軟土的工程地質特徵
Ⅰ 《軟土地區工程地質勘察規范》JGJ—簡介
1 概況
編制《軟土地區工程地質勘察規范》是城鄉建設環境保護部1986年下達的任務,由中國建築科學研究院會同上海勘察院、天津市規劃設計管理局、天津市勘察院共同編制的。1989年8月完成了送審稿,同年10月通過了審查,經與有關規范協調後,1990年6月完成了報批稿,並報建設部審批,現已批准為行業標准,編號JGJ 83—91,自1992年9月1日起施行。
2 規范的主要內容
本規范共8章,16節,118條和7個附錄,各章和附錄的要點如下。
第一章 總則
共4條。本章規定了規范的編制目的,適用范圍,應遵循的技術經濟政策,與有關規范的關系等。其中堅持了以勘察為主,並服務於設計、施工和使用的全過程,體現了目前岩土工程的發展方向。
第二章 軟土及其工程地質特徵
共4條。本章規定了軟土的定義,說明了軟土的工程特點,軟土層的產狀及其宏觀分布特徵等。
軟土的定義是新中國成立以後的工程地質和土力學界逐步形成的,它主要從形成的地質過程和存在的物理指標兩個方面加以規定,且後者是主要的。本規范採用它,並增加了以灰色為主的外觀特徵,這樣既可以反映它主要處於還原的形成環境,又可以把具有同樣物理指標的以黃色為主的飽和黃土和以紅色為主的飽和紅土迅速區別開來,這無疑對它的判別是很有意義的。
軟土一般對建築是不利的,但軟土是水流沉積物,其產狀具有良好的層理,在互層中,常變異岩性,如硬土層和易滲層等,這些是不利條件下的有利因素。在軟土地區,只要充分利用有利因素,不利條件會得到很大改善。
中國東部從第四紀開始,大陸的輪廓已基本上形成,也就是說,軟土是在南北氣候差別,新構造運動變異,物質來源多樣的條件下,在靜水或緩慢水流中,經過生物化學作用,而淤積形成的。它必然存在著成因、構造、結構及工程性質的地區性差異。理論上是如此,經過實際資料的統計,初步建立起來的軟土區域工程性質特徵,從實際上也說明如此。這些區域性特徵,可作為區劃、規劃和勘察的前期工作使用。
第三章 工程地質勘察的基本要求
共5節,26條。本章的內容包括一般規定,可行性研究勘察、初步勘察、詳細勘察和施工勘察。
一般規定的主要內容包括4個方面,即劃分勘察階段、劃分建築場地的復雜程度、劃分工程地質區段和劃分建築物的等級的有關規定。
本規范規定勘察階段分為初步勘察和詳細勘察兩個階段,必要時可進行3個或4個階段,即可行性研究、初步、詳細和施工4個勘察階段。對於建築性質和總平面位置已定的工程,也可僅作詳細勘察。
分類一般有單因素和綜合因素兩種方法,影響建築場地的工程地質因素很多,有地基土、地形地貌、不良地質現象、地下水,等等,在軟土地區還有暗塘暗溝。這些因素與勘察工作量的多少,工作內容的繁簡,工作方法的選擇有密切關系。因此,建築場地的分類,只能以綜合方法,按工程地質因素的復雜程度劃分幾種情況。本規范採用三分法,即簡單、中等和復雜的3種情況。當然場地的工程地質條件是多種多樣的,有時會有類別的過渡,一時難以劃分,這就需要作具體的分析,以諸因素的主要方面加以判定,為下一步工程地質工作開辟道路。
工程地質分區或分段是建築總圖規劃和設計的主要依據。工程地質分區的辦法,首先應從確保工程安全的角度出發,劃分穩定地區和不穩定地區,所謂穩定地區,是指建築場地不受不良地質現象等因素所威脅的地區,即為適宜建築的場地;所謂不穩定地區,就是不良地質現象發育,如滑坡、地震斷裂、洪水等,對場地有致命威脅的地區,即為不適宜建築的場地或需採取一定防護措施才能建築的場地。
建築物等級是按地基損壞造成建築物破壞後果的嚴重性,將建築物分為3個等級,規定勘察時按不同等級採取相應的措施。
可行性研究勘察階段的工作,一般主要是搜集和分析有關資料,進行現場踏勘,必要時才進行工程地質測繪及測量勘探工作,最後要對擬建場地的穩定性和適宜性,以及經濟技術效益作出工程地質評價。可行性研究勘察是一項有戰略意義的工作,能在較大范圍內作方案比較,擇優建設,這項前期工作做好了,以後的工作就會很順利,否則會長期受害於某種不良地質現象。
初步勘察階段是為初步設計服務的,所列工作項目是比較齊全的,但要求是初步的。勘探點的間距主要與建築場地類型有關,特別是地貌因素,因此,按建築場地的類型劃分3個檔次加以規定。勘探深度主要與建築物等級和勘探孔種類有關,因此,以3個建築物等級和兩種勘探孔種類組成的6種情況,分別確定勘探深度。初步勘察階段對取土樣或原位測試和取水樣都有具體要求。
詳細勘察是密切結合建築物的情況進行的,這時建築物的總平面布置已經確定,建築物對地基的要求已經具體。勘探點的間距主要與建築場地和建築物等級有關,因此,按3類建築場地和3個建築物等級組成9種情況來分別規定。在勘探深度上都是以地基計算的原則來確定勘探深度。軟土地區的暗塘暗濱較多,在詳細勘察階段要引起特別的注意和處理。
施工勘察階段主要為施工設計提供資料和參數,其次也應配合設計、施工單位進行地基驗槽、地基加固效果檢驗、施工中場地地基監測和必要的補充勘察工作等。
第四章 調查、勘探和測試
共5節,38條。本章包括工程地質調查和測繪,勘探和取樣,室內試驗、原位試驗和監理。
工程地質調查和測繪是整個勘察的先行工作,是一項具有戰略意義的工作。地質現象往往從宏觀上考察,能更深刻地把握住微觀的特徵,因此,工程地質調查和測繪的范圍應略大於勘察場地。測繪所用地形圖的比例尺,初步勘察可選用1:2000~1:5000,詳細勘察可選用1:500~1:1000。建築場地的測繪精度應區分兩種情況,對建築地段的地質界線,測繪精度在圖上的誤差不應超過3mm,其他非建築地段,不應超過5mm。
鑽探和取樣是軟土地區的主要勘察手段之一。鑽探時常出現涌土、縮孔、坍孔等現象,尤其軟土中夾砂性土、粉性土時,一般成孔困難,必須採取護壁、縮短施工周期等措施。鑽探編錄程序是,先對土層作確切的定名,描述礦物成分,包含物、土層的層理和結構特徵,後記錄其深度。對於重要的鑽孔,還應保存土心或分段拍攝土心照片。採取土樣時,要根據工程的情況和土樣質量等級的要求,來選擇取土器,進而確定鑽探和取土操作的技術措施,土樣從地下取出後,其包裝、運輸和儲存都要符合質量要求,才能最終保證土試樣的可靠性。
