國際地質災害
❶ 國內外地質災害風險研究開展情況
一、國外地質災害風險研究概述
區域地質災害風險評估是以區域地質災害為研究對象,以地質災害的區域危險性空間分布規律和承災體的易損性評估為主要研究內容,是建立地質災害區域空間預警系統工程的必要環節,主要為制定合理的防災減災決策和區域土地規劃政策及為減災防災管理服務。
自20世紀60年代末或70年代初就開始了以滑坡災害為主體的地質災害危險性區劃研究,如:60年代末,美國西部多滑坡的加利福尼亞州的滑坡敏感性預測區劃及縣行政級別的斜坡土地使用立法研究;70年代法國提出的斜坡地質災害危險性分區系統(ZERMOS)等。進入80年代,世界許多國家和地區都開始了區域地質災害危險性分區及預測問題研究,如義大利、瑞士、美國、法國、澳大利亞、西班牙、紐西蘭、印度等。從90年代起,為了推進廣泛的國際協調與合作,聯合國在1987年通過決議,確定在20世紀最後十年開展「國際減輕自然災害十年」活動。1991年,聯合國國際減災十年(IDNDR)科技委員會提出了《國際減輕自然災害十年的災害預防、減少、減輕和環境保護綱要方案與目標》(PREEMPT),在規劃的三項任務中的第一項就是進行災害評估,提出:「各個國家對自然災害進行評估,即評估危險性和易損性。主要包括:①總體上哪些自然災害具有易損性;②對每一種災害威脅的地理分布和發生間隔及影響程度進行評估;③估計評估最重要的人口和資源集中點的易損性。」把自然災害評估納入實現減災目標的重要措施。圍繞國際減災十年計劃行動,北美及歐洲許多國家在已有地質災害危險性分區研究基礎上,開展了地質災害危險性與土地使用立法的風險評估研究,把原來單純的地質災害危險性研究拓展到了綜合減災的系統研究。
美國於1970年開始,對加利福尼亞州的地震、滑坡等10種自然災害進行了風險評估,1973年完成,得出1970~2000年加利福尼亞州10種自然災害可能造成的損失為550億美元。與此同時,由美國地調局和住房與城市發展部的政策發展與研究辦公室,聯合支持對洪水、地震、台風、風暴潮、海嘯、龍卷風、滑坡、強風、膨脹土等9種自然災害進行預測評估,對美國各縣發生的災害建立了一套預測模型,估算9種災害到2000年的期望損失。美國組成了一個由10位成員組成的專門委員會,制定了減災十年計劃,把自然災害評估列為研究的重要內容,要求開展單類的或者綜合的災害風險評估工作。日本、英國等一些國家近年來也陸續開展了地震、洪水、海嘯、泥石流、滑坡等災害風險分析或災害評估,並把有關成果作為確定減災責任與實施救助的重要依據。
瑞士是世界上開展地質災害風險區劃研究十分成功的國家之一。為了確保農業用地、建築用地的安全,預防自然災害的損失,瑞士聯邦政府1979年從立法的高度提出:「在保障國家土地完整性和協調發展的前提下實現土地的合理使用」,並頒布了聯邦政府土地管理法(Loi Fédéral sur l』Aménagement Territoire),該法律第22條規定:「各州需要調查並確定處於受自然動力嚴重威脅的土地范圍」。以聯邦政府法律為依據,各州政府制定了相應的州政府法律。如沃州(Vaud)1987年制定的土地管理法律第89條規定:「受自然災害,如雪崩、滑坡、崩塌、洪水威脅的土地,在未得到專家評估、充分論證或危險排除之前,禁止在災害危險區進行任何建築活動」。隨後制訂計劃並開展了1∶25000比例尺的斜坡地質災害風險區劃圖和1∶10000比例尺危險性區劃圖的編制和研究工作。瑞士已形成了以國家憲法為指導、州制定具體法、縣級政府必須實施的災害風險評估與預防體系。災害高危險區域內的建築一方面屬於違法,另一方面作為高風險財產范疇,保險公司絕對拒絕接納災害高危險區的財產保險業務,從而保證了瑞士全國范圍內對自然災害的最有效控制。瑞士災害的風險區劃不僅直接服務於建築規劃、政府決策,而且也間接服務於社會保障系統。雖然瑞士是世界上滑坡、崩塌等地質災害最嚴重的國家之一,無論是最後一次冰川作用以來,還是近一、二百年以來,瑞士都發生過較為重大的滑坡災害事件(Flims、Elm、Handa等特大滑坡事件),但由於得益於全國災害風險區劃體系,使其近二、三十年來的災害損失卻是世界上較少的國家之一。
法國是洪水、滑坡、崩塌、雪崩等災害較為嚴重的國家之一,早在20世紀70年代就開始全國范圍的自然災害危險性區劃研究,區劃圖直接服務於減災和防災工作,從而最大限度地減少了自然災害的損失。法國在1977年制定的城市發展規劃法(Code del』Urbanisme)規定:洪水、水土流失、滑坡、雪崩等災害危險區的建築必須受到嚴格限制。1981年該規劃法對自然災害易發區的土地使用方法又作了具體限制,例如,滑坡災害危險區分為兩類,一類是建築活動必須禁止的嚴重危險區,另一類是必須經過充分論證方可從事建築活動的較危險區。1982年,法國又頒布了自然災害防治法,並制定了洪水、雪崩、滑坡和地震四種主要自然災害防治計劃。為了進一步預測和盡可能減少災害所造成的損失,根據該防治計劃編制了災害易發區危險性區劃圖,包括紅色區域(高危險性區)、白色區域(以一種災害為主的危險區)、藍色區域(雖然有災害,但可以預防)。在紅色區域,一切新開工的建築活動是絕對禁止的,而在藍色區域,進行建築需要提供充分的論證及災害後果可靠性評估報告,如果五年之內不採取相關防治措施,財產保險公司可以對建築方因自然災害所造成的人員傷亡和財產損失不予賠償。到1989年,根據全法國的災害危險性區劃結果,法國共有 15600個鄉鎮受到洪水、雪崩、滑坡和地震四種主要自然災害的威脅,約佔全國鄉鎮總數的三分之一。由於採取了災害區劃及相應的防治措施,法國的災害損失得到了有效的控制。
二、國內地質災害風險研究概述
