮汐交互作用形成的沉積物。
H. 水文地質特徵
5.3.1 井田水文地質特徵
井田位於車軸山向斜的東南翼,從區域水文地質條件分析,整個車軸山向斜位於開平煤田的西北部,自成一獨立的隱伏向斜,向斜上部被鬆散的巨厚第四系沖積層覆蓋,車54、車60鑽孔以北為厚度小於180m的寬緩平台,向南逐漸增厚,到南部邊緣厚度達到650m。第四系底部卵礫石層埋深105~155m,厚約10~25m。該含水層水量充沛,構成各煤系含水層的補給水源。石炭-二疊紀煤系含水層位於第四紀沖積層之下,地下水主要賦存於砂岩裂隙之中。下伏中奧陶統灰岩,裂隙、岩溶發育,含水豐富。
5.3.1.1 礦井含水層概述
表5.4為東歡坨井田含水層的主要分布。
表5.4 東歡坨礦區含水層特徵表
據含水層的賦存特徵,井田存在著三大含水系統:第四紀沖積層孔隙承壓含水層、石炭-二疊紀砂岩裂隙承壓含水層和中奧陶統灰岩岩溶裂隙承壓含水層。其特徵分述如下:
(1)第四紀沖積層孔隙承壓含水層(VII)第四紀沖積層覆蓋於含煤地層之上,全區分布,不整合於古生代地層之上,北薄南厚,較均勻地漸變。第四系全為鬆散沉積物,此孔隙含水層水量充沛,含水性強,但變化較大。
(2)石炭-二疊紀砂岩裂隙承壓含水層(VI~II)石炭-二疊紀煤系含水層以傾伏向斜的形式伏於新生代鬆散層之下,地下水主要儲存於泥質或硅質膠結的厚層中、粗砂岩的裂隙之中。
(3)中奧陶世灰岩岩溶裂隙承壓含水層(I)奧陶紀灰岩含水層呈平行不整合於含煤地層之下,通常在第四系底部卵礫石層與之直接接觸地區,岩溶比較發育,在頂部的裂隙和溶洞中多有砂、礫石和粘土質充填。其中12-2煤底板含水層組是以奧灰水和底卵水為水源的強富水性含水層,主要包括:12-2煤~14-1煤強含水層組(IVa)、14-1煤~K3強含水層組(III)和奧陶紀石灰岩含水層
(I),其中石炭-二疊紀砂岩裂隙承壓含水層中12-2煤~14-1煤強含水層組為12-2煤底板直接充水含水層。
(1)12-2煤~14-1煤強含水層(IVa)
本段厚約40m,岩性以細砂岩為主,粉砂岩次之,夾中砂岩。頂部有一層4~10m厚粉砂岩或泥岩弱透水段,12下煤位於該段中部。含水細砂岩和粉砂岩位於12下煤層頂底10~15m范圍內,其區域特點是透水性強。由於水源補給程度差異,在-500水平中央采區和西南采區淺部屬強含水段,東南采區屬中等含水段。強含水部位單位涌水量為1L/s·m,中等含水部位單位涌水量為0.57L/s·m。-230水平井底車場南北兩端單位涌水量為0.7~0.9L/s·m,滲透系數為0.079~9.610m/d。水質類型為HCO3-CaNa型或HCO3-CaMg型,水溫17℃。通過疏水鑽孔的疏放分析,認為該含水層水可疏降。靜水位標高:1958年為+20.89m(車42孔),目前本含水層水位標高為-21~-160m左右。
(2)14-1煤~K3強含水層(III)本段厚約50m,岩性以粉砂岩為主,與細砂岩、泥岩互層;K3灰岩為該段頂板,平均厚4m,質純,未見岩溶。在地層淺部據老風井掘進與東觀29、東觀37孔鑽探揭露,K3在其頂面形成空腔,有黃泥殘積充填,應為溶蝕作用和煤系風化產物。東觀38孔在-560m標高見此層,頂面並無黃泥,但K3底10m段落內為強含水部位。抽水試驗揭露單位涌水量為1.1L/s·m,與老風井馬頭門探水與涌水條件相似。K3頂、底板是出水部位,而且本段與上段含水層水基本一致(即無隔水地層),本段其餘地層弱透水。水質類型為HCO3-CaMg型,水溫18.5~19.5℃。