室內試驗的項目應根據工程性質、基礎類型、設計要求和土質特徵等因素綜合確定。軟土室內試驗除常規的項目和方法外,在特殊方面有,軟土水平向透水性常大於垂直向的透水性,須同時測定土的垂直向和水平向的滲透系數。軟土在一般壓縮試驗中最大加壓荷重不得大於400kPa,在土質極軟時最大加壓荷重不宜超過200kPa,以免土樣擠出失真。試驗固結系數Cc先期固結壓力Pc所採用的最後一級垂直荷重、加荷級數及穩定標准等應按土質特性、上覆壓力和建築性質來確定。固結系數的測定應做垂直向和水平向的兩個固結系數,因為兩者的試驗結果常不一致。彈性模量測試須模擬工程加、卸荷載的應力狀態。在做直接剪切試驗中,有時發生土樣擠出和千分表讀數不準的現象,這時應減小垂直荷重和應用薄壁應力環,以保證土樣不擠出和讀數准確。軟土動力特徵參數試驗,應根據工程需要,對採用的儀器和操作,動荷載大小,波形、頻率、振幅、持續時間、固結應力和破壞標准等,須先做出試驗方案的設計。
原位試驗應與鑽探和室內試驗相結合,以提高勘察質量。選用原位試驗方法應以土層情況、設計參數,以及建築物等因素確定。靜力觸探試驗是目前常用的手段,但用它去評價土的強度和變形時,必須結合地區性經驗。十字板剪切試驗是測定土的抗剪強度的常用手段,當建築物為荷載大的大型建築物時,還應測定其殘余強度,並應計算其靈敏度,十字板的規格宜採用75mm×150mm。標准貫入試驗只能評價土的均勻性和定性地劃分土層,但對軟土中的夾砂層或較硬土層時,可提供密實度和承載力。旁壓試驗以自鑽式為好,在淺層時也可用鑽孔式的,但成孔須特別注意。載荷試驗的承壓板面積不宜小於5000cm2,承載力的選用應根據壓力與沉降,沉降與時間的關系曲線,並結合地區經驗取值。彈性波速度的測定分單孔和跨孔兩種方法。在地層復雜時宜採用跨孔法,當跨孔法測定超過30m 深度時,應測量孔斜。
監測工作主要進行在施工期和使用期。施工期監測的主要內容有,基坑底土層的回彈;基坑邊坡的穩定;施工降水時對已有建築物或地下管線等引起的附加沉降、位移、裂縫等;建築物每增加一次荷載所引起的沉降量;打樁引起的地基土側向位移、孔隙水壓變化及其對相鄰建築物和周圍環境的影響。使用期監測的主要內容有,建築物沉降、位移、傾斜和開裂等。
第五章 工程地質評價
共3節,22條。本章內容包括建築場地條件,地基承載力和變形,以及地基處理。
建築場地條件的評定主要是為規劃和總圖設計服務,使之能在更廣闊的范圍內選擇有利的建築場地條件,如充分利用硬殼層;避開暗塘暗濱;遠離池塘、河岸和邊坡;利用互層中的砂層作為排水的通道,加快地基的固結,等等。若因其他因素不能避開時,則應認真處理,辦法是有的,但造價要增加。
軟土地基承載力和變形的影響因素很多,但歸納起來有兩個方面,即軟土的性質和建築物對軟土的作用。前者包括軟土的抗剪強度、壓縮系數等;後者包括上部結構的特點,荷載大小和分布,基礎的類型、尺寸和埋深,加荷方式,加荷速率,施工對原狀土結構的影響等。因此,評價軟土地基的承載力和變形時,要考慮諸因素的影響。軟土承載力的確定,既應使地基有整體穩定性的前提,又應滿足按變形控制的原則。本章給出了5種方法供選擇。採用分層總和法計算出的沉降量,它與實際的符合程度,決定於經驗修正系數的取值。採用考慮軟土應力歷史的沉降計算方法,是為了獲得較精確的結果。但要增加許多試驗工作。體型簡單、等高,結構上又有足夠的剛度和強度的建築物,盡管地基沉降量大,也不至於引起建築物的開裂和破壞。
地基處理按深度可分為淺層處理和深層處理。淺層軟土地基和暗塘暗濱地基可採取加深基礎、換土墊層和短樁等方法處理。厚層軟土地基通常採取堆載預壓的方法處理。為了縮短預壓時間,可在地基中打入砂井或插入塑料排水板,然後堆載預壓。砂樁、碎石樁、石灰樁、灰土樁和水泥土旋噴樁都可處理軟土地基,但設計參數宜通過試驗確定。對在軟土上建造荷重大、沉降限制嚴格的建築物時,應採用樁基礎,可有效地減小沉降量和差異沉降。
第六章 地下水和基礎施工
共3節,10條。本章內容包括地下水評價、基坑勘測和施工降水。
軟土地區地下水埋藏很淺,且其與軟土的岩土工程性質密切相關。因此,從工程觀點看,地下水評價是非常重要的。評價的項目有:地下水對混凝土及金屬材料是否有腐蝕性;地下水對箱型基礎及其結構物是否產生浮托作用;大量抽取地下水或施工降水是否會引起對工程有危害的土體變形或大面積沉降;在施工過程中,由於地下水水頭差,是否會引起潛蝕、流動、涌土等不良地質現象;當基坑下有承壓水層時,開挖基坑是否會引起承壓水頭沖毀基坑底板而造成突涌災害。
軟土中的基坑開挖,一般均需採取支護和降水措施。由於開挖改變了水和土的應力狀態,在軟土層中產生的效應是比較復雜的,因此,基坑開挖前必須調查影響范圍內已有建築物、地下結構物,以及管道等設施的位置,提出必要的預防、控制和監測等有效措施。
施工降水評價的主要內容有:確定主要降水(壓)透水層(段)的埋藏條件、厚度、顆粒組成及滲透系數等;算出水位降到設計標高時的排水量及其所需的時間;預估降水引起對工程和鄰近建築物等的影響。降水的方法可採用重力排水或集水坑、井點和深井等降水方法。
第七章 樁基工程勘察
共8條。本章說明了樁基勘察的內容,勘探布置的原則,勘探手段,試驗項目和評價方法等。
樁基勘察的內容要特別注意兩點:①應查明是否存在欠壓密土層,因它能直接影響摩阻力及變形的分析;②應查明軟土中夾砂及可塑至硬可塑黏性土層,因它是確定樁在持力層的主要對象。
勘探的布置原則,在初步勘察階段,勘探點可按方格網布置,間距與一般性勘探相同。詳細勘察階段,勘探點應布置在柱列線上,如為群樁基礎應布置在建築物中心、角點和周邊上,間距不大於30m,如相鄰勘探點揭露的持力層高差大於2m 時,宜適當加密。勘探點的深度應達到壓縮層計算深度。
樁基勘探手段不能單一地採用鑽探取樣的手段,應與原位測試手段相配合,如靜力觸探、標准貫入試驗和十字板剪切試驗等,提供多種必需的參數和指標。
樁基的試驗項目,除進行一般的物理力學性質外,對樁各層土以及樁尖以下壓縮層范圍內的黏性土應進行三軸不固結不排水的剪切試驗,提供土的不排水抗剪強度Cu,或進行無側限抗壓強度試驗,提供無側限抗壓強度qu。需要查明土的應力歷史並進行固結沉降計算時,應進行高壓固結試驗,提供土的先期固結壓力Pc,壓縮指數Cc,回彈指數Cs。需估算沉降速率時,尚應進行固結系數測定,提供土的垂直和水平兩個方向的固結系數Cv和Ch。
單樁承載力、水平力和上拔力應以樁載荷試驗的成果為主。單樁豎向承載力可根據土性指標估算,也可用靜力觸探測試的參數作估算或用標准貫入試驗參數和土性指標綜合估算。但這些都要結合地區經驗才能使用。
樁基勘察的評價內容包括:①提出樁周各土層摩阻力和樁端土承載力,建議樁的類型、規格和入土深度,估算單樁承載力,必要時提出試樁方案;②提出沉降計算參數和指標;③作出沉樁可能性的分析;④預測樁基施工對周圍環境的影響,並提出預防措施和監測方案。
第八章 強震區的場地和地基
共8條。本章主要說明場地穩定性和地基震陷。