近20年來,國家十分重視減災工作,如《中國21世紀議程》關於防災減災行動指出:「開展全國自然災害的風險分析,包括風險辨識、風險估算、風險評估三個部分」。這表明我國已把災害風險評估作為防災減災建設的重要內容,並將之納入國家可持續發展體系。大多數地方的21世紀議程都把防災減災作為可持續發展能力建設的重要任務之一,提出了災害風險評估行動方案。在我國研究比較系統深入的災害風險評估是地震災害。其代表性的工作成果是由國家地震局先後完成的三代《中國地震烈度區劃圖及使用規定》。該圖在對全國區域地震危險性評估基礎上,確定了不同地區一般場地條件下在未來一定期限內可能遭遇超越概率為10%的烈度值,即地震基本烈度。綜合性自然災害風險研究也取得了一些研究成果。例如,黃崇福等用模糊集方法建立了城市地震災害風險評估的數學模型。水利、農林、氣象等部門的一些專家分別開展了一些區域性的洪水災害、森林火災、台風災害等風險分析或災情預測評估研究,編制了風險圖,提出了災情評估或風險評估的方法和技術。雖然這些工作還不夠深入和系統,但對指導行業減災、提高災害風險管理水平發揮了積極的作用。
我國地質災害管理工作,自1999年國土資源部發布《地質災害防治管理辦法》,標志著我國地質災害防治工作逐步走向法制化軌道,為進一步貫徹落實好《地質災害防治管理辦法》,從源頭上抓好地質災害防治,國土資源部發布了《關於實行建設用地地質災害危險性評估的通知》。通過幾年的管理實踐,以及適應全社會減災防災的需要,2004年3月1日,國務院正式發布《地質災害防治條例》,使我國地質災害防治工作有了法律保證。該《條例》規定,在地質災害易發區內進行工程建設應當在可行性研究階段進行地質災害危險性評估,並將評估結果作為可行性研究報告的組成部分;明確要求「在編制地質災害易發區內的城市總體規劃、村莊和集鎮規劃時,應當對規劃區進行地質災害危險性評估」。明確了評估的主要地質災害種類,包括崩塌、滑坡、泥石流、地面塌陷、地裂縫和地面沉降。隨著我國地質災害風險評估和災害防治管理向科學化、法制化方向的逐步發展,我國土地資源的合理與安全使用得到進一步優化,為控制和減少人為誘發的地質災害起到了重要的作用。
我國地質災害的風險評估(價)研究工作自20世紀90年代開始興起,在這一領域的研究中,已經取得了較為豐富的成果,為減災管理發揮了重要作用。例如,蘇經宇(1993)提出了判別泥石流危險性分布的標志和方法。劉希林等(1988)對區域泥石流風險評估進行了研究,給出了區域泥石流危險性評估的8個指標和人與財產的易損性計算公式,並提出了判斷泥石流危險性程度和評估泥石流泛濫堆積范圍的統計模型,對雲南和四川省泥石流災害風險進行了評估。張梁(1994)等根據環境經濟學理論,初步論證了地質災害的屬性特徵和風險評估的經濟分析方法。張業成(1995)對雲南省東川市泥石流災害進行了風險分析。張梁、張業成、羅元華及殷坤龍、晏同珍等對滑坡災害危險性和斜坡不穩定性的空間預測與區劃進行了系統研究,先後提出了定量評估的信息分析模型、多因素回歸分析模型、判別分析模型等,並對秦巴山區和三峽庫區滑坡災害進行了危險性分析與區劃。朱良峰(2002)等研究開發了基於GIS的區域地質災害風險分析系統,對全國范圍的滑坡泥石流災害進行了危險性分析、易損性分析和最終的風險分析。殷坤龍等經過多年研究,開發出MapGIS的滑坡災害風險分析系統(IASLH)。在該系統中,提出了滑坡災害危險性分析的信息量模型。該模型根據滑坡分布信息與各滑坡影響因素之間的關系,計算出產生滑坡的信息量,據此,進行滑坡危險性區劃,並應用IASLH系統對中國漢江流域旬陽地區的滑坡災害以及中國滑坡災害進行了評估。
當前,地質災害風險研究正處於方興未艾之時,今後將得到更加迅速的發展,其研究內容將更加廣泛,理論方法更加豐富、先進。可以預見,不久的將來,它將成為一項具有完善理論和技術方法的新興領域。其基本趨勢是:向著評估定量化、綜合化、管理空間化的方向發展。主要表現為:
(1)從歷史與現狀分析趨向預測與研究相結合;
(2)從個體分析趨向個體與區域研究相結合;
(3)從定性分析趨向定量化評估;
(4)從單項要素分析趨向綜合要素評估;
(5)從單純的風險評估理論研究發展為風險評估與減災管理相結合,風險評估與防治相結合,風險評估的目的是為了服務於社會經濟建設和減災管理;
(6)以GIS空間化技術為支撐的多因素信息模型化評估與空間化管理空前發展,將逐步取代傳統的調查統計和手工制圖,並向網路技術化發展;
(7)研究理論與方法趨向於內容更豐富,形成多學科的融合與交叉,特別是與社會學緊密相結合。
盡管經過20多年的發展,國內外的地質災害風險研究與評估在理論和實踐方面都取得了較為豐富的成果,然而還未形成系統完善的理論與方法體系,也沒有統一的評估標准,國內在這一領域的研究還很薄弱,地質災害的各專業災害評估仍處於日益深入的探討和總結過程。主要存在的問題包括:
(1)目前滑坡泥石流災害破壞損失只考慮了直接的經濟損失,對其間接經濟損失評估方法的研究很少;
(2)現有的滑坡泥石流災害風險評估框架與指標體系的目標和構成都不夠明確,指標體系不夠完整,各分析層面之間的邏輯關系,不同的學者有不同的表述,缺乏普遍共識的評估框架體系;
(3)對於滑坡泥石流災害的風險可接受水平的研究非常薄弱,沒有令人信服的標准體系;
(4)滑坡泥石流災害風險評估理論和方法還不完善;
(5)滑坡泥石流災害風險評估中的易損性分析還是一個相當薄弱的環節。在易損性分析中,一般僅考慮了滑坡泥石流災害的歷史災情中的人員傷亡,而對歷史災情中的經濟財產和資源環境的損失很少予以考慮。
❷ 地質災害易發區國內外研究現狀
4.1.1 國外現狀
由於研究的地域范圍不同和對地質環境認識的差異,國內外研究者對地質災害易發區的理解也有不同。
國外對地質災害敏感性評價類似我國的地質災害易發程度評價。美國災害敏感性評價以地質、地形條件和以往發生的災害空間分布情況為依據進行評價(Nilsen,1977;Shek,1977;Carrara,1983,Brabb,1984,Brand,1988;Cross,1998等)。美國地質調查局在《美國國家滑坡減災戰略——減少損失的框架》(2003)中認為,可供規劃和決策使用的滑坡編目和滑坡敏感度圖對全國滑坡多發區是絕對必要的。