(3)奧陶系灰岩含水層(I)此段不整合於含煤地層下。本區揭露此層的有12個鑽孔,除車59、車43兩鑽孔揭露較厚(97.38m和73.26m)外,其他鑽孔一般揭露厚度多小於10m,但其厚度被推測為大於400m。通常第四系底部卵礫石層與之直接接觸的地區,岩溶比較發育,在頂部的裂隙和溶洞中多有粘土質和砂、礫石充填。滲透系數為3.405~10.385m/d,單位涌水量為0.799~1.794L/s·m,水溫19.5℃,水質類型為HCO3-CaMg型。本層含水性較強,是一良好的供水層位,但對礦井深部的開采存在很大威脅。1958年的靜水位標高為+22.26m(車43孔),目前本含水層水位標高為-16m左右。
5.3.1.2 礦井隔水層概述
本區弱或極弱透水性地層或密集為層系或獨立成層。撇開構造因素,僅就岩性區分,自上而下有:
(1)A層及其附近鐵鋁質粘土岩
A層以上發育為3~4層,層間距為4~20m,層厚度為3~8m;A層以下80m段距內發育4~5層,層厚小於2m。A層以上段落及以下段落的粘土岩均為弱透水層。
(2)煤5~煤12-2層間沉凝灰岩,各類泥岩,高嶺土質砂岩
沉凝灰岩和高嶺土質砂岩分布在煤8、煤9近旁以及煤12-1~煤12-2之間,遇水膨脹、裂隙彌合,是極弱透水層。層厚由2~28m不等。各類泥岩層薄,主要賦存在煤8以上與煤12-2近旁,構成煤層直接頂底板。
上述類別岩石連同煤層本身構成了水源不足的層間承壓水頂底板。這種含、隔水層密集相間的層系結構形成了垂向徑流纖弱的整體阻水效應。因此,煤5以上和煤12-2以下可以水源為背景,分為缺乏垂向聯系的兩大含水層組。
(3)G層鋁土質粘土岩
其厚度隨著奧灰剝蝕面起伏變化,大都小於10m。位於煤層基底的G層鋁土質粘土岩是穩定的區域隔水層。該層是阻止奧灰水侵入煤系的第一道屏障;復結構的14煤及其粉砂岩與泥岩互層則是第二道屏障。
根據對礦井水文地質條件的綜合分析,12-2煤底板主要隔水層為G層鋁土質粘土岩。
5.3.2 斷層導水性
東歡坨礦區在建井期間共發現106條斷層。此外,通過三維地震勘探發現8條斷層,其中有4條斷到奧陶系在岩。實踐證明:礦區絕大多數斷層導水性較差,甚至不導水。但在北一,通過對由三維地震勘探給出的斷層F3'、F5'進行井下鑽探,表明它們導水,水量充足,且與12-2煤底板含水層及5煤頂板含水層有十分密切的水力聯系。由於工程限制,對由其他三維地震發現的斷層並未做鑽探,但並不排除這些斷層的導水可能性。
5.3.3 礦井充水條件
5.3.3.1 礦井的充水水源
(1)大氣降水、地表水
大氣降水、地表水均是井田內地下水的主要補給來源,它們分別通過基岩裸露區及風化帶滲入補給,並順層徑流。但在此地區受地形及基岩裂隙發育程度的控制,補給量有限。
大氣降水:本區屬大陸性季風氣候,每年降水多集中在6~9月份,其他時間降水很少。大氣降雨通過下滲補給第四系底卵石含水層,通過順層和垂向補給其他含水層。根據沖積層水文地質剖面圖及有關資料,沖積層內含有3個岩性以粘土、亞粘土為主的隔水層,這3層隔水層,沉積比較穩定,隔水性能較強,阻隔了大氣降水的向下補給,下滲補給量較小。因此,大氣降雨對下部含水層及礦井涌水量不會造成明顯影響。
地表水:井田范圍內無地表水系存在,僅有兩條排水渠。一條向東排至豬籠河,另一條向西排至泥河。兩條河流均遠離礦區,故地表水系對礦井涌水量無影響。
另外,本區內第四系鬆散地層中第三隔水層厚達10~25m,即使有采空塌陷,也不致使粘土層斷開,阻隔了大氣降水和潛水的向下補給。
因此大氣降水、地表水和潛水對礦井涌水量影響甚小。
(2)含水層水
井田內的三大含水系統———第四紀沖積層孔隙承壓含水層,石炭、二疊紀砂岩裂隙承壓含水層和中奧陶紀灰岩岩溶裂隙承壓含水層。
(3)老空水