強震區是指坑震設防烈度等於或大於Ⅶ度的地區。
軟土地區的建築場地應按地震活動、地質、地貌、岩性、地下水和地震效應等條件,劃分為對建築物抗震的有利地段、不利地段和危險地段的3種情況分別評價。
軟土地基的震陷值,當為一級建築物或沉降嚴格要求的二級建築物時,應進行專門的計算;當為二、三級建築物時,可參照本章的統計經驗值。
附錄一中國軟土主要分布地區的工程地質區劃略圖及特徵表內容是一張圖和一張表。為了能夠制定出符合我國自然地質地理條件的技術規范,研究我國軟土的分布及其地區性特徵是非常重要的。地域的分異規律是軟土地區性研究的理論基礎,所以在研究軟土的地區性經驗之前,首先要研究影響軟土地區性的主要因素及其規律性,那麼影響軟土地區性的主要因素是什麼呢?主要是氣候、地貌、地層、軟土的工程性質、水文地質條件、物理地質作用等。根據這些因素和目前所取得的資料,按照岩土工程的專門要求,採用綜合的多級的劃分原則,將我國主要軟土分布區,即我國的東部季風區,暫劃為3個一級區,4個二級區,11個三級區。3個大區的名稱為,Ⅰ北方地區;Ⅱ中部地區;Ⅲ南方地區。
附錄二勘察報告一般內容的要求內容包括工程概況、場地位置、地形地貌、地層成層條件、不良地質現象、建築經驗、場地的穩定性和適宜性、岩土的物理力學性質、標准承載力、地下水的影響、土的最大凍結深度、地震基本烈度,以及由於工程建設可能引起的工程地質問題,等等。圖表有勘探點平面布置圖、綜合工程地質圖或工程地質分區圖、工程地質剖面圖、地質柱狀圖或綜合地質柱狀圖、有關測試圖表等。
附錄三岩土物理力學性質指標的整理內容包括,岩土的物理力學性質指標,應按地貌單元、地層層位、成因類型和堆積時代作為分區分層的統計。在可行性研究勘察和初步勘察可採取除掉最大值和最小值的各10%後范圍值。詳細勘察和施工勘察可採取以下幾種統計方法:①算術平均值或中值;②按指標性質不同可採取最大平均值(如含水量等)或最小平均值(如重力密度等);③按使用和計算公式的具體要求進行概率統計。
附錄四試樣質量等級的選擇內容包括,① 根據土樣被擾動程度進行質量分級;②根據取樣方法與工具對所取土樣進行質量分級;③為保證取土質量,宜採用薄壁取土器,其技術參數應符合本附錄的要求。
附錄五土粒相對密度和泊松比的經驗值內容包括,按塑性指數確定土粒相對密度的經驗值,按土的分類確定土的泊松比的經驗值。
附錄六單樁豎向承載力的經驗公式內容包括,按土的埋深和指標計算的單樁豎向承載力的經驗公式和按靜力觸探Ps值計算的單樁豎向承載力的經驗公式。
附錄七規范用詞說明。
3 規范的主要特點
這是我國第一本軟土地區的工程地質勘察規范,內容符合國情,並有廣泛的適用性和開拓性,其主要特點如下:
1)在廣泛調查研究的基礎上,根據軟土工程性質指標,結合自然地質地理環境作為分區的原則,編制了中國軟土主要分布區工程地質區劃略圖及其特徵表,它可作為區劃、規劃及勘察的前期工作使用,也可作為認識我國軟土宏觀分布規律的基礎。
2)在總結軟土地區勘察經驗的基礎上,提出了按建築場地類型和建築物等級等確定勘探點的間距和深度,能更好地區別對待。
3)根據軟土工程性質的特點,對軟土的鑽探取樣質量,試樣制備等步驟都提出了嚴格的要求和措施,從而提高了試驗參數的可靠性和正確性。
4)針對軟土地基變形特點及其對建築物的危害,突出了軟土地基變形的勘察工作,對防止軟土地區建築物損壞,保證工程質量是非常有利的。
5)提出了確定軟土地基承載力的5種不同方法,從而便利了使用單位結合具體情況選用。
6)對基礎工程中的地下水評價、基坑勘測和施工降水提出了統一的要求和具體的措施,從而保證了施工質量和工期。
7)在總結上海和天津樁基工程經驗的基礎上,提出了適合軟土地區,簡單易行,具有實用價值的預估單樁豎向承載力的經驗公式。
8)在總結天津地區建築物震陷資料的基礎上,提出了部分二級、三級建築物震陷量的估算值,從而簡化了地震震陷量計算工作。
(本文原載:《建築科學》,第3期,1993年,64~68頁;作者還有李姍林)
Ⅱ 軟土工程特性研究現狀
1.2.1.1 軟土的定義及分布
各專業技術部門對軟土的定義都不盡相同,國內外也均無統一的結論。有的定義軟土是一種簡稱,主要由細粒土組成。有的定義軟土一般是含水量、孔隙比大,抗剪強度、滲透系數低,且壓縮性、靈敏度高的黏性土的統稱。還有的將軟土泛指近代沉積的剪切強度低,壓縮性大的軟弱土層,主要為飽和軟黏土,在天然地層剖面上,它往往與泥炭或粉砂交錯沉積。還有的定義軟土一般是靜水或緩慢水流中以細顆粒為主的近代沉積物,即流速減緩與溫度變化使微細粒徑的黏土礦物和有機質在懸浮液溶解力與黏滯性降低的條件下,逐漸停積的飽和軟弱黏性土。還有的定義軟土是指天然含水量大、壓縮性高、承載能力低的一種軟塑到流塑狀態的黏性土,如淤泥、淤泥質土以及其他高壓縮性飽和黏性土、粉土等[2]。
上述軟土的各種定義與工程類型和擬解決的工程問題息息相關,軟土的軟硬都是相對的概念,其軟硬不但對土質,而且對工程而言也是相對的。軟土的軟硬應與土質、工程性質兩者相關。國內外各行業對軟土的鑒別是依軟土的若干特徵指標劃分的,採用的具體指標各不相同,見表1.1。
表1.1 我國各行業軟土劃分特徵指標一覽表
縱觀以上各行業規范對軟土的詮釋,雖然略有差異,但是均將天然孔隙比和天然含水量作為鑒別軟土的特徵指標。
我國軟土分布十分廣泛,尤其主要分布在我國沿海以及內地河流兩岸和湖泊地區,例如:天津、連雲港、上海、杭州、寧波、台州、溫州、福州、廈門、湛江、廣州、深圳、珠海等沿海地區,以及昆明、武漢、南京、馬鞍山等內陸地區。軟土成因類型復雜,有濱海相軟土、溺谷相軟土、潟湖相軟土、三角洲相軟土、河漫灘相軟土、牛軛湖相軟土、谷地相軟土、湖相軟土和沼澤相軟土等。在實際工程中經常會遇到軟土、軟土地基以及由此引起的一系列工程地質問題,這主要是由於軟土的工程特性所決定的。一般情況下,軟土地基的承載力不能滿足設計要求,故需要進行加固處理,不同成因、不同物質組成的軟土,其表現出來的工程特性也不相同,從而選取的地基處理方案也不同,因此,對軟土工程特性的認識顯得尤為重要。土作為人類作用於地球的主要客體,具有極其復雜的工程地質性質,主要包括物理性質、水理性質和力學性質等[10]。
1.2.1.2 軟土的工程特性