歐洲國家在阿爾卑斯山較多地開展了滑坡敏感度和危險性評價,並把評價結果應用於滑坡災害的減災管理。義大利P.Aleollt(2000)採用GIS技術對義大利北部阿爾卑斯山前緣的Piedmont地區的滑坡、洪水、雪崩、山谷口堆積等災害的敏感性、危險性及總的風險進行了區劃性制圖研究。A.Car-rara,M.Cardinali和F.Guzzetti等(1991)利用GIS技術將統計模型應用於義大利中部某小型匯水盆地的滑坡敏感性和危險性評估。亞洲國家,如日本、韓國在一些滑坡地質災害多發區也開展了滑坡敏感度和危險性評價,H.Haruyama和H.Kawakami(1984)利用數學統計理論對日本活火山地區由降雨引起的滑坡災害進行了敏感性和危險性評價,Saro Lee對韓國的一些地區分別應用多元統計和神經元網路模型進行了滑坡災害敏感性和危險性評價。一些國家,如澳大利亞直接開展斜坡地質災害風險評價,其中敏感性和危險性評價是其基礎,如M.Michael-leiba等(2000)在澳大利亞的一項城市發展規劃項目的斜坡地質災害研究中,把斜坡災害的敏感性、危險性、易損性、風險評價作為一體,以GIS軟體為技術平台,分別採用平面和三維評價系統,對Cairns地區進行了斜坡地質災害的敏感性、危險性和風險評價。Mario Mejia-Navarro和Ellen E.Wohl(1994)在分析哥倫比亞的Medellin地區滑坡、泥石流等斜坡不穩定性引起的區域地質災害敏感性和土地及生命易損性的基礎上,利用GIS技術將兩者合成製作了風險評價分區圖。
4.1.2 國內現狀
進入21世紀以後,在原有研究的基礎上,我國在全國范圍內有計劃地開展了全面的地質災害調查與防治,積極吸取國際地質災害防治研究的先進方法,並公布實施了《地質災害防治條例》,將地質災害易發區的研究納入了國家法制的軌道。
1)1999年以來,在全國地質災害嚴重區開展了以縣(市)為單元的「縣(市)地質災害調查與區劃」工作。調查災種為崩塌、滑坡、泥石流、地面塌陷、地裂縫等,截至2005年,共進行了700個縣(市)地質災害的調查與區劃工作。中國地質環境監測院已完成545個縣(市)信息系統的集成和綜合研究。
在各調查縣(市),根據野外調查的結果和地質環境資料,結合災害點和災害隱患點的密度,劃分地質災害易發區並編制「地質災害分布與易發區圖」是其主要任務之一。《縣(市)地質災害調查與區劃實施細則》明確指出「地質災害易發區」是指容易產生地質災害的區域。基於地質災害現狀,地質災害易發區可劃分為高易發區、中易發區、低易發區和不易發區四類。
2)從2002年開始,各省陸續開展了分省地質災害防治規劃工作,主要依據1∶50萬環境地質調查和縣(市)地質災害調查成果,對省內地質災害易發區進行了初步劃分,22個省編制了分省地質災害易發區圖(1∶50萬~1∶200萬)。
3)張梁等(2002)將地質災害易發區表述為地質災害危險性評估,並認為地質災害危險性(易發程度)評估就是研究不同地層單元組合、區域地質構造單元特徵、地形地貌條件下的區域地質災害規律,以及氣象、人類活動方式條件下的區域地質災害誘發規律和時間活動規律。前三類因素是決定地質災害區域分布規律的背景因素組合,這些因素具有空間上的分布規律,而且隨時間的變化性極小,屬於穩定型的控制因素,是地質災害易發程度的背景條件。後兩類因素屬於地質災害的觸發因素,隨時間的動態變化較大,它們與背景條件的組合狀況決定了地質災害的時空規律。
4)岑嘉法(2003)認為,地質災害易發區是指地質環境條件脆弱,具備發生地質災害條件,容易產生地質災害的區域。如在地球內動力作用強烈地區(高地震烈度區、活動斷裂區、區域構造交會處等)、地球外部營力作用強烈帶(如暴雨中心區、河流侵蝕帶、岩土體鬆散分布區等),以及人類工程經濟活動劇烈地區(如人口密度大,工業、農業、城鎮、交通建設強度大區)等。只要有觸發因素,即可產生地質災害。該區的確定,主要通過較大比例尺的環境地質與災害綜合調查後實際圈定,經濟建設與工程安排應盡量避免在易發區內。如果需在易發區內建設,要進行工程項目地質災害危險性評估工作。對工程建設作出地質災害現狀、工程建設可能誘發或加劇地質災害的預測和綜合評估,並提出地質災害防治措施對策。現進行的縣(市)地質災害調查與區劃,就是要實地圈定地質災害易發區范圍。
5)劉傳正等(2003)提出的「潛勢度」是某一地區在沒有任何降雨、地震、人類活動等情況下發生地質災害的潛在條件的量化指標,具體是指地質災害基礎因子(地形地貌、地表植被、地層岩性和地質構造)與響應因子的綜合表現,並編制了三峽庫區地質災害潛勢度、危險度等圖。
6)全國山洪災害防治規劃編寫組和水利部長江水利委員會進行的山洪災害易發程度評價,是利用各省(區、市)1∶50萬或1∶100萬泥石流、滑坡分布圖,以泥石流、滑坡的「線密度」和「規模」所反映的「可能成災點」的多少進行評價,即「可能成災點」越多,災害易發程度越高;「可能成災點」越少,災害易發程度越低。在參考相關部門成果及進行實地調查的基礎上,以小流域為單元,劃分出了泥石流或滑坡災害高易發區以及中易發區和低易發區。各區的劃分具體指標如表4.1所示。
在上述工作的基礎上,編制各省(區、市)1∶50萬或1∶100萬山洪誘發的泥石流、滑坡災害易發程度分布圖。該圖除反映泥石流、滑坡災害的易發程度以外,還通過編繪地形坡度分區和地層岩性分區,標示地貌區劃和區域構造形跡,綜合反映了由山洪誘發的泥石流、滑坡災害易發程度區劃與地形地貌、地層岩性及地質構造的相互關系。從而可以通過圖件,分析出不同區域地質背景與地形地貌條件下,泥石流、滑坡災害高、中、低易發區的分布規律。並以此進行逆向校核、修正,使泥石流、滑坡災害易發程度區劃圖更為科學、合理、可靠。
表4.1 山洪誘發泥石流、滑坡災害易發程度分區標准
7)2003年11月,我國國務院公布了《地質災害防治條例》(中華人民共和國國務院令第394號),並規定2004年3月起施行。該條例要求「實行地質災害調查制度」,並在此基礎上編制地質災害防治規劃,規劃所包括的5項內容之一就有「地質災害易發區、重點防治區」。2004年頒布的《地質災害防治條例釋義》進一步明確指出,地質災害易發區,是指具備地質災害發生的地質構造、地形地貌和氣候條件,容易或者可能發生地質災害的區域。地質災害易發區必須經過地質災害基礎調查才能劃定。易發區是一個相對的概念,並且可按照災害種類劃定,不同災種其易發區范圍不同。
❸ 地質災害調查
