地質災害有滯後性
1. 地質災害及其基本特性
地質災害指給人類生命財產、生產活動和生存與發展造成危害的地質事件。由地質作用引起或地質條件惡化導致的自然災害都劃歸為地質災害。
地質災害既具自然屬性,又具社會屬性。自然屬性是指地質災害都是一種自然地質現象,社會屬性是指地質災害必須對人們的生命財產或資源、環境造成危害,否則,稱其地質現象。地質災害的屬性特徵如下:
1)地質災害的必然性和可防禦性。地質災害是地球物質運動的產物,是伴隨地球運動而生並與人類共存的現象。但通過科學調查、研究,揭示並掌握地質災害發生、發展的條件和分布規律,進行科學的預測預報和採取適當的防治措施,就可能對地質災害進行有效防禦。
2)地質災害的隨機性和周期性。地質災害是在多種動力作用下形成的,其發生時間、地點和強度等具有很大的不確定性,可以說,地質災害是復雜的隨機事件。受地質作用周期性規律的影響,地質災害也表現周期性特徵,多具有季節性規律。如每年的雨季往往是地質災害多發季節。
3)地質災害的突發性和漸進性。突發性地質災害大都以個體或群體形態出現,具有驟然發生、歷時短、爆發力強、成災害快、危害大的特徵,如地震、崩塌、滑坡、泥石流等。漸進性地質災害是指緩慢發生的,以物理的、化學的和生物的變異、遷移、交換等作用逐步發展而產生的災害,主要有土地荒漠化、水土流失、地面沉降等。
4)地質災害的群體性和誘發性。地質災害常常具有群發的特點,如在山區,崩塌、滑坡、泥石流等災害往往成群體發性。也可能一種地質災害的發生,是後一種災害的誘因或災害鏈中的一環,如崩塌、滑坡往往是泥石流形成區固體物的主要來源。
5)地質災害的成因多元性和原地復發性。每一次地質災害的成因均不相同,並都是多元因素作用的結果。某些地質災害具有原地復發性,如泥石溝復發頻繁。
6)地質災害的區域性。地質災害的形成通常受地質條件的控制,因此,其空間分布也呈現區域性的特點。受我國地形、地質條件的限制,我國地質災害可劃分為4個大區:東部平原沉降區,以地面塌陷和礦井突水為主;中部山地崩滑區,以崩塌、滑坡和泥石流災害為主;西部高原凍土區,主要災害是凍融、泥石流;西北部草原沙漠區。
7)地質災害的破壞性與建設性。地質災害對人類的主導作用是多種形式的破壞,但有時地質災害對人類會產生有益的建設性作用。如山區斜坡帶發生的崩塌、滑坡堆積為人類活動提供了相對平緩的台地,人們常在古滑坡體居住或耕作。
8)地質災害影響的復雜性和嚴重性。地質災害的發生、發展有其自身復雜的規律,對人類社會經濟的影響還表現出長久性、復合性等特徵。重大地質災害常造成大量的人員傷亡,使基礎設施遭受破壞,生產停頓或半停頓,社會經濟遭受巨大的直接或間接損失。
9)人為地質災害日趨顯著。由於人口的急劇增長,各種經濟開發活動愈演愈烈,許多不合理的人類活動使地質環境日益惡化,導致大量次生地質災害的發生。如過量開采地下水引起地面沉降、海水入侵和地下水污染,礦業活動引發崩塌、滑坡、泥石流、水資源枯竭、水質污染,過度放牧導致土草地退化、土地荒漠化等。
10)地質災害防治的社會性和迫切性。地質災害除了傷害人員,破壞房屋、鐵路、公路、航道等工程設施,造成直接經濟損失外,還破壞資源和環境,給災區社會經濟發展造成廣泛而深刻的影響。
2. 地質災害防治工作現狀及存在的主要問題
存在的主要問題。一是部分幹部群眾科學防災意識薄弱,存在僥幸心理;二是地質災害防治經費嚴重不足,部分地區地質災害危險點和隱患點勘查治理與搬遷避讓工作進展緩慢;三是地質災害應急處置交通工具和防治技術等無法滿足汛期地質災害防治工作的需要;四是地質災害防治工作機構還不夠健全,管理人員嚴重不足,技術力量薄弱等。
一是繼續加強領導,落實防災責任。充分認識做好當前地質災害防治工作的重要性和緊迫性,切實加強領導,將地質災害隱患點的監測預報預警責任分解到村、到戶、到人。二是加強排查,消除災害隱患。重點抓好丘陵山區和重大工程地質災害危險點、隱患點的全面排查,及早發現和解決問題,消除隱患,落實監測預報預警措施和避險場所。會同氣象、水文等有關部門,進一步做好地質災害氣象預警預報工作,擴大預報信息發布的覆蓋面,增強時效性,確保及時將預警預報信息發送到相關管理人員。出現暴雨、特大暴雨的地區,要對滑坡、崩塌、泥石流地質災害隱患點加密監測頻率。三是加強值班,確保信息暢通。嚴格遵守汛期值班、災情速報和專報制度,保證汛期24小時輪流值班,確保災情險情信息及時、准確。四是加強保障,提高反應能力。切實加強地質災害應急管理機構和隊伍建設,確保地質災害應急人員、車輛、經費和相關設備的到位。充分發揮地勘單位的技術優勢,做好地質災害應急處置的各項工作,隨時參與地質災害應急搶險和應急調查等工作。五是加強監督,減少人為災害。加強對各類工程建設項目引發地質災害活動的監督管理,嚴格執行地質災害危險性評估和地質災害防治工程「三同時」制度,防止開采礦產資源和地下水資源引發地質災害,減少人為因素引發的地質災害。六是加強宣傳,增強防災意識。充分發揮廣播、電視、互聯網、報刊、手機簡訊的作用,進一步做好丘陵山區受地質災害威脅群眾的宣傳教育工作,提高群測群防水平和科學防災救災能力。