人類在土基上建造房屋和擋土建築物,以及用土作為工程材料來建造堤和壩,已經有悠久的歷史。然而,土力學成為一門技術科學,卻只有80多年的歷史。在太沙基(K.Terzaghi)於1925年出版了著名的《土力學》一書的前後,也曾有不少學者對土工問題的研究做出過重大貢獻,許多經典的土力學理論一直沿用至今,並且仍然是現今土力學中的重要內容。但是,人們卻認為太沙基是土力學的奠基人,因為他是第一個重視土的工程性質和試驗的人[11]。土的種類繁多,而且任何一種土的工程性質又隨它的存在狀態和外界條件有很大的變化,因此土的工程性質十分復雜。
總結若干國家和地區的軟土資料,其物理力學參數的范圍值見表1.2[12]。
表1.2 國外若乾地區的軟土指標統計[12]
和國外相比,我國軟土理論的研究也已有近20年的歷史,水利、鐵道、交通、建築、港口等行業均涉及軟土與軟土工程問題,對軟土的基本工程性質進行了大量的試驗與積累,對我國軟土的分布及其物理力學性質有了基本了解。在渤海灣及天津塘沽、長江三角洲、浙江、珠江三角洲以及福建省的沿海地區都存在海相或湖相沉積的軟土。此外,貴州省、雲南省的某些地區還存在山地型的軟土。表1.3是全國各地軟土的物理力學性質指標統計[2]。
表1.3 全國各地軟土物理力學性質指標統計[2]
續表
軟土在我國沿海一帶分布很廣,以東南沿海軟土分布區為例,從北至南有天津塘沽、連雲港、上海、寧波、溫州、福州、珠海、深圳等地。沿海地區典型的軟土主要有四類,即淤泥、淤泥質黏土、淤泥質粉質黏土和淤泥混砂,表1.4為這些軟土的工程性質變化范圍[13]。
表1.4 我國沿海地區分布的四種典型軟土的工程性質[13]
由表1.4可見,沿海地區軟土的主要物理力學性質可以概括如下:
·天然含水量高 軟土的含水量一般在35%~90%之間,其值一般也大於液限,說明這些軟土的孔隙中基本充滿了水,土體處於流動或流塑狀態。
·孔隙比大、壓縮性高 軟土的孔隙比在1.0~1.3之間,部分軟土的孔隙比還大於1.5。對應的壓縮系數在0.7~2.3MPa-1之間,屬於高壓縮性土,這類軟土受到荷載作用後必將產生很大的沉降。
·滲透性小 軟土的滲透系數在10-6~10-8cm/s之間,顆粒成分主要以黏粒、粉粒為主,礦物成分以親水的活動性礦物為主,滲透性很小。所以,該類土層在荷載作用下固結沉降過程非常緩慢。
·強度低 軟土的不排水強度在5~30kPa之間,軟土強度低是導致軟土地基承載力不足和失穩的主要原因。
為了系統闡述軟土的特性及內部機理,我國著名學者高國瑞教授以電化學、膠體化學理論為基礎,系統研究了軟土的物質成分及微觀結構[14]。與此相對應,沈珠江院士則從宏觀的角度,對軟土的特性尤其是強度特性進行了系統研究,他的研究成果開創了軟土工程的新局面,並提出了21世紀應建成以結構性模型為核心,以非飽和土固結理論、液化破壞理論和漸進破壞理論為主要內容的現代土力學的構想[15~17]。
對於軟土的基本工程特性,國內外學者進行了大量的研究工作。Osipov[18]對軟土微觀結構及其觸變變化進行了研究。孫更生等[19]通過對上海軟土的研究,得到了其物理力學性質指標的統計關系。沈珠江[16]研究認為,天然軟土具有高孔隙比、強透水性、陡降形壓縮曲線、折線形強度包線等特性。徐澤中[20]、梁濤等[21]分別對滬寧高速公路軟土、珠江三角洲地區高速公路軟土的工程性質進行了研究。王清等[22]對我國沿海地區廣泛分布的欠固結軟土及其工程地質和岩土工程問題的研究現狀進行了總結和介紹。雷華陽[23]、梁國錢[24]、孔令偉[25][26]、祝衛東[27]、陳曉平[28]、師旭超[29]、章定文等[30]分別對天津地區海積軟土、浙江沿海地區軟土、瓊州海峽海域軟土、浙江東南沿海、溫州和台州兩地海岸線附近軟土、珠江三角洲區域軟土、廣西欽州港海相淤泥、連雲港軟土的土性參數指標和工程性質進行了詳細的分析研究。Takaharu Shogaki et al.[31~33]對韓國釜山新港全新統黏土的沉積環境、微觀結構、物理力學性質、固結特性等進行了試驗研究,並對其參數的變化規律進行了統計分析。УСюэтин[34]對莫斯科河河漫灘沉積的黏土的顆粒成分、礦物組成、物理化學性質進行了研究。Tamotsu Matsui et al.[35]詳細研究了日本大阪海灣厚層軟土的鑽孔資料,總結了軟土的工程特性。周翠英等[36]對珠江三角洲海相沉積軟土的分布范圍進行了探討和分區,並對具有代表性的軟土微觀結構特徵進行了分析研究。J.Xia et al.[37]對南京西部長江下游全新世洪泛區軟土的工程特性、微觀結構以及這些特性隨軟土深度和荷載的變化規律進行了研究。Hossam et al.[38]對曼谷飽和軟黏土的導熱系數進行了室內及現場測試,得出黏土導熱性隨著土密度的增加而增加的結論,同時探討了不同試驗方法下測試結果的可靠性,為利用熱處理技術提高軟土固結過程提供了依據。近年來,我國軟土研究涉及的區域越來越廣,涉及的方面也越來越多。研究區域涉及天津[39]、河北省黃驊港[40]、洞庭湖[41]、太湖[42]、深圳[43]、廣州[44]、珠海[45]、珠江三角洲[46][47]、青島[48]、溫州[49]、寧波[50]等地,研究方面涉及軟土的顆粒級配、礦物成分、微觀結構、物理力學性質、應力歷史、蠕變特性等諸多方面,取得了不少有價值的研究成果。
越來越多的試驗研究與工程實踐表明,天然軟土的結構性普遍存在且對其工程特性有重要影響。土的結構性指土顆粒和孔隙的性狀、排列形式(或稱組構)以及顆粒之間力的相互作用[51][52]。但在實際應用中常用來概括地指土體所具有的不同於相應重塑土的力學性狀[49]。
早在1925年,Terzaghi[53]就指出了土結構性研究的重要性,首次提出了土的微觀結構的概念,並定義了蜂窩結構。接著,Casagranda[54]、Lambe[55][56]、Aylmore[57]、Van Olphen[58]、Side and Barden[59]、Mitchell[60]、高國瑞[61]、Leroueil[62]等學者紛紛提出了不同的土顆粒或集合體的結構形式。近年來,軟土結構性的研究引起了國內外學者的廣泛關注,對軟土結構性的研究不僅僅停留在其微觀結構的分析上,其研究領域涉及結構性土體的工程特性、本構模型等各個方面。沈珠江[63]將土結構性研究稱為21世紀土力學的核心問題。謝定義等[64]研究認為,土結構性是決定土的力學特性的根本內在因素。由此可見,軟土結構性研究已經成為今後軟土理論研究的發展趨勢,同時,軟土結構性的研究離不開室內試驗和原位測試獲得的參數,那麼,試驗技術和測試方法的研究將是軟土學科發展的前提和基礎,也是今後發展的方向。不少學者進行了軟土結構性的相關研究,得出了有意義的結論[65~71]。
1.2.1.3 土工參數的可靠性研究