進入世紀以後,在社會變革和科技進步的雙重驅動下,全球經濟進入快速發展階段。與此同時,自然災害發生頻次不斷增加,環境污染日益擴大,成為威脅經濟社會發展的重大問題。據聯合國國際減災戰略機構統計,重大地質災害從1900~1909年的40次增長到2000~2009年的358次(圖6-3)。為了應對日益增多的自然災害所帶來的巨大挑戰,20世紀80年代末,聯合國大會上通過關於成立國家減災委員會的決議,提出「國際減輕自然災害十年」計劃,由此推動各國政府把減輕災害列入國家發展規劃。針對地質災害,專門成立了國際滑坡研究組等組織,實施全球地質災害編圖計劃。2000年聯合國通過了國際減災戰略,成立了相應的國際減災戰略機構,繼續推進各國的減災行動。2005年1月,第二屆世界減災大會在日本神戶召開,與會專家學者們一致呼籲加強區域綜合減災能力建設,提高應急管理水平,從而實現區域的可持續發展。目前,各個國家的地質調查部門均把地質災害的調查、監測和防治作為其重要的工作內容。
圖6-3 1900~2009年世界地質災害發展趨勢示意圖
美國地質調查局長期致力於滑坡、地震、火山等地質災害的研究和預警預報工作。經過長期的積累與努力,美國地質調查局成為世界公認的滑坡災害權威機構,設有國家滑坡信息中心,負責滑坡災害研究並提供實時災害信息。2000年,美國地質調查局制定了《國家滑坡災害減災戰略》,確定了美國減輕滑坡災害的重點工作方向,包括滑坡過程與發生機制研究、災害填圖與評估、實時監測、信息收集傳輸與解譯、指導與培訓、公眾教育、災害防治、應急反應與救災9大方向[8]。目前,正在執行滑坡災害項目2005~2010年規劃,強調採用新的機理模型和監測技術來研究滑坡災害。挪威地質調查局和挪威岩土工程研究所等機構聯合開發建立國家滑坡災害資料庫,對挪威境內的滑坡進行登記入庫,包括災害分布圖、危險性分區圖、滑坡歷史數據、災害評價資料等。從2004年開始,挪威地質調查局負責進行全國的滑坡災害填圖。澳大利亞1994年啟動的國家環境地質科學填圖協議,把災害調查、災害風險評估作為其中一項重要的內容。澳大利亞地球科學機構與地方政府合作進行滑坡災害調查與評估工作,重點對發生滑坡的區域開展災害預測,對滑坡易發區進行災害風險評估。日本泥石流災害發生頻繁,不得不投入大量的人力、財力進行泥石流災害研究,取得了顯著的成效。近年的研究工作重點強調利用先進技術建立泥石流原型綜合觀測系統,同時進行一系列規模大小不一的模擬實驗,開展泥石流產生、搬運和堆積機理的理論研究[9]。
近年來,國外地質災害調查的主要研究集中在以下幾個方面:
(1)地質災害資料庫及災害的風險填圖。例如,義大利建立了GEOS資料庫,收集的數據包括岩石、古今滑坡、對人造建築的損害、土壤最易過飽和和滑動的地區、河道特徵等。根據需要,可以繪制各種1∶10萬至1∶25萬比例尺的圖件,如脆弱性圖、洪水多發區圖等。加拿大啟動了自然災害填圖項目,目的是提供加拿大自然災害的背景信息,包括歷史事件數據和風險圖等。美國編制了自然災害風險圖,表明了易受各類自然災害危險的地區。
(2)地質災害預測和預警系統。在進行災害預警系統研究中,廣泛採用了現代化的技術方法。例如美國採用GIS技術確定各個地區對地震災害的脆弱性,並實時監控地質活動帶獲取相關數據。
(3)先進技術在地質災害調查中的應用。例如,採用遙感技術對中小流域地質災害進行區域性評價,查明地質災害時空分布規律,結合地面調查劃分地質災害危險性等級。同時將災害危險性等級與土地資源的可利用性聯系起來,使地質災害研究成果更容易為公眾所接受,擴大成果的應用服務。
(4)災害系統和災害鏈的研究。研究表明,各種地質災害的發生有著成生聯系,往往會發生連鎖反應,例如大洪水常伴生有滑坡、泥石流、地面塌陷等災害。由於災害的共生性使災害事件和災害系統非常復雜,對單一災害的研究往往不能解決實質性的問題,各國加強了對地質災害系統的研究。
❹ 地質災害
自然因素或者人為活動引發的崩塌、滑坡、泥石流等地質作用或現象,危及經濟社會生命和財產安全時,就形成了地質災害。隨著土地、水和礦產等地質環境要素的不斷變化,誘發地質災害的自然條件和人為活動隨之改變,地質災害對經濟社會和生態系統的負面影響日益凸顯。近年來,全球重大地質災害發生總體呈上升趨勢,因災死亡人數得到了有效控制,經濟損失快速增加。
表1-5 1940~2012年世界各地區重大地質災害統計
(數據來源:聯合國國際減災戰略機構(UN/ISDR)EM-DAT資料庫,2013)
圖1-10 1940~2012年全球重大地質災害發生頻次變化
(數據來源:聯合國國際減災戰略機構(UN/ISDR)EM-DAT資料庫,2013)
重大地質災害發生頻次不斷上升。聯合國國際減災戰略機構(UN/ISDR)收集整理了世界各個國家發生的重大自然災害,形成了EM-DAT國際災害資料庫。入庫的重大自然災害應至少滿足下列條件之一:造成10人以上死亡;100人以上受到災害影響;政府宣布應對災害緊急狀態;政府在救災過程中呼籲國際援助。據統計,1940~2012年,全球發生重大崩塌、滑坡、泥石流地質災害649次,造成6.3萬人死亡,有記錄的經濟損失約86.5億美元(表1–5)。圖1–10繪出了1940~2012年全球重大地質災害發生頻次變化情況。可以看出,重大地質災害發生頻次在時間上總體呈上升趨勢,從20世紀40年代到80年代初重大地質災害增長較慢,80年代以後重大地質災害發生頻率快速增加,從80年代初的年均不足10次增加到近十年來的年均19次,表明崩塌、滑坡、泥石流災害發生頻次有較大幅度的增加。雖然每年重大地質災害發生頻次增加,但是因災死亡人數沒有明顯增長,單次地質災害造成的死亡人數總體上是下降的,從1970~1979年的136人/次下降到2000~2009年的40人/次,說明隨著各國對地質災害的日益重視,地質災害防治取得了一定成效。然而,地質災害造成的經濟損失自80年代以來快速增加,從1970~1979年的1.4億美元增加到2000~2009年的10.2億美元(圖1–11)。
圖1-11 1940~2012年全球重大地質災害死亡人數與經濟損失情況
(數據來源:聯合國國際減災戰略機構(UN/ISDR)EM-DAT資料庫,2013)