3. 地質災害的危害性有哪些
地質災害是指在地球的發展演化過程中,由各種自然地質作用和人類活動所形成的災害性地質事件。一般認為,地質 災害是指由於地質作用(自然的,人為的或綜合的)使地質環境產生突發的或漸進的破壞,並造類生命財產損失的事 件或現象。 地質災害的分類,有不同的角度與標准,十分復雜。 就其成因而論,主要由自然變異導致的地質災害稱自然地質災害;主要由人為作用誘發的地質災害則稱人為地質災害。 就地質環境或地質體變化的速度而言,可分突發性地質災害與緩變性地質災害兩大類。前者如崩塌、滑坡、泥石流等,即習慣上的狹義地質災害;後者如水土流失、土地沙漠化等,又稱環境地質災害。 根據地質災害發生區的地理或地貌特徵,可分山地地質災害,如崩塌、滑坡、泥石流等,平原地質災害,如地質沉降,如此等等。 常見的地質災害有12類。 1、地殼活動災害:如地震、火山噴發、斷層錯動 2、斜坡岩土體運動災害:如崩塌、滑坡、泥石流 3、地面變形災害:如地面沉降、地面塌陷、地裂縫 4、礦山與地下工程災害:如煤層自然、洞井塌方、冒頂、偏幫、鼓底、岩爆、 高溫、突水、瓦斯爆炸 5、城市地質災害:如建築地基與基坑變形、垃圾堆積 6、河、湖、水庫地質災害:如塌岸、淤積、滲漏、浸沒、潰決 7、海岸帶災害:如海平面上升、海水入浸、海岸侵蝕、海港淤積、風暴潮 8、海洋地質災害:如水下滑坡、潮流沙壩、淺層氣害 9、特殊岩土災害:如黃土濕陷、膨脹土脹縮、凍土凍融、沙土液化、淤泥觸變 10、土地退化災害:如水土流失、土地沙漠化、鹽鹼化、潛育化、沼澤化 11、水土污染與地球化學異常災害:如地下水質污染、農田土地污染、地方病 12、水源枯竭災害:如河水漏失、泉水乾涸、地下含水層疏乾等
4. 地質災害發生前都有一個短暫的漸進性變化過程
地質災害發生前總會有一些以漸進性變化為特徵的異常現象,即所謂「前兆」。例如地震、滑坡、地面塌陷發生前會出現地面變形、沉降,地下水位、水質的異常。這些前兆與漸進性地質環境問題的表現形式有許多相似之處,只不過前兆呈現的地段有限,大多集中在災點附近,且變化的速率較快而已。
通過上述關於地質災害與漸進性地質環境問題兩者關系的討論,可以得到以下幾點啟示。
(1)地質環境問題產生的原因是錯綜復雜的,在因果關繫上存在著「多因單果」、「單因多果」的現象。前者是說某一種地質環境問題(現象)可以有多種成因;後者是說某一種地質作用或人為活動可以引發多種不同的地質環境問題。除此之外,一種地質環境問題的出現又有可能為另一種問題的發生創造條件,即存在著「因果長鏈」。地質災害與漸進性地質環境問題之間的相互影響,充分體現了各種地質環境問題之間復雜的因果關系。因此,環境地質工作要格外重視地質背景及其地段性差異的調查,調查的內容既要做到全面充分的揭示岩土、水等時空結構的特徵,又要結合成因機理,對已出現和可能出現的地質環境問題發生的地點作出全面的綜合判斷。那種脫離地質背景和成因分析的災害現狀調查或者僅僅圍繞某一特定地質環境問題而開展的調查評價應盡量避免。
(2)地質環境系統是自然-人工復合系統,許多地質環境問題的出現都與人為活動有著緊密聯系,由於未來人為活動的方式、強度在許多情況下,是難以准確把握的,尤其在中小尺度上超前作出判斷幾乎是不可實現的,所以,人為活動信息的不充分往往是地質環境適宜性評價面臨的難題。對此,環境地質工作指導思想應有所改變。
首先,要弄清環境地質工作的社會職能,其職責是為政府決策提供有關環境地質正、反兩方面的論證依據,環境地質工作者既不能越俎代庖視自己為決策者,又不能始終站在後台扮演可有可無的角色。例如在城市化進程中,環境地質工作與城市建設、規劃是一個相互緊密配合的過程。一方面環境地質工作者要向規劃、建設部門提供有關地質環境的基礎背景資料;另一方面又要針對規劃、建設方案可能遇到的地質環境問題風險作出論斷。也就是說要改變環境地質部門只提供基礎資料,規劃部門獨家制訂規劃的做法。規劃是個多學科綜合,多方利益權衡,城市多功能合理配置的運籌過程,只強調城市經濟功能和美學價值,忽視人與地質環境的正、負關系是導致城市地質環境問題頻發的主要原因,反之,不考慮未來人為活動的方式,只分析地質背景強調地質環境脆弱的一面,單方面提出適宜或不適宜的結論也是不妥的。
其次,要注意地質環境系統是不斷演化的,人為活動可以破壞環境,也可以改善環境。因此,在城市化的進程中,環境地質工作與城市環境問題的成因分析和防治措施的制定也必然要適時到位。要做到這一點,必須對還在發育中的地質作用和過程(包括人為的)的時空關聯關系要及時捕捉、分析,尤其要注意對人為活動方式、施加地點、作用強度等資料的收集。那種以地質背景現狀調查為主,不考慮地質環境問題與人為活動對應關系的調查成果,不僅不能全面了解地質環境問題產生的根源,而且對現狀和未來可能施加的人為活動的合理性也難以作出科學的論斷。總之,根據情況的變化,及時提出風險評估和應對的建議是環境地質工作者長期的任務,換句話說,環境地質調查評價不是一次性、一勞永逸的工作。