可靠性理論在土木工程的結構方面的應用是開始得比較早的一個領域。早在1947年,蘇聯的А.Р.Ржаницын[72]就提出了用一次二階矩理論的方法來估計結構的失效概率。美國的A.M.Freudenthal[73]在1954年開創了美國結構安全度的研究工作。之後,美國的C.A.Cornell[74]、A.H.Ang[75]發展了工程技術中應用的概率概念和方法。岩土工程是可靠性理論應用的一個重要領域,A.Casagrande[76]提出了土工和基礎工程中計算風險的問題。接著,大量學者從事了岩土工程可靠性方面的研究,其中有影響的開拓者有 P.D.Lumb[77]、E.H.Vanmarcke[78][79]、O.G.Ingles[80]。我國在20世紀70年代末才開展土力學中的可靠性研究,目前研究方面涉及岩土參數統計規律[81]、岩土參數概率模型、滲透問題、固結沉降概率分析[82]~[84]、地基承載力概率分析、穩定性概率分析[85]等。比如:張征等[87]將岩土參數視為具有隨機性與結構性特徵的區域化變數,給出了岩土參數空間結構性的數學模型。孟慶山等[88]利用概率分布模型對廣西某飽和軟黏土的土工參數進行統計分析,為工程計算中土工參數的選取提供了可靠的依據。李小勇[89]研究表明,通過試驗數據的可靠性檢驗、概率模型的擬合優度檢驗,可以實現土工參數概率分布在統計意義上的優化。謝康和等[90]研究了固結系數的空間概率特性及其對固結度的影響。宮鳳強等[91]提出推斷小樣本岩土力學參數概率密度函數的正態信息擴散法,並採用精度較高的K-S檢驗法,從理論上證明所求密度函數的正確性。此外,王宇輝[92]、吳長富[93]、徐雷雲[94]分別對太原地區粉土、杭州地區、華東地區的土性參數進行了概率統計分析。
岩土是在漫長的地質年代裡形成的,經歷著各種變化的過程,因此,岩土的工程性狀表現出很大的變異性。岩土工程常常在許多不確定性條件下進行設計,而傳統的設計方法採用「確定性」途徑,這可能與實際的反應相差甚遠,許多原型觀測結果和事故分析都說明了這一點[86]。
由於岩土工程中預測的不可靠性,預測者經常需要用實際觀察到的資料來修正自己的估計。Peck[95]總結了岩土工程中貫穿於勘察、設計、施工全過程的系統研究方法,稱為觀察法。而反分析法是觀察法的提高,在工程計算中得到了廣泛的應用[96]。
鄧永鋒[97]根據Asaoka法對成層土的固結系數進行了反演。夏彩虹[98]利用雙曲線配合法對哈爾濱環城高速公路的實測資料進行分析,反算土層的固結系數和滲透系數,反分析計算結果明顯高於室內試驗值。彭劼等[99]利用復合型法,根據溫州樂清灣璇門港工程實測沉降資料對計算參數進行了反分析,將反分析得到的參數應用於有限元法的計算。結果表明,反分析能較好地估計本構模型參數。梁杏等[100]利用深港西部通道口岸場坪實測沉降量反算了土層的壓縮性指標,反算的壓縮指數大於室內試驗值,反求的壓縮模量小於試驗值,這與實測沉降量大於理論預測沉降量是比較吻合的。彭濤[101]採用門田法結合深圳西部通道實測沉降資料對各級載入過程中的固結系數進行了反演分析。周健等[102]以某深水港區地基工後短期沉降監測結果為基礎,對土層固結系數進行了反演分析,並將反演得到的固結系數計算出的工後短期沉降與工後實測短期沉降進行了對比,結果表明反演得到的固結系數是可靠的。
Ⅲ 軟土有什麼工程特性
1、高壓縮性:軟土由於孔隙比大於1,含水量大,容重較小,且土中含大量微生物、腐植質和可燃氣體,故壓縮性高,且長期不易達到穩定。在其它相同條件下,軟土的塑限值愈大,壓縮性亦愈高。
2、抗剪強度低:因此軟土的抗剪強度最好在現場作原位試驗。
3、透水性低:軟土的透水性能很低,垂直層面幾乎是不透水的,對排水固結不利,反映在建築物沉降延續時間長。同時,在加荷初期,常出現較高的孔隙水壓力,影響地基的強度。
4、觸變性:軟土是絮凝狀的結構性沉積物,當原狀土未受破壞時常具一定的結構強度,但一經擾動,結構破壞,強度迅速降低或很快變成稀釋狀態。軟土的這一性質稱觸變性。所以軟土地基受振動荷載後,易產生側向滑動、沉降及其底面兩側擠出等現象。
5、流變性:是指在一定的荷載持續作用下,土的變形隨時間而增長的特性。使其長期強度遠小於瞬時強度。這對邊坡、堤岸、碼頭等穩定性很不利。因此,用一般剪切試驗求得抗剪強度值,應加適當的安全系數。
6、不均勻性:軟土層中因夾粉細砂透鏡體,在平面及垂直方向上呈明顯差異性,易產生建築物地基的不均勻沉降。
(3)軟土的工程地質特徵擴展閱讀:
我同軟土分布廣泛,豐要位於沿海、平原地帶、內陸湖盆、窪地及河流兩岸地I必沿海、平原地帶軟土多位於大河下游入海三角洲或沖積平原處,例如:
長汀、珠江三角洲地帶,塘沽、溫卅I、閩江口平原等地帶;內陸湖盆、窪地則以洞庭湖、洪澤湖、久湖、滇池等地為代表;山問盆地及河流中下游兩岸漫灘、階地、廢棄河道等處也常有軟土分布;沼澤地帶則分仿著富含有機質的軟土和泥炭。
軟土特徵:
1、軟土顏色多為灰綠、灰黑色,手摸有滑膩感,能染指,有機質含量高時,有腥臭味。
2、軟土的粒度成分主要為黏粒及粉粒,黏粒含量高達60%~70%。
3、軟土的礦物成分,除粉粒中的石英、長石、雲母外,黏粒中的黏土礦物主受是伊利石,高嶺石次之二此外,軟土中常有一定量的有機質,可高達8%~9%。
4、軟土具有典型的海綿狀或蜂窩狀結構,這是造成軟土孔隙比大、含水率高、透水性小、壓縮性大、強度低的主要原因之一。
5、軟土常具有層理構造,軟土和薄層的粉砂、泥炭層等相互交替沉積,或孥透鏡體相間形成性質復雜的土體。
6、松軟土由於形成於長期飽水作用而有別於典型軟土.其特徵與軟土較為接近,但其含水量、力學性質明顯低於軟土。
Ⅳ 工程地質知識:軟土地基的處理方法有哪幾種
軟土的工程地質復問題和防制治措施軟土地基的變形破壞主要是承載力低,地基變形大或發生擠出,造成建築物的破壞。且易產生不均勻沉降。在軟土地基設計中,經常採取以下措施:1. 輕基淺埋; 2. 減小建築物作用於地基的壓力; 3. 側向約束地基土,在四周打板樁基礎; 4. 設置反壓護道; 5. 若軟土層<2m,可採用換土法;6. 另外,還有其它的一些方法,如:砂井、排水砂墊層、爆破排淤、石灰砂樁、柴排、電滲排水等。在軟土地區修建鐵路,主要存在地基的沉降和地基的穩定性問題。
Ⅳ 軟土工程地質
軟土是指天然含水量大、壓縮性大、承載力低的一種軟塑到流塑狀態的黏性土;如淤泥、淤泥質土以及其他高壓縮性飽和黏性土、粉土等。黃河三角洲地處渤海之濱,具有軟土的沉積環境,鑽探資料也表明區內呈片狀分布著軟土。
(1)軟土的劃分標准