不同國家地質災害防治水平存在顯著差異。美國1960~2009年地質災害共造成336人死亡,直接經濟損失12.4億美元(按1960年折算)。1970年以後,隨著地質災害防治科技進步,美國地質災害造成的死亡人數保持在很低的水平,平均年死亡人數在4人以下。1985年以前地質災害造成的直接經濟損失呈快速增加趨勢,之後直接經濟損失則呈減少的趨勢,說明美國地質災害防治取得了明顯的成效。從5年累計數值來看,美國地質災害防治將減少人口傷亡放在首位,在有效避免災害傷亡之後,盡力減少災害造成的直接經濟損失(圖1–12)。墨西哥1970~2011年地質災害呈增加趨勢,1997年以前地質災害發生在低水平波動,平均每年發生10次左右,平均每年導致近14人死亡;1998年以來,地質災害顯著增加,平均每年發生的地質災害增加至86次,平均每年導致50人以上(不含1999年)死亡(圖1–13)。從地質災害死亡率來看,1982年以前單次地質災害造成的平均死亡人數總體上呈增加趨勢,1982年以後(如果不考慮1999年)總體上地質災害死亡率呈下降趨勢。尼泊爾1971~2011年地質災害發生總體上可劃分為兩個階段:第一階段(1971~1992年)年發生地質災害頻次保持穩定,多在19次上下波動;第二階段(1993~2011年)地質災害頻次明顯增加並呈周期性波動,平均每年發生120次以上,在地質災害高發年可達380次以上。地質災害致死人數呈緩慢增加趨勢,地質災害死亡率在1989年以後明顯下降。
地下水持續超采引發的地面沉降成為世界很多地區不得不面對的環境問題。據統計,目前世界上已有60多個國家和地區發生地面沉降。其中,地面沉降比較明顯的區域有墨西哥的墨西哥城(2004~2006年沉降300mm/a),美國加州Coachella Valley(2003~3009年沉降70mm/a),越南Hanoi(沉降0.10~0.15m),日本Sagamigawa平原(1975~1995年累計沉降0.32m),伊朗Yazd-Ardakan盆地(1985~2010年累計沉降0.5~1.2m),印度尼西亞Semarang(2007~2009年沉降80mm/a),中國西安(截至1996年累計沉降量超過100mm的面積達150km2)、天津(2010年市區沉降量20.4mm)等。
圖1-12 1960~2008年美國5年累計直接經濟損失和死亡人數
(數據來源:美國南卡羅來納大學美國災害與損失資料庫SHELDUS,2011)
圖1-13 1970~2011年墨西哥地質災害發生與死亡率變化
(數據來源:拉美災害預防研究網路(LA RED)DesInventar災害信息管理系統,2013)
❺ 當今地質災害研究的重點與發展趨勢
近十年來,地質災害問題日益受到國際社會的廣泛關注和高度重視。聯合國已將地質災害納入了「國際減災十年計劃」,並成立了國際滑坡研究組等專門組織,實施了「全球滑坡災害編圖計劃」。與此呼應,還提出了一些洲際或大區域的地質災害編圖計劃。如由日本地調局組織的「東亞自然災害編圖計劃」。國際地科聯地質環境委員會目前則正在組織編制區域性和全球性地質災害目錄清單,尤其是影響城市地區的地質災害目錄清單,目的旨在幫助和指導主要由一些國際組織如聯合國教科文組織等管理的地質災害防治和減輕方面的特別援助項目計劃。一些發達國家如美、英、日等早在70年代便開始了全國性的地質災害調查與評價,其它一些國家如加拿大、澳大利亞、巴西、俄羅斯、義大利、西班牙、葡萄牙等,從80年代後期始,也分別開展了全國性或區域性的地質調查評價和研究工作。目前我國正在實施新一輪國土資源大調查工作,「地質災害預警工程」是其中的一項重要內容。從國內外地質災害研究和工作部署來看,總體呈現以下趨勢:①建立地質災害資料庫及災害風險填圖;②地質災害實時監控與定量評價及其災害預警系統研究;③注重群發或誘發的災害系統研究;④建立地質災害快速反映部隊;⑤工作部署重點包括快速發展地區、城市走廊帶、工程和交通走廊的地質災害主題填圖及其監測研究計劃。
❻ 全球地質災害態勢及防治趨勢
隨著全球氣候變暖,地殼活動進入一個相對活躍期,再加上重大工程的開工建設等人類活動的影響,世界各國正在遭受前所未有的地質災害威脅。崩塌、滑坡、泥石流等突發性地質災害日益增加。地質災害已經成為當代地球科學的熱點領域。本屆大會除了在「每日主題」報告會中專門設立地質災害專題外,還有多個討論會涉及地震、火山活動、海嘯(風暴潮)、滑坡、崩塌、泥石流等主要地質災害類型,其他災害如暴雨、洪水等氣象災害也被納入到地質災害專題。
縱觀本屆國際地質大會,與地質災害專題有關的地球科學熱點領域包括以下幾個方面。
一、地質災害調查檢測新技術和新方法
干涉雷達測量和差分干涉雷達測量技術作為快速、精確(毫米級)的獲取地形數據的技術,日益受到重視,有很多的研究都是利用這兩種技術開展滑坡監測和制圖。隨著GIS制圖和數據分析處理能力的日益增強,有限元理論的2D或3D模型應用於滑坡、崩塌等的穩定性計算和評價已經很普遍。安吉·梅瑞(Andrea Merri)等採用Flac3D軟體對義大利思特朗博利火山進行3D地質建模,從而分析不同岩漿構造狀態下應力—應變狀態的變化,並對岩漿流動狀態進行預測。英國地質調查局已將3D地質建模納入戰略科學計劃(2005~2010年),與1999年出台的戰略科學計劃相比,最重要的變化就是從2D地質調查技術向3D地質調查技術轉變,例如「英國大陸的3D地學框架」和「海岸、大陸架和大陸邊緣的3D表徵」等研究計劃。隨著地理信息系統的發展,目前甚至已經出現了4D理論。
二、地質災害監測預警
地質災害早期預警系統不僅是一套技術設備,人類因素、社會元素和信息通信也是重要的組成部分。挪威是崩塌、滑坡和泥石流等突發性地質災害頻發的國家(地區),於2005年成立Geo Extreme研究計劃,擬用4年時間對挪威今後50年地質災害情況進行評估。這個課題共包含4個研究模塊:模塊A主要目標是進行氣象參數與滑坡和崩塌之間的耦合性研究,為了進行這方面的研究,已經建立了包含滑坡和崩塌事件的資料庫;模塊B主要進行區域氣候前景預測,重點是進行降水和颶風等極端氣候事件研究;模塊C利用模塊A和B研究結果生成關於挪威將來可能發生地質災害的分布圖,這項模塊主要研究4個能代表不同氣候區域的關鍵區域;模塊D研究過去和預測將來由地質災害引起的經濟損失情況,主要因素有由自然災害引起的破壞和減災措施所需要的費用、經驗能力培訓、預案方面的變化以及對於政策制定者的影響。