(3)地質環境系統演化規律的科學探索任重而道遠。有些理論用於解決現實的環境地質問題還有許多工作要做,特別是有關地質災害(突發性的地質環境問題)發生時間、地點、規模的准確預測、預報目前還難以實現。在這方面目前切合實際的辦法就是重視突發前各種「前兆」的捕捉和綜合分析。相關的工作有兩點:一是盡可能多地收集已有災害點的「前兆」資料,包括岩土變形、水位、水質和地表景觀變化的數據和形態描述,結合地質的和人為活動條件,對它們的運動頻率、變化速率、趨勢及各狀態指標的關聯過程進行統計分析,尋找出不同條件下突變出現的時機和主要特徵,從中提取有助於推斷災害發生時間、地點、規模的規律性認識;二是對潛在的或有可能近期發生的災害點加強監測,特別是對規模較大,後果嚴重的且處於漸變階段的災害點,應加密監測點,縮短監測時間間隔,增加監測內容,並快速進行數據處理和相應的專家會商。實踐表明,在地質災害預測理論和預測方法還不完善的今天,上述工作對於防災減災正發揮著重要的作用。
5. 地質災害治理的必要性和迫切性有什麼區別
必要性:
地質來災害預防指源對突發的由自然或人為因素引起的諸如泥石流、滑坡、山體崩塌等地質災害,通過一定的工程技術手段消除或減少這些地質災害的發生,從而為人們的財產和生命健康提供安全保障。
迫切性:
地質災害頻繁發生,對人們的生命安全和社會財產造成了嚴重的影響。
6. 水與地質災害
一、降雨
黃土由粉土、粉質粘土組成,透水性一般較差,降雨一般不容易滲入形成上層滯水或潛水,一次降雨所引起的潛水位上升幅度不大,而且滯後現象明顯。所以,單純就降雨而言,似乎不會觸發滑坡、崩塌地質災害。但是,在黃土構造節理、卸荷與風化裂隙、落水洞、陷穴等發育部位,降雨可沿空隙下滲甚至灌入,在相對隔水部位形成上層滯水或飽水帶,增大岩土體重力、甚至形成孔隙水壓力,降低岩土體強度,從而觸發黃土滑坡、崩塌的發生。
據本次調查資料,地質災害主要發生在6~10月,與降雨量以及降雨特徵關系密切。如1986年6月調查區持續陰雨天,月降雨量達全年最高,日降雨量達35.9mm,在城區連續觸發寶塔山和鳳凰村2個滑坡。區內近年發生滑坡和崩塌頻次與多年月平均降水量呈明顯的正相關關系。
二、地表水
地表水與地質災害關系密切,這里主要指河流與水庫中的地表水。
黃土高原土質疏鬆,夏秋季多暴雨和大雨且時間集中。降雨在短時間內匯集,形成具有較強侵蝕能力的地表水流,塑造了黃土高原千溝萬壑的地貌形態,也常引發地質災害。河流發育期不同對地質災害的影響不盡相同。區內的延河、南川河及汾川河等幹流及較大的一級支流已進入老年期,河谷已達百米—數百米寬,河流下切進入基岩數米,基岩出露亦高達十數米,河谷內沖淤趨於平衡,流水對兩側坡腳侵蝕作用減弱,對地質災害的形成影響不明顯。在二三級支流內,基岩多有出露,河流下蝕受阻,側蝕作用較強,對谷坡的穩定性具有明顯的影響,在歷史上已引發較多的滑坡。滑坡堵塞河谷,滑體受流水沖刷侵蝕,大部不復存在;谷坡滑動後,亦達到較為穩定的狀態。在三四級或更小的溝谷內,主要為黃土溝谷,流水的下蝕和側蝕均存在,兩岸谷坡較陡,目前仍處於流水的侵蝕中,是滑坡、崩塌的多發地段,但這些地區由於地形條件差,人類活動相對較少,滑坡崩塌形成地質災害的概率較低。自實施退耕還林(草)政策以來,區內植被得到有效的保護和發展,河流溝谷中的水流明顯減少,地表水的侵蝕強度有所削弱,流水對地質災害的影響也漸趨緩和。
水庫或淤地壩附近,地表長期積水,最直接的影響是使地下水位抬升,在較大范圍內形成地下水,通過地下水對斜坡穩定性造成明顯影響。
三、地下水
研究區地形破碎,水土流失嚴重,地下水十分貧乏。但是,由於黃土節理裂隙發育,在斜坡地帶,在原生節理和構造節理的基礎上,發育了密集的風化、卸荷裂隙,甚至演化為黃土陷穴、落水洞,在暴雨過程中,降水匯集,沿節理、裂隙、陷穴、落水洞等通道快速下滲,在古土壤或基岩之上形成局部上層滯水,甚至潛水。地下水活動降低了黃土強度,改變了坡體應力狀態,常常觸發斜坡變形失穩。據研究,當黃土含水量<18%時,黃土力學強度較高,坡體在直立的狀態下也可保持穩定;但如果>20%,則強度降低很快,坡體穩定性亦變差。所以,地下水活動對斜坡變形失穩的影響作用十分明顯。地下水活動的影響作用主要表現在以下幾個方面:
一是斜坡上的上層滯水的存在,降低了土體強度,增加了土體的重量,易觸發斜坡變形失穩。
二是在連陰雨過程中或大雨之後,水分入滲途中在古土壤層受阻,使古土壤以上的土體含水量增大,雖尚未飽和或形成上層滯水。但是,由於含水量增大,降低了土體強度,也同樣觸發斜坡變形失穩。