本次劃分軟土採用如下標准:當滿足下列條件之一時,並且厚度大於0.50m,將其確定為軟土層。
1)承載力標准值fk<80kPa;
2)標貫錘擊數N63.5≤2;
3)靜力觸探錐頭阻力qc<0.5MPa;
4)流塑狀態。
(2)軟土的空間分布
利用工程地質鑽孔資料和相應試驗數據的分析,圈定出軟土的分布范圍及埋藏條件,繪制軟土分布圖(圖4.4)。
軟土主要分布於黃河三角洲東北部濱海地帶、河口—刁口碼頭一帶、利津縣羅鎮—黃河故道西、墾利縣下鎮東部,另外在利津縣明集—廣南水庫一線呈不連續片狀、碟狀分布。
(3)軟土的成因及主要物理力學性質
研究區軟土具有兩種成因:
1)爛泥灣相沉積:在歷次河口的兩側,沉積的以細粒成分為主的土層,一直處於飽和狀態,排水固結過程進展緩慢,所以土的力學性質很差。顏色以灰褐色為主,流塑態,土質細膩,岩性以粉質黏土為主,夾粉土和黏土薄層。
圖4.4 黃河三角洲軟土分布圖
2)濱海湖沼相沉積:顏色以灰—灰黑色為主,有機質含量較高,具腥臭味,為淤泥或淤泥質土。
黃河三角洲地區軟土的主要物理力學指標統計結果見表4.5,可以看出:區內軟土具有含水量高、孔隙比大、壓縮性高、承載力低等特點,在荷載作用下變形較大,對建築物極為不利。因此,在工程建設規劃時,應盡量避開有軟土分布的地區。在無法避開軟土的情況下,應對區內的軟土有足夠的重視,採取一定的處理措施。
表4.5 軟土主要物理力學指標統計表
註:e—孔隙比,無量綱;IL—液性指數,無量綱。
Ⅵ 中國沿海全新世軟土的工程地質特徵
隨著我國全新世的環境和海岸演變研究的加強,詳細的第四紀研究資料不斷出現。目前要緊的是將工程地質研究與第四紀研究有機地結合起來,以加深對沿海軟土的認識,從而更好地為國家建設服務。
一、軟土的概念
軟土的概念或判別是新中國成立以後在工程地質界和土力學界逐步形成的,它是以形成的地質過程和存在的物理狀態兩個方面加以規定的,且後者是主要的。《軟土地區工程地質勘察規范》( 1992)對軟土的規定具體化為3條:①外觀以灰色為主的細粒土;②天然含水量大於或等於液限;③ 天然孔隙比大於或等於1.0。《岩土工程勘察規范》(1995)將軟土規定為「天然孔隙比大於或等於1.0,且天然含水量大於液限的細粒土應判定為軟土,包括淤泥、淤泥質土、泥炭、泥炭質土等,其壓縮系數宜大於0.5M Pa-1,不排水抗剪強度值小於30K Pa。」這兩本規范對軟土在概念和判別上的規定基本一致,但也有微小的差別。從物理力學指標看,前者指出了天然含水量不僅大於液限,也可等於液限;後者指出了力學指標,但說得靈活,只是「宜」,而它的兩項物理指標則是必須滿足的判定指標。從地質因素來看,前者指出了以灰色為主的細粒土的外觀特徵來顯示沉積環境;後者直接使用了淤泥、淤泥質土、泥炭、泥炭質土等的地質名詞。這里需要討論一下軟土與淤泥、泥炭兩類名詞的概念及其相互關系。軟土是土力學、工程地質學上的一個名詞,淤泥、泥炭是沉積岩石學上的一個名詞,兩者既有區別又有聯系。兩者的區別在於兩個學科的研究目的和任務不同,一個主要研究地質體的強度和變形等特徵;另一個主要研究地質體的成分和結構等特徵:聯系在於它們都是研究同一個地質體,在淺層的條件下,兩個名詞幾乎指的是同一東西,大體上可以互相預示。也正是這種預示,才能架起工程地質研究和第四紀研究的橋梁。
二、沿海全新世軟土的分布
趙希濤教授在《中國沿海全新世海面變化的基本特徵》一文中有關泥炭層的一段:「在我國沿海地區與近岸陸架地區下數米或二三十米,往往發現全新世潟湖相或與海水有某種水力聯系的湖沼相(或河漫灘窪地型)泥炭或富含有機質淤泥。它們緊貼第一海相層之下或之上分布,上、下泥炭層向陸逐漸合一。下泥炭層多形成於距今10000~8000a間,上泥炭層多形成於距今5000~2000a間,在海侵影響區之外,全新世泥炭發育時期幾乎連續,而以中全新世發育最好」。這里指的泥炭或富有機質淤泥,以及第一海相層都可初步判別為軟土,可見沿海全新世的軟土分布較廣,成因和地層也多樣。這些第四紀地質研究成果可作為工程地質研究的基礎。
三、沿海全新世軟土的工程地質
1.一般物理力學性質指標
淤泥、淤泥質土、泥炭、泥炭質土等一般可初步判別為軟土,但最終判定還要靠物理指標。因此,將我們多年來在編制規范過程中所積累起來的工程地質資料,主要是生產實踐資料,結合我們能夠掌握的第四紀地質資料,經過分析和判斷,列出我國沿海全新世軟土的一般物理力學指標(表1),供建設中參考。
表1 中國沿海全新世軟土一般物理力學指標
2.全新世沉積物的工程地質特點
早全新世甚至晚更新世已有軟土存在。但中全新世是暖期,有利於軟土的發育,是形成軟土的主要時期,且其距今較近,地層埋藏甚淺,是工程建築經常作用的不良地層。至晚全新世時,氣候變成干涼,在軟土之上逐漸形成了一層較密實的地層。這在氣候帶的變遷下,在東北、華北、華中的沿海一帶更為明顯,工程界稱之為「硬殼層」。此層在地表分布甚廣,是沿海地區一層較好的持力層,「輕基淺埋」就是針對這種地層的特點總結出來的經驗。所謂輕基就是基礎及其上部結構物採用輕型結構,淺埋即基礎埋置深度應盡量放淺。有時硬殼層很薄,但也不宜全部挖除,可以作為保護層而保留,以防止施工時其下的軟土擾動。
四、結語和討論
1)軟土是一種特殊土,在一定的自然條件下形成,具有一定的物理力學性質。如果單以判別指標判定,飽和黃土和飽和紅土都可以達到判別指標,但不能成為軟土,因為它們形成的地質過程不同,呈現的工程地質特點也不同。用以灰色為主的外部特徵來表徵軟土,會很容易將具有同樣物理指標的以黃色為主的飽和黃土和以紅色為主的飽和紅土迅速區別開,這對軟土的判別無疑是有意義的。
2)中全新世軟土,因其埋藏甚淺,是工程建築普遍作用到的不良地層。由於其壓縮性高,透水性低,具有觸變性、流變性和不均勻性,除應正確判別沉積物、評價其具體特點外,更重要的是如何將其改良加固,以滿足工程建設的需求。晚全新世的沉積物,覆蓋在地表,與工程建築的活動更加密切。由於它是一層中壓縮性或低壓縮性的黏質砂土等較密實的地層,它不僅能夠作為一層較好的持力層,而且可以作為保護層,以免其下的軟土擾動、喪失軟土的結構強度和出現稀釋狀態。
3)沿海的第四紀研究,對軟土的工程地質意義重大。隨著測年資料的增多、古環境的重建,第四紀研究成果會有效地應用於工程建設中。以往沿海軟土的工程地質研究,因生產要求的時間緊迫,常習慣於用工程措施,深入考慮第四紀地質較少,常造成不必要的損失和遺憾。兩者的相互結合和滲透定會產生好的效果。
參考文獻
[1]建設部.1992.軟土地區工程地質勘察規范.北京:中國建築工業出版社.