在建井、水平延伸、新區域施工及最上方煤層回採中,充水水源主要為含水層水。而在下方煤層回採中,老空水就成為了主要充水水源。
在本礦井生產過程中,由於工作面的布置、頂底板的岩性特徵及涌水等因素,在采空區或廢巷有可能存在不同形式的積水。一旦施工工程接近、揭露或冒落帶達到這些積水,便可湧入井巷,發生老空區突水事故。老空區突水具有來勢猛、破壞性大的特點,往往是瞬間大量積水潰入工作面,形成災難性事故。
本礦井4個主要可採煤層,其間距為8~12m,屬煤層群開采。下一煤層開采時,其導水裂隙帶遠遠大於煤層間距,這樣當上方采空區或老巷道存有積水、動水時,這些積水、動水會順裂隙進入工作面,成為突水水源,若水中再夾雜煤渣、岩碴形成煤矸泥,對下方工作面威脅更大。
基於以上原因,同時受地質條件所限,僅在中央及北一兩個采區內回採,所以生產階段主要是存在老空水的威脅,防治水工作也主要是對老空水的探放。如:2192下風道在掘進及回採前對上方2182上采空區積水進行探放,共疏放積水1728m3;2118工作面在掘進及回採前對上方2196采空區及老巷道進行探放,前後共放出積水及動水4.3萬m3;另外2192上、2094、2116等工作面在掘進及回採前均進行了探放,證明存在老空水。由於採取了超前的探放水工作,十幾年來未因老空水隱患出現水害事故。
老空水是長期積存起來的,多為酸性水,有較強的腐蝕性,對礦山設備危害甚大。老空區突水時,水勢猛,破壞性大,如與其他水源無聯系,則突水可急劇減弱。通過確定充水水源,有利於更有效地為防治水提供資料。
5.3.3.2 礦井充水通道
通過近十年的生產實踐,東歡坨井田范圍內充水通道主要有以下3種方式:
(1)直接揭露含水層
根據開採煤層與含水層的關系,可分為直接充水水源和間接充水水源。從目前礦井的開采區域看,直接充水水源為A0~A、A~5煤頂、12煤~14煤含水層組。
在煤礦生產中,有些工程必須穿越含水層。當巷道直接揭露這些含水層後,含水層水將會進入礦井。如本礦-500水平軌道中石門及-690水平軌道中石門,按設計其由A0~A含水層,穿越A下80m含水層、5煤頂含水層直到12-1煤。這樣當巷道揭露含水層時,均發生了涌水,其中5煤頂含水層最大出水點達到10.26m3/min。
(2)斷裂帶導水
本井田構造發育。通過建井及生產階段來看,大部分斷層未與含水層導通或不導水,但是有些斷層則表現導水或揭露時未導水,但由於擾動影響成為導水斷層。如2182上工作面在風道掘進時遇一條落差為2m的F138正斷層,未出水,但回採至該斷層時,又發生了突水,水量0.55m3/min;-230水平北二頂板繞道利用管棚技術順利通過F2(落差35m)斷層組,一年半後發生了遲到突水,最大涌水量3.0m3/min,並伴隨有大量的黃泥、卵礫石等物,判斷為導通沖積層水。
(3)采礦造成的裂隙通道
巷道掘進和工作面回採時,都會對原有圍岩產生影響,當產生的裂隙導通含水層或其他水源時,這些水也會順采動裂隙進入礦井。大部分回採工作面出水均屬此種通道。
I. 地質條件概況
一、地層岩性
灌區地處秦嶺山脈緯向構造帶、祁呂賀「山」字型的前弧東翼與新華夏系等構造體系的復合部位,灌區基底構造形態復雜,斷裂比較發育,且多數隱伏於地下,如涇河斷裂、三原斷裂、魯橋斷裂等。灌區處於鄂爾多斯台向斜南部邊緣,渭河斷陷盆地中段的北側,為新生代以來的構造下陷區。基底構造為不對稱塊狀斷裂,呈現高角度階梯式且多為北高南低,控制著第四系的沉積厚度,岩相變化及地貌景觀。地貌單元可劃分為河漫灘,一級階地,二級階地,三級階地,其中以二級階地的分布范圍最大,佔90%左右。黃士台源、洪積扇僅分布在灌區的西北、北部邊緣。灌區階地類型,除涇陽縣以西涇河左岸為嵌入式階地外,東部均為上疊階地。