三是水庫地表水轉化為地下水,影響地質災害。如河庄坪鎮趙家岸水庫蓄水,引起坡體內地下水位上升,在坡體前部形成泉水,斜坡變形導致居民房屋變形及牆體開裂,嚴重威脅居民安全。
7. 地質災害在成因上具有什麼性
( 1 )關聯 ( 2 )地質地貌特點是:坡陡谷深、岩石破碎、碎屑物質多、植被不良的回山區;氣候氣象水文條件是答:較為明顯的旱雨季節,雨季降水集中且多暴雨,或是春夏季節有大量高山的冰雪融水,短時間匯集成巨大的水流。 ( 3 ) A C
8. 地質災害的危害性有哪些
地質災害是指岩土體在重力作用和誘發因素(降雨、地震、人類工程活動等)版作用下發生的變權形破壞地質現象。如滑坡、崩塌、泥石流、地面塌陷……
①地質災害與地震區別:
地質災害→力源→重力作用。
地震→力源→區域構造應力作用,構造應力作用→形變→形變應變能→能量釋放→地震,見「應力與孕震能力間關系』一文。
②地質災害危害:
a)直接危害:
一一人員傷亡統計。
一一財產損失統計。
一一險情計算。
b)間接危害:
地質災害鏈等,如滑坡堰塞湖→一旦潰壩→泥石流或洪災…→危害。
滑坡崩塌堵溝→潰決→潰決型泥石流→危害。
9. 地質災害穩定性與危害性
一、地質災害穩定性分析
(一)數值法
工程地質數值法,是採用彈塑性力學理論和數值計算方法,從研究岩土體應力和位移場的角度,分析評價岩土體在一定環境條件下的穩定性狀態。近30多年來,數值法得到了迅速發展,並被廣泛地應用於工程實踐中,本文採用FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)軟體進行斜坡穩定性數值分析。FLAC3D軟體是美國ITASCA咨詢集團開發,主要用於模擬岩土體及其他材料組成的結構體,在達到屈服極限後的變形破壞行為。該軟體將流體力學中跟蹤流體運動的拉格朗日法成功地用於解決岩石力學問題,它除了能解決一般的岩土問題之外,還能進行如高溫應變、流變、或動荷載、水岩耦合分析等復雜的問題。
1.模型計算方法
FLAC3D軟體是利用有限差的方法模擬計算由岩土體及其他材料組成的結構體在達到屈服極限後的變形破壞行為,包括靜力計算和有限差強度折減計算兩種方式。這兩種計算方式得到的結果並不完全相同,本次同時選擇這兩種計算方式,對本區黃土滑坡和不穩定斜坡做驗算分析。
靜力計算的方法需要建立的模型以及所選參數必須使得模型計算的時候完全收斂,如果計算過程快速收斂,則認為模型是基本穩定的。但是,在做滑坡穩定性分析時候,由於影響滑坡穩定性的因素較多,比如坡高、坡度以及不同坡體的黃土體力學參數的不同,往往不能得到一個快速收斂的計算模型,因此通過靜力計算的方式不能完全判斷坡體的安全性。強度折減法是FLAC3D唯一的可以計算坡體安全系數的方法。因此,可以利用這一方法求出坡體的安全系數,然後結合靜力計算的結果來判斷坡體的穩定性。根據《滑坡防治工程勘察規范》(DZ/T 0218-2006),選擇安全系數<1.05判斷為不穩定,安全系數1.05~1.15為較穩定,安全系數≥1.15為穩定,以此作為主要災害點的穩定性判據。
有限差強度折減系數法的基本原理,是將土體強度參數內聚力(C)以及內摩擦角(ϕ)值同時除以一個折減系數Ftrial,得到一組新的Ctrial和ϕtrial值。然後,作為新材料參數帶入有限差進行試算。當計算正好收斂時,也即Ftrial再稍大一些(數量級一般為10~3),計算便不收斂,對應的Ftrial被稱為坡體的最小安全系數,此時土體達到臨界狀態,發生剪切破壞。計算結果均指達到臨界狀態時的折減系數:
Ctrial=C/Ftrial
tanϕtrial=tanϕ/Ftrial
2.模型類型及參數選擇
選擇摩爾庫侖模式作為材料模型,根據勘查和力學性質測試結果,並考慮到調查區災害的發生與降雨關系密切,故選擇飽水狀態下的物理力學參數作為計算參數:
體積模量:
K=4.5MPa
剪切模量:
G=2.1MPa
內聚力:
C=3.4×104Pa
內摩擦角:
ϕ=21.4°
3.黃土邊坡分析
(1)模型建立及網格剖分
調查資料表明,30°~60°的黃土直線型斜坡發生變形破壞的可能性較大,考慮到建立模型的方便性,選擇30°~70°之間的直線型邊坡進行分析,同時建立一些階梯狀的邊坡進行比較分析。
按照鄭穎仁教授的觀點,在做邊坡模型的強度折減法求邊坡安全系數的同時,要求所建立的模型坡角到最左側的距離為1.5倍坡高,而坡頂到最右側的距離為2倍坡高,這樣計算的安全系數結果最為准確。
以坡高40m坡度45°的直線型邊坡為例,建立模型並進行網格剖分。雖然調查區黃土為層狀結構,不同時期黃土厚度和土力性質不盡相同,但勘查試驗數據表明,其飽和抗剪強度差異不大。因此,假設黃土是均質的,整個模型的強度參數均一。定義模型右側和底部為約束邊界條件,坡面和坡頂為自動邊界。