三、地質災害風險管理
地質災害風險評估與管理一直是國際上倡導和推廣的減災防災有效途徑之一。「降低風險、增加防禦」是本次大會地質災害的主題,也是2008國際地球年的十個主要研究課題之一。本主題集中討論了4方面問題:①人類是如何改變了岩石圈、生物圈和自然景觀,並因此產生對人類生命和環境有害的變化並誘發地質災害,同時增加了社會對地球(地質、地貌和水文氣象)適應的脆弱性?②我們應該採取什麼樣的方法和技術來評估人類和場地對災害的適應性,以及在全球范圍內我們該如何採用這些方法和技術?③在目前監測、預測和減災能力條件下,各地質災害類型之間相對比是什麼樣一種狀態,以及我們要採取什麼措施才能夠在短期內改變這種狀態?④在風險運用與政府(以及其他機構)掌握的對於每一種地質災害的風險、降低脆弱性措施及計劃(包括減災)之間存在什麼障礙?為了解決這些問題,本主題致力於與其他國際組織中的各研究項目達到一個整體平衡,主要焦點在這些問題怎樣與聯合國國際減災戰略兵庫行動框架的五個行動主題相銜接。
四、重大地質災害應急系統
盡管本屆大會很少有地質災害應急系統研究方面的論文,但是在專題討論過程中,不少研究者都提及了這一問題。地質災害應急系統的建設主要是根據各地區地質災害發育特徵,開展地質災害信息系統建設、防災減災演習和制定應急救災預案等。目前各國都有不同的地質災害應急辦法,但是在推廣應用方面還存在一定差距。西爾弗斯特·哥利姆斯達爾(Sylfest Glimsdal)等對挪威西部Akneset地區的一個斜坡體進行研究後發現該斜坡體有一塊很大的不穩定塊體,如果這些不穩定塊體整體滑動,這個滑坡將會誘發海嘯,並會對這個海灣上的多個建築物造成破壞性損失,通過對斜坡體數字建模、波浪數字建模和進行2D和3D數字建模對斜坡體穩定性、海嘯的產生和傳播過程進行模擬分析,最終預測了海嘯。在2008年的四川汶川大地震中,桑棗中學在地震發生後,只用了1分36秒,就組織2000多名學生下樓,全校師生無一人傷亡,創造了該次地震中的一個奇跡,這個奇跡的創造歸功於該校平時進行的消防防災演習和對建築物的修繕、加固。對於地震、海嘯等破壞力強的地質災害,也可以通過先進的地震、海嘯預警系統,提前發出警報,讓人員和車輛在海嘯到達之前轉移到安全地帶,是最有效的方法之一。
五、把地質災害風險性評估納入城市規劃和管理
隨著世界人口的增加和城市化進程的加快,各種地質災害成為制約城市發展規劃的消極因素,在城市規劃和管理中加強地質災害危險性評估工作是一項具有重要意義的工作。在本次大會上,有關學者介紹了所在國家(地區)的一些做法。英國是一個國土面積較小、海岸線狹長的國家,卻有非常多和正在增長的人口,對於土地利用方面的競爭一直很激烈,因此在一些可能遭受地面沉降、滑坡和洪水的地區進行土地利用和開發就有相當大的壓力,此外,還有一些被工業污染的土地需要進行改良和開發,在這些地區進行土地開發和建設時需要對這個地區的地質災害發育情況有較深入的了解。維克托·奧斯波夫(Victor Osipov)主要考慮莫斯科地質災害類型有滑坡、喀斯特、岩溶侵蝕過程和地下水洪流等,在地質災害發生過程評估的基礎上,繪制了莫斯科1∶5萬的地質環境現狀圖,並分析了根據市政規劃和職能分區的不同地質環境現狀的區域分布狀況,把莫斯科地區劃分為了非常不適宜地區、不適宜地區、較適宜地區和適宜地區等4類。
六、地質災害國際合作
盡管全球地質工作者開展了大量的工作,但地質災害仍然呈現大量增長趨勢。氣候的變化讓事態變得更加糟糕。2005年1月,由聯合國發起和建議在日本神戶通過了「2005~2025兵庫行動框架」。這項計劃有165個成員國討論通過,並且是截至目前在全球范圍內減少災難性自然災害最重要的文件之一。這項計劃明確了在世界各國及各國際組織應該採取什麼積極措施來達到較好的減災效果,另外,還闡明了世界減災委員會應該承擔的責任與義務。總之,這項行動計劃的基本觀點就是國際社會應該承擔起保護市民避免遭受災害的威脅。行動框架按地震、海嘯、滑坡和火山爆發等對地質災害進行了劃分,並且每類地質災害都有災難性事件的例子以及死亡率和經濟損失統計數據。在本項行動框架中,對合適的判別方法的重要性、風險減少措施(包括早期預警系統)、加強制度管理(包括建築物容納能力)等3個主要內容進行了更加詳細的討論。
由於國際科學理事會亞太地區辦公室所負責的地區人口佔世界大多數,並且因地質災害死亡的人數佔全球總死亡人數的80%,因此該辦公室決定創建一個關於地質災害和災難的科學計劃,該計劃初步考慮地震、洪水和滑坡等3種主要地質災害,目標是減輕自然災害。2002年提出了實施方案,後來這個方案發展成為全球觀測戰略8個主題之一,並由歐洲空間機構對外發布。2007年這項計劃又由法國地質礦產局改進。兵庫行動框架提出後,義大利、中國、日本等國家進行了相關的工作,2005年9月在北京召開的亞洲減災大會上,落實了兵庫行動框架,討論了十年內亞洲地區減災重點領域和區域合作內容。2007年第六屆亞洲工程地質災害區域會議在韓國首爾舉行,中韓之間簽訂了合作協議,對亞洲地區的地質災害合作研究進行了深入探討。2008年11月還將在日本東京召開國際滑坡會議,對相關問題開展進一步的探討。
(張永雙吳樹仁郭長寶張岳橋執筆)
❼ 美國和日本等國地質災害預警服務
目前,實現地質災害預警的國家和地區,一般具備如下條件:
1)模型方法方面:對降雨和地質災害的發生進行深入研究,獲得了地質災害預警的理論模型方法。
2)降雨監測和降雨預報方面:一是降雨預報數據,能夠實現區域未來一段時間內的降雨預報;二是實時降雨監測數據,該數據一般可以通過兩種方式獲得:
a)雨量計,通過在區域上埋設一定數量的雨量計,實時精確掌握點上的降雨情況,從而實現區域上實時降雨的獲得。通過安裝自動遙測雨量監測儀(截至1995年,在舊金山灣地區安裝了60台),當雨量每增加1mm時,通過電波自動傳送數據到任何可接收到信號的地方(要求有接收器、計算機、數據接收分析顯示的軟體)。