灌區內第四紀地層比較發育,沉積厚度及岩相變化自西向東、由北向南,厚度逐漸遞增,岩性顆粒由粗變細。
(1)第四系全新統沖積層(Qh2al):岩性為亞砂士、砂質粘士、粗砂、砂卵石。分布於一級階地上部及近代河漫灘。
(2)第四系全新統沖積層(Qh1al):岩性為砂質粘士、亞砂士、砂礫石。分布於涇河二級階地上部。
(3)第四繫上更新統沖積層(Qp3-2eol):由新黃士、夾1~2層古士壤組成。分布於涇河三級階地和渭河二級階地。
(4)第四繫上更新統沖積層(Qp3-1al):岩性為亞砂士、砂質粘士夾砂層,底部有少量卵石。分布於渭河二級階地及涇河三級階地下部。
(5)第四系中更新統沖積層(Qp2-2pl):岩性為棕紅色粘士、亞粘士夾半膠結砂及砂礫石互層。分布於各級階地下部。
(6)第四系中更新統風積層(Qp2-1eol):岩性為老黃士,夾1~2層古士壤,分布於黃士台源下部。分布於各級階地下部。
(7)第四系下更新統洪積層(Qp1pl):岩性為深棕灰色夾砂,砂卵石透鏡體,沉積厚度大。分布於黃士台源及河谷階地最下部。
二、水文地質
灌區內地下水的類型根據其埋藏條件可分為潛水、淺層承壓水和深層承壓水。潛水總體流向與地形傾向基本一致,即流向為北西-南東,由於地形地貌、河流縱向切割、地下水開采分布等因素的影響,在各個地區流向亦有所不同。例如灌區上游涇河一、二級階地區,流向趨於南北方向;灌區中游二級階地區,流向為北西-南東或者近於東西方向;清峪河北側、南側的局部范圍,流向為北西-南東、南西-北東向;局部地區由於地下水開采因素的影響,潛水由四周向閻良區以北一帶的漏斗中心流動。清峪河南部的水力坡降為1.74‰~4.71‰,由西向東遞減;清峪河北部水力坡降為2.3‰~6.78‰,總體趨勢與地形坡度基本一致,灌區水文地質剖面圖見圖2-3。
灌區潛水分布較廣,各種垂向滲入為其主要的補給來源,也是近期主要的農業灌溉開采水源,賦存於第四系全新統沖積層中,埋藏相對較淺,容易開采。在河漫灘和一、二級階地區,潛水埋深一般為2~10m。在清峪河與涇河兩側、階地與黃士台源交替地帶潛水埋藏較深,大致為10~20m,其分布面積相對較小。潛水含水層岩性主要是亞粘士、亞砂士、粉細砂、砂礫石層,厚度為20~50m。渭河二級、涇河三級階地區,潛水埋深為20~40m,岩性主要為上更新統沖積亞砂士、粘士、砂礫石層,厚度為13~59m。其中涇河一級階地區,由於含水層的亞砂士、亞粘士覆蓋於砂卵石層之上,呈二元結構,故局部具有微承壓性,承壓水頭400~414m。灌區承壓水埋深大約在100 m以下,為遠源補給,埋藏較深、水量小、不易開采。
圖2-3 灌區水文地質剖面圖 Fig.2-3 Hydrology geological section in jinghui Canal Irrigation District
三、工程地質
灌區分布最為廣泛的為第四系全新統沖積層,表層為黃士狀壤士,厚度5~9m,其下部為古士壤與粉質壤士互層,古士壤層厚約2.0m,士層總厚50m以上。表層黃士狀壤士,士壤塑限含水量16.07%;平均天然干容重1.3g/m3;平均天然孔隙率52%;平均飽和度為0.583;平均天然含水量23.5%;該士細粒士及粒徑<0.05mm的士粒質量占士樣質量的12%,屬凍脹士。
J. 河谷沖積層中的地下水一般不具有哪些特徵
河谷沖積層中的地下水一般不具有哪些特徵()
A 、含水層沿整個河谷呈帶狀分布
B 、含水層水質均勻、水質較好、水質埋深淺
C 、主要靠大氣降水、河水和兩岸的基岩裂隙水供給 、具有承壓水的特點
參考答案:A