(2)常規模型和簡化模型的對比分析
在調查區黃土邊坡中,坡高的分布十分不均勻,從十數米,數十米到上百米不等,並且每種坡高都對應有不同的坡度。因此,分析黃土邊坡穩定性時需要全面分析,研究不同坡高不同坡度情況下的各種邊坡的安全穩定性。本次利用FLAC3D軟體模擬了20~50m(每5m區分)坡高情況下30°~70°(每5°區分)所有坡體的穩定性情況。由於模型的不同網格數量以及節點數量不同,造成軟體計算時間上由巨大的差異。鄭穎仁教授所提出的常規模型在計算中有一定的道理,但也同樣極大地增多了模型網格和節點數目,所以強度折減的計算時間非常長。因此,必須首先比較了一下常規模型和簡化模型的計算結果。
首先,用常規模型分析40m坡高30°~70°之間所有坡體的穩定性情況。利用強度折減系數法計算各種坡度情況下的安全系數,可利用靜力平衡計算和強度折減計算,來得到一定坡高各種不同坡度邊坡的穩定性分析(表3-16)。將常規模型計算的坡度與安全系數關系進行擬合,可以得到坡度與安全系數的影響關系曲線(圖3-10)。
圖3-10 常規模型40m坡高不同坡度與安全系數的關系曲線圖
表3-16 常規模型40m坡高不同坡度邊坡穩定性計算匯總表
由於常規模型網格個數的節和點數較多,計算機處理的過程中數據量過分龐雜,計算速度慢,而黃土邊坡的長寬高往往又比較大。這樣我們如果利用鄭穎仁教授的常規模型分析,效率不是很理想。因此,將邊坡的模型網格進行簡化處理,以這樣的處理結果對比常規模型的計算結果。對比時仍然以 40m 坡高35°~70°為例分析,計算結果如表3-17,得簡化模型的擬合曲線如圖3-11。
圖3-11 簡化模型40m坡高不同坡度與安全系數關系曲線圖
觀察一下常規模型強度折減法求得的安全系數發現:而當坡體不穩定時,兩種模型計算的安全系數相同;而當坡體穩定時,簡化模型的安全系數計算結果要比簡化模型的結果小一些,但是總體上坡體穩定性的結果影響不是很大。在實際工程應用中,我們為了安全考慮,完全可以考慮使用計算結果較小的簡化模型進行分析計算。
表3-17 簡化模型40m坡高不同坡度邊坡穩定性計算匯總
(3)坡度與安全系數的關系
利用簡化模型,分別結合靜力計算方法和強度折減系數方法,分析計算了20~50m坡高情況下的各種坡度邊坡的穩定性;同時得到固定坡高的情況下,坡度和安全系數的擬合關系曲線。通過坡度與安全系數的擬合曲線可以看出,固定坡高時,當改變坡度,安全系數隨著坡度的增加而減小,坡體逐漸不穩定。而安全系數隨著坡度變化呈現對數關系變化,擬合程度較高。
(4)土體強度參數的變化分析
根據勘查和試驗測試數據,區內黃土的內聚力C值以及內摩擦角ϕ值變化較大(如表3-18),因此有必要研究一下強度參數的變化趨勢對於坡體安全系數的影響。
表3-18 黃土物理力學指標統計表
以20m坡高60°邊坡為例,固定模型的內聚力:
C=34kPa
然後改變土體的內摩擦角,利用強度折減系數法分別計算不同內摩擦角情況下的安全系數情況,得到結果如表3-19所示。由計算結果可以看出,隨著內摩擦角的增大,安全系數逐漸增大。內摩擦角越小,潛在滑動帶越向外擴展,危險滑弧越開闊,而坡體的穩定性越差(圖3-12)。
表3-19 不同內摩擦角對安全系數的影響統計表
仍然以20m坡高60°邊坡為例,固定模型的內摩擦角:
ϕ=21.3°
然後改變土體的內聚力,利用強度折減系數法分別計算不同內聚力情況下的安全系數情況,得到結果如表3-20所示。計算結果顯示,內聚力越大,安全系數越高。但是潛在滑動面越向外伸展,滑弧越開闊,但是穩定性越高,這一點和內摩擦角的影響恰好相反(圖3-13)。
表3-20 不同內聚力對安全系數的影響統計表
圖3-12 滑弧隨內摩擦角的變化趨勢圖
圖3-13 滑弧隨內聚力的變化趨勢圖
(5)邊坡剖面形態的影響
研究區黃土邊坡的剖面形態大致分為四類:直線型、階梯型、凸型和凹型。調查結果發現凸型邊坡和直線型邊坡發生失穩變化的數目最多,可能性最大。因此有必要分析坡型的變化對於坡體穩定性的影響。在這里我們只對直線型和階梯型邊坡作對比分析。
以40m坡高45°邊坡為例,分別建立直線型和階梯型邊坡,利用靜力平衡和強度折減方法計算其各自的安全系數,並對照最大不平衡力曲線和坡體內部剪切應變雲圖分析這兩種坡體的穩定性。計算結果發現直線型邊坡明顯發生破壞,坡體內部剪切應變呈帶狀分布,而階梯型邊坡的安全系數增大,靜力計算時在4460時步收斂,坡體穩定(圖3-14,圖3-15;表3-21)。
圖3-14 直線型邊坡靜力計算下的最大不平衡力曲線圖
圖3-15 階梯型邊坡靜力計算下的最大不平衡力曲線圖
表3-21 40m、45°直線型和階梯型邊坡對比分析表
4.主要災害點穩定性分析
根據上述分析方法,對調查區的30個主要滑坡和不穩定斜坡點進行數值分析,求出坡體的安全系數,判斷坡體的穩定性,分析結果列於表3-22。