[2]建設部.1995.岩土工程勘察規范.北京:中國建築工業出版社.
[3]趙希濤.1984.中國沿海全新世海面變化的基本特徵.中國海岸演變研究.福州:福建科學技術出版社.
[4]孫更生,鄭大同.1984.軟土地基與地下工程.北京:中國建築工業出版社.
(本文原載:《中國應用第四紀研究——全國第二屆應用第四紀學術會議論文集》,成都:成都科技大學出版社,2000年5月,94~97頁)
Ⅶ 軟土的工程地質問題防治措施有哪些
軟土的工程地質問題和防治措施軟土地基的變形破壞主要是承載力內低,地基變形大或發生擠出容,造成建築物的破壞。且易產生不均勻沉降。在軟土地基設計中,經常採取以下措施:1.
輕基淺埋;
2.
減小建築物作用於地基的壓力;
3.
側向約束地基土,在四周打板樁基礎;
4.
設置反壓護道;
5.
若軟土層<2m,可採用換土法;6.
另外,還有其它的一些方法,如:砂井、排水砂墊層、爆破排淤、石灰砂樁、柴排、電滲排水等。在軟土地區修建鐵路,主要存在地基的沉降和地基的穩定性問題。
Ⅷ 軟土的工程地質問題防治措施有哪些
軟土的工程地質問題和防治措施軟土地基的變形破壞主要是承載力低,地回基變形大或發生答擠出,造成建築物的破壞。且易產生不均勻沉降。在軟土地基設計中,經常採取以下措施:1. 輕基淺埋; 2. 減小建築物作用於地基的壓力; 3. 側向約束地基土,在四周打板樁基礎; 4. 設置反壓護道; 5. 若軟土層<2m,可採用換土法;6. 另外,還有其它的一些方法,如:砂井、排水砂墊層、爆破排淤、石灰砂樁、柴排、電滲排水等。在軟土地區修建鐵路,主要存在地基的沉降和地基的穩定性問題。
Ⅸ 軟土的特徵是什麼
軟土【soft soil】是淤泥()和淤泥質土(mucky soil)的總稱。主要是由天然含水量大、壓縮性高、承載能力低的淤泥沉積物及少量腐殖質所組成的土。軟土是指濱海、湖沼、谷地、河灘沉積的天然含水量高、孔隙 比大、壓縮性高、抗剪強度低的細粒土。具有天然含水量高、天 然孔隙比大、壓縮性高、抗剪強度低、固結系數小、固結時間長、 靈敏度高、擾動性大、透水性差、土層層狀分布復雜、各層之間物 理力學性質相差較大等特點。
一、概述[1] 軟土主要是由天然含水量大、壓縮性高、承載能力低的淤泥沉積物及少量腐殖質所組成的土。對淤泥的解釋是,在靜水或緩慢的流水環境中沉積並含有機質的細粒土,其天然含水量大於液限,天然孔隙比大於1.5;當天然孔隙比小於1.5而大於1.0時稱為淤泥質土。對於泥碳的解釋是,喜水植物遺體在缺氧條件下,經緩慢分解而形成的泥沼覆蓋層。其特點是持水性大,密度較小。 二、軟土的組成和狀態特徵[1] 軟土泛指淤泥及淤泥質土,是第四紀後期於沿海地區的濱海相、瀉湖相、三角洲相和溺谷相,內陸平原或山區的湖相和沖擊洪積沼澤相等靜水或非常緩慢的流水環境中沉積,並經生物化學作用形成的飽和軟粘性土。軟土的組成和狀態特徵是由其生成環境決定的。由於它形成於上述水流不通暢、飽和缺氧的靜水盆地,這類土主要由粘粒和粉粒等細小顆粒組成。淤泥的粘粒含量較高,一般達30%~60%。粘粒的粘土礦物成分以水雲母和蒙德石為主,含大量的有機質。有機質含量一般達 5%~15%,最大達17%~25%。這些粘土礦物和有機質顆粒表面帶有大量負電荷,與水分子作用非常強烈,因而在其顆粒外圍形成很厚的結合水膜,且在沉積過程中由於粒間靜電荷引力和分子引力作用,形成絮狀和蜂窩狀結構。所以,軟土含大量的結合水,並由於存在一定強度的粒間連結而具有顯著的結構性。 由於軟土的生成環境及粒度、礦物組成和結構特徵,結構性顯著且處於形成初期,呈飽和狀態,這都使軟土在其自重作用下難於壓密,而且來不及壓密。因此,不僅使之必然具有高孔隙性和高含水量,而且使淤泥一般呈欠壓密狀態,以致其孔隙比和天然含水量隨埋藏深度很小變化,因而土質特別松軟。淤泥質土一般則呈稍欠壓密或正常壓密狀態,其強度有所增大。 淤泥和淤泥質土一般呈軟塑狀態,但當其結構一經擾動破壞,就會使其強度劇烈降低甚至呈流動狀態。因此,淤泥和淤泥質土的稠度實際上通常處於潛流狀態。 三、軟土的物理力學特性[1] 1、高含水量和高孔隙性 軟土的天然含水量一般為50%~70%,最大甚至超過200%。液限一般為40%~60%,天然含水量隨液限的增大成正比增加。天然孔隙比在1~2之間,最大達3~4。其飽和度一般大於95%,因而天然含水量與其天然孔隙比呈直線變化關系。軟土的如此高含水量和高孔隙性特徵是決定其壓縮性和抗剪強度的重要因素。 2、滲透性弱 軟土的滲透系數一般在i×10-4~i×10-8cm/s之間,而大部分濱海相和三角洲相軟土地區,由於該土層中夾有數量不等的薄層或極薄層粉、細砂、粉土等,故在水平方向的滲透性較垂直方向要大得多。 由於該類土滲透系數小、含水量大且飽和狀態,這不但延緩其土體的固結過程,而且在加荷初期,常易出現較高的孔隙水壓力,對地基強度有顯著影響。 3、壓縮性高 軟土均屬高壓縮性土,其壓縮系數a0.1~0.2一般為0.7~1.5MPa-1,最大達4.5MPa-1(例如渤海海淤),它隨著土的液限和天然含水量的增大而增高。由於土質本身的因素而言,該類土的建築荷載作用下的變形有如下特徵: (1)變形大而不均勻 (2)變形穩定歷時長 4、抗剪強度低 軟土的抗剪強度小且與加荷速度及排水固結條件密切相關,不排水三軸快剪所得抗剪強度值很小,且與其側壓力大小無關。排水條件下的抗剪強度隨固結程度的增加而增大。 