b)降雨雷達,通過多普勒雷達(通過降雨雲層上反射的雷達波)數據來進行降雨實時監測,該方法的難題在於,雷達回波值與地面上的降雨自動遙測值之間的關系確定上。原因有二:一是冰的反射能力遠遠大於水滴,因此溫度成為一個關鍵的因素,且雲中水滴的大小與溫度、高度都相關,同時,除了水滴外,粉塵、昆蟲、鳥等都能反射雷達的能量,都有回波;二是地面發散,即接近地面的雷達回波存在問題,特別是受到地形的影響。因此,將雷達回波值轉換到降雨強度難度較大,且不同地區轉換關系又不一樣。
3)預警系統:根據降雨引發災害的理論模型方法,實時進行分析預警。
4)預警信息發布平台:一般通過廣播電台或電視台,向公眾發布預警信息。
存在不足:理論模型方法需要更多的校驗;缺乏有關斜坡岩土體方面的實時監測。
1.4.1 美國
美國是最早開展區域泥石流災害預警的國家之一。
1.4.1.1 舊金山海灣地區
1985年,美國地質調查局(USGS)和美國氣象服務中心(NWS)聯合在舊金山海灣地區正式建立了泥石流預警系統。該系統於1986年2月12~21日在舊金山海灣地區的一次特大暴雨災害中用於滑坡預報,並得到檢驗。由於技術復雜、機構變動和人員變動等方面原因,該預警系統在1995年被迫停止運行。
基於1982年1月3~5日在美國舊金山海灣地區發生的一次特大暴雨所引起的滑坡災害數據,這次特大暴雨持續了34h,降雨量616mm,引發了大量的滑坡,造成25人死亡和超過6600萬美元的經濟損失。Mark&Newman通過對1982年1月的降雨情況分析得出,當前期雨量超過300~400mm,暴雨量超過250mm,即超過年平均降雨量的30%時,滑坡將大規模發生。該系統的基本原理是考慮了臨界降雨強度和持續時間,並且考慮地質條件、降雨的空間分布,以及地形條件。美國地質調查局和美國氣象服務中心在整個舊金山海灣地區共設計了45個自動降雨記錄點,當降雨每增加1mm時,降雨觀測點就通過自動方式將數據傳送到美國地質調查局的接收中心和計算機系統。同時,為了監測降雨期間地下水壓力的變化,工作人員還設置了若干個孔隙水壓力計以觀測斜坡中地下水壓力變化。當降雨量和降雨強度將要超過臨界值時,提前進行滑坡災害的預報,以減少滑坡災害的損失和可能的人員傷亡。
舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。
1986年2月12~21日的滑坡災害預警首先由美國地質調查局決定,通過當地電台、電視台以及美國氣象服務中心的特別預報的方式來進行的。這次滑坡災害的預警分為兩個階段:第一階段是2月14日的6h災害危險期;第二階段是17~19日之間的60h的災害危險期。由於地質條件的復雜性和地形條件的變化,這兩次預報主要是針對整個舊金山海灣地區,而不是某一個特定的滑坡災害地點。根據滑坡災害發生後的調查,10處滑坡災害點有目擊者能提供精確的時間,其中有8處滑坡所發生的時間與預警的時間段是完全一致的(圖1.17)。
圖1.17 累計降雨量、滑坡預警時間(水平線段)、滑坡發生時間空心三角為滑坡;實心三角為泥石流
進一步研究要點:
a) 降雨—滑坡關系需精練,要考慮長期中等強度的降雨影響,使降雨與滑坡發生之間有更准確的模型,同時要針對滑坡的臨界值,而不僅僅是泥石流;
b) 土體含水量和孔隙水壓力的測量方法要更精確、有效;
c) 預警系統需要模式化和自動化,以便在暴雨期能夠更快、更有效地得到數據;
d) 與滑坡有關的地形、水文和地質條件等內容,需進一步考慮,以使今後的預警更准確、有效。
作為第一個預警系統,從 4 個方面保證運行:
a) 降雨方面: 國家氣象服務中心降雨預報( 未來 6h 預報) ,降雨實時連續監測( 多於 40個實時雨量計) ;
b) 預警方法方面: Canon and Ellen( 1985) 的臨界降雨判據;
c) 預警運行上: 美國地質調查局根據降雨預報和實時降雨監測,實時預警系統進行分析;
d) 美國地質調查局和氣象服務中心共同確定預警,並向社會發布。
1.4.1.2 俄勒岡州
1997 年,美國的 Oregon 政府建立了泥石流預警系統。該系統,由林業部的氣象學家、地調系統( DOGAMI) 的地質學家、交通部( ODOT) 的工程師一起創建的。預警信息和建議通過 NOAA 天氣節目和 Law Enforcement Data System 進行廣播發布。DOGAMI 負責向媒體和相關地區提供關於泥石流的追加信息; ODOT 負責在更風險時段向機動車輛提供預警,包括在高泥石流風險路段安裝預警信號。
1.4.1.3 夏威夷州
1992 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wilson 等,1992) 。
1.4.1.4 弗基尼亞州
2000 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wieczoic 等,2000) 。
1.4.1.5 波多黎各島
1993 年,加勒比海的波多黎各島建立了與舊金山海灣類似的 I-D 的預警模型,並進行了數次實時預報( Larsen & Simon,1993) 。
1.4.2 日本福井縣
Onodera et al.( 1974) 通過研究發現,在日本,累計降雨量超過 150 ~ 200mm,或每小時降雨強度超過 20 ~30mm 時,大量滑坡將發生滑動。
日本在泥石流預警系統研製和開發方面處於國際領先地位。以發展具體一條或相鄰溝的小規模地區的泥石流預報系統為主,通過上游泥石流形成區降雨資料的統計分析,確定臨界雨量值和臨界雨量報警線,通過上游雨量實時數據採集、演算和比較判別,自動發出報警信號。
山田剛二等( 1977) 通過滑坡的位移和地下水壓力的監測,認為滑坡位移速率以及地下水壓力不僅與當天降雨量有關,而且還與以前的降雨量有關,所以用有效雨量來表示雨量,有效雨量可以從下式求得:
中國地質災害區域預警方法與應用