表3-22 主要災害點穩定性數值分析結果表
(二)極限平衡法
1.計算方法與軟體選擇
斜坡穩定性分析的方法較多,目前較成熟的主要有:瑞典條分法、畢肖普法、工程師團法、羅厄法、斯賓塞法、摩根斯頓法、簡化法等,由於這些方法對土體進行了不同的假定,計算結果也各有差別。本次採用Geo-Slope軟體對選擇的30處滑坡和不穩定斜坡進行穩定計算。
Geo-Slope軟體是一個集極限平衡法和有限元法於一體的計算軟體,分成斜坡穩定性分析(Slope/w)、滲流分析(Seep/w)、應力分析(Sigma/w)、地震狀態分析(Quake/w)和溫度變化分析(Temp/w)等。本次主要採用邊坡穩定性分析(Slope/w)模塊來分析黃土斜坡的安全系數,Slope/w可以採用力的極限和力矩極限平衡來計算穩定系數,其穩定分析原理主要是採用條分法原理。即通過滑面將滑動土塊分成n個垂直條塊,滑面可以是圓弧滑面和各種復合滑面,Slope/w綜合了瑞典條分法、畢肖普法、斯賓塞法、摩根斯頓法、簡化法等各種方法,Slope/w考慮了條塊間的作用力,使計算結果更趨於合理。Slope/w通過手動給定可能的圓心變化范圍,給定多個搜索步長,自動搜索最危險滑面。Slope/w可以通過在土層中給出可能的孔隙水位置來計算孔隙水存在狀況下的穩定性,也可以計算局部加荷條件下的穩定性。
現以畢肖普法為例,簡單介紹極限平衡法的計算原理。
畢肖普主要採用力的極限平衡來計算安全系數。以畢肖普法為例,說明極限平衡法的計算原理,其計算圖示如圖3-16所示。其上作用的荷載有Wi,Ui,Qi,待求的反力及內力有Ni,Si及ΔEi。根據剪切面上的極限平衡要求,可列出下式:
延安寶塔區滑坡崩塌地質災害
圖3-16 畢肖普法計算圖示
將所有的荷載及反力、內力均投影在x』軸上,可寫出:
延安寶塔區滑坡崩塌地質災害
上式可改為
延安寶塔區滑坡崩塌地質災害
將所有的分條的ΔEi迭加,由於∑ΔEi=0,得
延安寶塔區滑坡崩塌地質災害
可得
延安寶塔區滑坡崩塌地質災害
上式的Ni未知,我們利用分條上豎向力的平衡條件得出
延安寶塔區滑坡崩塌地質災害
解方程得:
延安寶塔區滑坡崩塌地質災害
代入式整理得
延安寶塔區滑坡崩塌地質災害
上式兩端都有k,因此在計算k時需要進行試算,一般首先假定右側:k=1。
求出左端的k,再代入右端重新計算k值,直到假定的k值與計算出的k值非常接近為止。
2.主要災害點穩定性分析
根據調查結果,調查區災害的發生與降雨因素關系密切,故在參數選擇上以飽水狀態下的岩土體物理力學參數作為計算參數。根據《滑坡防治工程勘察規范》(DZ/T 0218-2006),選擇安全系數<1.05判斷為不穩定,安全系數1.05~1.15為較穩定,安全系數≥1.15為穩定作為主要災害點的穩定性判據。運用Geo-Slope 軟體計算30個災害點和不穩定斜坡的安全系數進行計算,計算結果如表3-23所示。
表3-23 主要災害點安全系數計算一覽表
續表
下面以趙家岸滑坡為例來說明採用Slope/w進行穩定性分析的具體實施步驟:
(1)剖面圖引入:Slope/w可以直接從Autocad中引入斜坡剖面圖,也可以直接給出比例尺畫出斜坡的剖面圖。為了計算剖面精確起見,根據實測剖面數據,直接輸入數據點畫出剖面圖。
(2)選擇分析方法設置:Slope/w可以選擇極限平衡方法和有限單元法來計算,極限平衡法中可以選擇畢肖普法、斯賓塞法、摩根斯頓法、簡化法等各種方法來計算安全系數,有限單元計算時要引入斜坡內部應力狀態函數來計算。本次選擇極限平衡法計算。
(3)確定分塊的數目和分塊的容差。以確定分析計算的精確性,一般以軟體默認的分塊為30個,容差為0.01。
(4)劃分土層並賦予每個土層力學參數。Slope/w主要以不同岩土性質的分界線來區分各岩土性質,把不同岩性分成不同的土層區,並用不同的顏色以示區分。給土層分區後,再賦予各土層力學參數,力學參數根據延安部分地區勘查數據給出。
(5)給定潛在圓弧滑面的圓心位置,給出圓心位置x和y方向上的增量步和圓弧半徑范圍和半徑增量步,程序自動搜索潛在的最危險滑面,計算其安全系數。對趙家岸滑坡,搜索的最危險滑面如圖3-17所示,從圖上可以看出,趙家岸滑坡後壁最不穩定。
圖3-17 趙家岸滑坡最危險滑面圖
(三)類比法
工程地質類比法,是把已有的滑坡或邊坡的穩定性研究經驗應用到條件相似的對象滑坡或邊坡的穩定性判定中去。在進行類比時,不但要考慮滑坡或邊坡結構特徵的相似性,還應考慮促使滑坡或邊坡演變的主導因素和發展階段的相似性。影響滑坡或邊坡穩定性的因素可分為地形地貌、地質特徵(地層岩性、岩土體結構面特徵、構造節理等)、降雨、人類工程活動(開挖、載入、蓄水等)。這些因素對滑坡或邊坡的穩定性是相互作用、相互影響的。在這些因素的相互作用下,結合坡體變形特徵,判別坡體的穩定性。
1.地形地貌