5、較顯著的觸變性和蠕變形。 四、軟土的鑒別 1、建設部標准《軟土地區工程地質勘查規范》(JGJ83-91)規定凡符合以下三項特徵即為軟土: (1)外觀以灰色為主的細粒土; (2)天然含水量大於或等於液限; (3)天然孔隙比大於或等於1.01。 2、交通部標准《公路軟土地基路堤設計與施工技術規范》(JTJ017-96)中規定軟土鑒別見表1 1)天然含水量的測定 天然含水量是土的基本物理性指標之一,它反映的土的狀態,含水量的變化將使得土的稠度、飽和程度、結構強度隨之而變化,其測定可採用公路土工試驗規程規定試驗方法測定,並將試驗數據與35%、液限進行比較。 (2)天然孔隙比 孔隙比,是土中孔隙體積與土粒體積之比,天然狀態下土的孔隙比稱之為天然孔隙比,是一個重要的物理性指標,可用來評價天然土層的密實程度。其測定方法可測定土粒比重、土的干密度、土的天然密度、土的含水量等指標通過計算而得。 (1) 式中ds —土粒比重; ρd—土的干密度; ρ —土的天然密度; w —土的含水量; ρw—水的密度,近似等於1g/cm3。 天然狀態下土的孔隙比稱為天然孔隙比,它是一個重要的物理性指標,可以用來評價天然土層的密度程度。一般e<0.6的土是密實的低壓縮性土,e>1.0的土是疏鬆的高壓縮性土。 (3)十字板剪切強度[3] 十字板剪切試驗是原位測試技術中一種發展較早、技術比較成熟得方法。試驗時將十字板頭插入土中,以規定的旋轉速率對側頭施加扭力,直到將土剪損,測出十字板旋轉時所形成的圓柱體表面處土的抵抗扭矩,從而可算出土對十字板的不排水抗剪強度。 五、軟基處理的常用材料質量要求[4] 1、砂礫料 用作墊層的砂礫料應具有良好的透水性,不含有機質、粘土塊和其它有害物質。砂礫的最大粒徑不得大於53mm,含泥量不得大於5%。 2、砂及砂袋 袋裝砂井所用砂,應採用滲水率較高的中、粗砂、大於0.5mm的砂料含量應占總重量的50%以上,含泥量應小於3%,滲透系數應大於5×10-2mm/s,砂袋採用聚丙烯、聚乙烯、聚酯等編制布製作,應具有足夠的抗拉強度,使能夠承受袋內砂自重及彎曲所產生的拉力,具有較好的抗老化性能和耐環境水腐蝕性能,其抗滲系數應不小於所用砂的滲透系數。 3、碎石 碎石由岩石和礫石軋制而成,應潔凈、乾燥,並具有足夠的強度和耐磨耗性,其顆粒形狀應具有稜角,不得摻有軟質石和其它雜質,粒徑宜為20~50mm,含泥量不應大於10%。 4、土工合成材料 土工合成材料的選用應符合《公路土工合成材料應用技術規范》的規定。應具有足夠的抗拉強度,對土工織物,還應具有較高的刺破強度和握持強度等。土工合成材料試驗項目和試驗方法應符合《公路軟土地基路堤設計與施工技術規范》和《公路土工合成試驗規程》的規定。 5、塑料排水板 塑料排水板是由芯體和包圍芯體的合成纖維透水膜構成的復合體,應具有較好的耐腐蝕性和足夠的柔度,其性能指標應符合《塑料排水板施工規程》的規定。 6、片石 拋石擠淤應採用不易風化的片石,其尺寸應小於300mm。 7、水泥 水泥各項性能指標應符合圖紙要求,嚴禁使用過期、受潮、結塊、變質的劣質水泥。所用水泥指標還應符合水泥相應標準的規定。 8、石灰 石灰應符合《公路路面基層施工技術規范》表4.2.2所規定的Ⅲ級以上的要求。按《公路工程無機結合穩定材料試驗規程》規定的試驗方法進行檢驗。 9、粉煤灰 粉煤灰應符合《公路路面基層施工技術規范》有關規定。 10、材料的采購和保管 用於軟土地基處理的塑料排水板、土工合成材料、砂袋及石灰、水泥、砂等材料,都必須按施工圖紙和規范的要求的質量指標采購進購、堆放,嚴禁材料被污染或混合堆放,過期產品嚴禁使用。塑料排水板、土工合成材料和砂袋等材料應貯存在不被日光直接照射和被雨水淋泡處,應根據工程進度和日用量按日取用。 六、高速公路軟基處理常用方法[5][6][7] 1、淺層軟基處理技術 (1)墊層法 通常用於路基填方較低的地段,要求在使用中軟基的沉降值不影響設計預期目的。設置墊層時,可以根據具體情況採用不同的材料,常用的材料有砂或砂礫及灰土,也可用土工格柵、片石擠淤、砂礫墊層綜合使用處理。 (2)換填法 在高速公路施工中遇到含水量較高,軟弱層較淺,且易於挖除不適宜材料時,一般採取挖除換填法,包括受壓沉降較大,甚至出現變形的軟基和泥沼地帶。處理這種地基,開挖前要做好排水防護工作,將開挖出的不適宜材料運走或做處理,然後按要求分層回填,回填材料可視具體情況用砂、砂礫、灰土或其他適宜材料。 (3)排擠法 當高速公路經過水溏、魚池和較深的流動性強的淤泥地段時,常遇到含水量高、淤泥壓縮性大、淤泥質粘土軟基以及水下軟基等,對這類軟基可採用排擠法來處理。排擠法又可分為兩種:一種是拋石排擠,另一種是爆炸排擠。 (4)表層排水法 對土質較好因含水量過大而導致的軟土地基,在填土之前,地表面開挖溝槽,排除地表水,同時降低地基表層部分的含水率,以保障施工機械通行。為了發揮開挖出的溝槽在施工中達到盲溝的效果, 應回填透水性好的砂礫或碎石。 (5)添加劑法 對於表層為粘性土時,在表層粘性土內摻人添加劑,改善地基的壓縮性能和強度特性,以保施工機械的行駛。同時也可達到提高填土穩定及固結的效果。添加材料通常使用的是生石灰、熟石灰和水泥。石灰類添加材料通過現場拌和或廠拌,除了降低土壤含水量、產生團粒效果外,對被固結的土隨著時間的推移會發生化學性固結,使粘土成分發生質的變化,從而促進土體穩定。