通過對調查區災害點坡度與坡高統計認為,調查區滑坡多發生於25°以上、坡高大於30m的斜坡,且集中坡度在30°~50°、坡高在40~120m的坡體上。在調查的滑坡中,原始坡型為凸型坡的,占滑坡總數的36.52%;直線型坡占滑坡總數的52.56%;合計占滑坡總數的89.08%,即調查區滑坡發育坡體以凸型、直線型坡為主,安全隱患斜坡坡度在40°以上,且集中於坡度為60°~90°、坡高大於20m的地段內,在地貌上大多位於沖溝兩側或坡體前部的人工斬坡、開挖地段。
2.地層岩性
調查區地層岩性主要由更新世黃土、新近紀泥岩、侏羅紀和三疊紀砂、泥岩及互層組成。由於更新世黃土(主要是晚更新世黃土)的濕陷性崩解性,以及紅粘土及泥岩的相對隔水和遇水軟化、強度降低的性質,使其成為斜坡失穩、發生滑坡、崩塌災害的易發地層。基岩是全區的基座地層,構成黃土-基岩接觸面滑坡的滑床;在基岩出露較高、風化強烈地段或砂泥岩互層地段,是岩質斜坡失穩形成地質災害的易發區。在黃土斜坡地帶,人工開挖形成高陡邊坡,成為地質災害潛在隱患地段。
3.岩土體結構面
調查區岩土體結構面主要是黃土內部順坡披覆的古土壤層、黃土與紅粘土層界面、黃土與砂、泥岩層界面、滑坡所形成的滑塌節理面、滑面以及坡體內部發育的構造節理面、垂直節理面、裂隙等。由於滲透性的差異,在性質差異較大地層岩性界面上形成了隔水層,匯聚的雨水使得上覆黃土、泥岩軟化、泥化,抗剪強度降低,形成軟弱帶,誘發滑坡的發生;而滑坡體內部發育的滑塌節理面、滑面是誘發滑坡復活或發生滑塌的主要因素。這些結構面的存在對坡體的穩定性有著潛在的威脅,一旦條件成熟,可能引起滑坡或誘發滑坡復活而造成災害的發生。黃土內部發育的構造節理及垂直節理、裂隙等是黃土邊坡失穩的一個重要因素。黃土邊坡常常沿這些內部節理面發生破壞,比如居民窯洞發育構造節理,則常常沿構造節理面發生塌窯事故。高陡邊坡地帶,土體常沿垂直節理發育並形成卸荷裂隙、拉張裂縫,形成危岩、危坡。受構造作用,岩體內部發育共軛節理,岩體被切割為不同大小、不規則的岩塊,受物理風化作用,發育風化裂隙,使得岩體更加破碎,在邊坡尤其是高陡地段易發生崩墜現象,造成災害。在砂泥岩互層高陡邊坡地段,泥岩抗剪強度較低,與砂岩強度差異較大,再加之易受風蝕作用,致使上部砂岩懸空、鼓脹外傾,形成危岩體,易發生傾倒、拉裂、鼓脹等形式的崩塌災害。
4.人類工程活動
人類工程活動是誘發地質災害發生的直接因素。人類工程活動主要以不合理的斬坡、開挖及修建蓄水庫為主。由於受地形地貌因素的制約,調查區居民為了居住、生活及經濟建設等的需要,工程活動強烈,進行大量的開挖、斬坡等,造成坡腳應力集中並急劇增大,原有的應力平衡狀態遭到破壞而失去平衡,誘發坡體失穩而發生塌方事故。比如尚合年村滑塌,麻塔崩塌等災害,均是由於不合理的開挖,造成邊坡過陡,引起坡腳應力過於集中,在其他因素的影響下發生的塌方事故,造成傷亡及財產損失。再如延安市衛校東側溝內滑坡,是由於人為不合理的斬坡、開挖坡腳,導致滑坡發生,將石砌擋牆推倒,滑體涌至居民屋牆。目前,坡體坡度約45°,處於不穩定狀態,對居民生命財產構成直接威脅。而人工修建蓄水庫,引起地下水位抬升,導致坡體容重增加,破壞了原有的應力平衡狀態,且地下水導致坡體內部軟弱帶軟化、泥化,抗剪強度降低,易誘發滑坡的發生或老滑坡的復活。趙家岸滑坡由於坡後庫岸蓄水,導致地下水位上升,村民地基嚴重滲水,且地下水位達到了老滑面上部,並有泉水出露,滑坡體穩定性很差,有復活的危險,危及趙家岸村民的生命財產安全。
根據以上因素分析對比,結合坡體變形跡象及特徵,對部分重大災害點進行穩定性判別(表324,表3-25)。
表3-24 主要滑坡災害點穩定性分析
續表
表3-25 主要不穩定邊坡點穩定性分析表
(四)主要地質災害穩定性綜合評價
前面已經用數值分析法、極限平衡法和工程地質類比法對主要災害點的穩定性進行了分析,三種方法分析的側重點不一樣。數值法主要是採用彈塑性力學理論和數值計算方法,從研究岩土體的應力和位移場的角度,分析評價岩體在一定的環境條件下的穩定性狀態;極限平衡法主要運用極限平衡理論來評價斜坡穩定性;而工程地質類比法則是把已有的滑坡或斜坡的穩定性研究經驗應用到條件相似的滑坡或斜坡的穩定性判定中去。影響斜坡穩定性的因素比較復雜。因此,本節將綜合這三種方法的計算結果,來綜合判斷主要地質災害點所處坡體的穩定性。
綜合分析結果表明:30處滑坡和不穩定斜坡中,穩定的3處,占總數的10%;較穩定的7處,占總數的23.3%;不穩定的20處,占總數的66.7%(表3-26)。
表3-26 地質災害穩定性綜合評判表
二、地質災害危害性評估
(一)評估標准
地質災害的威脅對象包括人口和財產。人口可以直接用數量來表徵;財產包括土地、牲畜、房屋、道路等。根據遙感解譯和實際物價調查資料,建立主要經濟價值評估標准(表3-27),按照威脅對象的危險程度和易損性,依據標准逐一累加計算。地質災害災情與危害程度分級標准按表3-28的規定評估。
表3-27 承災體經濟價值評價標准表
表3-28 地質災害災情與危害程度分級標准表
1)災情分級:即已發生的地質災害災度分級,採用「死亡人數」或「直接經濟損失」欄指標評估;2)危害程度分級:即對可能發生的地質災害危害程度的預測分級,採用「受威脅人數」或「直接經濟損失」欄指標評估。
(二)現狀評估
1.滑坡
根據收集以往滑坡資料,以及本次實地調查結果,調查區近些年來有記載的、造成一定經濟損失和人員傷亡的滑坡共有34處。在這34處滑坡災害中,除1處較大級滑坡外,其餘33處災情均為一般級,總共造成5人死亡,以及102.6萬元的財產損失。從已查明日期的滑坡來看,新滑坡災害發生率為0.76處/年(表3-29)。
表3-29 滑坡災害災情與危害程度評價表
2.崩塌
崩塌發生後,其遺跡不易保存,地質歷史時期的崩塌一般多不存在,對其發生時間尚難以進一步查明。據有時間記載的崩塌調查資料,可對近年來崩塌發生的頻率給出基本的數據。從20世紀60年代以來,共發生有記載的崩塌災害16處,其中較大級崩塌2處,一般級崩塌14處,死亡12人,經濟損失48萬元(表3-30)。由於調查根據災情分級,區地質環境條件差,人口密集,盡管年發生頻率低,亦應引起人們的特別關注,每一處都有可能帶來生命財產的損失。
表3-30 崩塌災害災情與危害程度評價表
(三)預測評估
地質災害危害性預測評估就是對可能危及居民生民財產安全、工程建設的地質災害的危害性做出評估。本次評估分滑坡、崩塌以及不穩定斜坡三種類型,對其危害性進行預測評估。評估內容主要是受威脅人數以及由於財產損毀而可能造成的潛在經濟損失。
1.滑坡
區內滑坡可分為古滑坡、老滑坡和新滑坡3類型,這些滑坡在自然和人為因素的雙重誘發下,均存在復活的可能性。野外調查滑坡總共有293處,可分為活動滑坡和不活動滑坡。本節篩選出活動滑坡39處,占調查滑坡總數的13%,對其危害性進行預測評估。
通過對這39處滑坡的危害性預測評估,危害性大的有8處,危害性中等的有25處,危害性小的有6處。總共有約2098人受到滑坡威脅,潛在經濟損失約2863萬元(表3-31)。
表3-31 滑坡災害危害性預測評估
續表
2.崩塌
調查區地質災害以黃土滑坡為主,崩塌居次;調查中所指的崩塌,有崩塌隱患和已發生崩塌兩種,這里所指的是已發生崩塌的潛在危害性預測。根據實地調查和以往資料調查結果,區內所發生的52處崩塌災害中有14處目前還處於不穩定狀態,存在潛在危險,占調查崩塌總數的27%。崩塌發生的坡面,在以降水為主的風化作用下,也被改造,且極易生長植被,也不易發覺。既成崩塌少,並不意味著崩塌的危害性小。崩塌的形成條件在調查區普遍存在,黃土深厚,直立性好,垂直節理發育,延河及其支流兩岸黃土陡壁懸崖比比皆是,大多窯洞都是選擇很陡的坡面(>65°)水平掘進,窯洞前平房和院子都置於高陡黃土懸崖崩塌的威脅下。
這14處崩塌災害中,危害性中等的有6處,危害性小的有8處,危害性大的暫無,這與崩塌災害規模、影響范圍較小有關。14處崩塌共威脅240人,潛在經濟損失56萬元(表3-32)。
表3-32 崩塌災害危害性預測評估
3.不穩定斜坡
不穩定斜坡是一種潛在地質災害,既有基岩斜坡,也有黃土斜坡,以及黃土-基岩斜坡,在調查區廣泛分布。坡下多有居民居住,或為企事業單位辦公、生產基地,是全區生產建設和人民生活的主要場所,從而構成潛在危害。不穩定斜坡只是對斜坡的穩定性做出不穩定的基本判斷,但對其不穩定的變化模式沒有給出確定的結論。這是由於潛在的變化存在許多不確定的因素,尚不能對其未來變化做出准確的預測。
在詳細調查的51處不穩定斜坡中,有11處存在較大潛在威脅,占不穩定斜坡總數的22%。對其威脅人口和潛在經濟損失進行估算統計表明,危害性較大的不穩定斜坡有3處,危害性中等的有8處,其他40處危害性較小(未列入)。總共威脅909人,潛在經濟損失652萬元(表3-33)。調查中只是有選擇性地在不同地區選取了部分不穩定斜坡作為調查點,以反映不穩定斜坡的基本特徵。實際上,未發生過崩滑災害的不穩定黃土斜坡其危害性最難評估,對不穩定斜坡的預測評估工作有待於進一步的研究探索。
表3-33 不穩定斜坡危害性預測評估
續表
10. 地質災害得關聯性
①地質災害在成因上得關聯性:一個地域內得地質災害可能有若干種,版他們在成因權上關聯的,例如,我國的川、滇、黔接壤地帶,形成了地震、滑坡和泥石流為主的災害
②由一種原發性的主災誘發其他災害,例如地震可能誘發火災、海嘯、滑坡、泥石流、瘟疫蔓延等
③人類活動及其對自然環境施加的影響可能誘發地質災害,例如,人為的破壞地表植被,造成了泥石流;人為大規模的工程活動,造成滑坡等災害。
④防禦措施:加強地質災害的科學研究,加強地質災害的管理,實施一些防禦措施,開展防災、減災的宣傳教育,提高公眾的環保意識和減災意識。