式中:Rc為有效雨量;R0為當天降雨量;Rn為日前降雨量;α為系數;n為經過的天數。通過對山陰干線小田—天儀之間403km,400km附近的滑坡研究發現,日有效降雨量、位移速率、地下水壓力隨時間而變化的曲線,位移速率v,Rc與地下水壓力(p)之間關系分別是二次曲線和直線:
中國地質災害區域預警方法與應用
目前,日本在福井縣開展了地質災害預警預報工作。以點代面,根據區域地形、地貌和環境地質特徵以及災害可能發生的危險程度,在全縣范圍內布設了 66 個預警預報監測點,實現了定點、定時和災害程度的預警預報。同時通過該系統還可以了解過去某一時間的雨量情況和發布情況等內容。
1.4.3 巴 西
Guidicini and Iwasa( 1977) 通過對巴西 9 個地區滑坡記錄和降雨資料的分析,認為降雨量超過年平均降雨量的 8% ~17%,滑坡將滑動; 超過 20%,將發生災難性滑坡。
1996 年,里約熱內盧( Rio de Janeiro) 州建立了預警系統( Geo-Rio) 。由地質力學所設計並安裝了 30 台自動雨量計,向中心計算機( Geo-Rio) 發送數據。中心計算機接收數據,並發布預警。2001 年滑坡災害中,對里約熱內盧的部分地區發布了預警,但在向北 60 km 處的 Petropolis 損失慘重。由於火災,Geo-Rio 系統於 2002 年 11 月被迫停止。
❽ 2011-2012國際地質災害有哪些
2011年3.11日本大地震及其引發的海嘯等等
❾ 地質災害分幾個級別各自程度如何
震級是指地震的大小,是表徵地震強弱的量度,是以地震儀測定的每次地震活動版釋放的能量權多少來確定的。震級通常用字母M表示。我國目前使用的震級標准,是國際上通用的里氏分級表,共分9個等級。通常把小於2.5級的地震叫小地震,2.5-4.7級地震叫有感地震,大於4.7級地震稱為破壞性地震。震級每相差 1.0級,能量相差大約30倍;每相差2.0級,能量相差約900倍。比如說,一個6級地震釋放的能量相當於美國投擲在日本廣島的原子彈所具有的能量。一個7級地震相當於30個6級地震,或相當於900個5級地震,震級相差0.1級,釋放的能量平均相差1.4倍。
按震級大小可把地震劃分為以下幾類:
弱震震級小於3級。如果震源不是很淺,這種地震人們一般不易覺察。
有感地震震級等於或大於3級、小於或等於4.5級。這種地震人們能夠感覺到,但一般不會造成破壞。
中強震震級大於4.5級、小於6級。屬於可造成破壞的地震,但破壞輕重還與震源深度、震中距等多種因素有關。
強震震級等於或大於6級。其中震級大於等於8級的又稱為巨大地震。
❿ 國際地質災害防治科技研究現狀與發展趨勢
10.1.1 地質災害形成機理與調查評價科技研究
(1)降雨誘發型滑坡和泥石流的形成機理
近30年來,降雨型滑坡研究是滑坡研究中的熱點課題之一,其核心是通過研究降雨與滑坡的各種關系,預測可能的滑坡狀態。據初步統計,全球至少有23個國家的學者對降雨型滑坡進行了不同程度的研究,美國、義大利、日本、英國、澳大利亞、紐西蘭以及中國香港和內地學者發表的研究論文較多。1984年後,中國香港政府加大了對降雨型滑坡的研究力度。除每年進行降雨滑坡的調查外,特別加強從更深層次上研究滑坡與降雨的關系,降雨滑坡分布發育規律,降雨入滲的水文地質模型,以及應用概率統計和其他數學方法建立更精確的滑坡—降雨關系。隨著研究程度的深入,研究者一致認為香港火成岩風化層的非飽和土和殘積土特有的性質控制著淺層降雨型滑坡的形成機理。研究結果表明,降雨型滑坡形成機理的本質在於雨水入滲斜坡後破壞了斜坡的應力平衡。因而,從理論上解釋雨水入滲後斜坡應力的變化過程,以及雨水在斜坡中的滲透特性和滲透過程,是降雨型滑坡成因機理研究的關鍵。
(2)岩溶塌陷發育機理和判據研究
日本學者Nogushi(1970)、蘇聯學者Xоменко(1986)、美國學者Ralphj Hodek(1984)和Thom-as M.Tharp(1995)、俄羅斯學者Anikeev(1999)等,先後採用物理模型試驗或數值分析的方法,系統研究了非黏性土潛蝕塌陷的過程。國外一些學者還嘗試採用岩土工程離心機進行塌陷試驗,如:Borms和Bennermark(1967),Marir(1984),Bertin(1978),Howell和Jenkins(1984),Sterling和Ronayne(1984),Craig(1990),Ablla和Goodings(1996),運用離心機模擬塌陷破壞機理和導致塌陷的臨界組合條件,重點研究了上覆在洞穴上方的弱固結砂層的塌陷破壞與洞穴開口大小、洞穴自身強度、弱固結砂層強度和厚度、上覆砂層的厚度,以及地表荷載的關系。
美國、義大利、英國開展的基於GIS技術的地質災害的風險評價工作中,包含了岩溶塌陷危險性評價。
(3)區域滑坡和泥石流調查與危險性評價
早期的地質災害空間預測主要依據野外調查與航空相片解譯情況,由專家進行地質災害敏感性判斷和評價,故稱之為專家評價法(Aleotti和Chowdhury,1999)。該方法評價結果精度取決於野外調查的詳細程度和專家的知識與經驗,評價中運用的隱含規則使結果分析與更新困難,而且不同調查者與專家得出的結果無法進行比較。
20世紀70年代,以美國加利福尼亞舊金山地區聖馬提俄郡的滑坡敏感性圖為代表,利用多參數圖的加權(或不加權)疊加得到區域滑坡災害預測圖的方法得到大力推廣。該方法的優點是克服了使用隱含規則的問題;缺點是權重的確定仍保持主觀性,模型的推廣應用有一定困難。
20世紀80年代,受統計回歸分析和判別分析在石油運移與礦床預測中應用的啟發,Carrara(1983)將多元統計分析預測方法引用到區域滑坡空間預測中,並使該技術在世界各國得到迅速發展與推廣。如Haruyama和Kawakami(1984)利用數學統計理論對日本活火山地區降雨引發的滑坡災害進行了危險度評價。Baeza和Corominas(1996)利用統計判別分析模型進行了淺層滑坡敏感性評估,其斜坡破壞的正確預測率達到96.4%,說明了統計預測的適用性。Carrara,Cardinali和Guzzetti等(1991)將統計模型與GIS結合,應用於義大利中部某小型匯水盆地的滑坡危險性評估,結果證明統計分析與GIS的綜合使用是一種快速、可行、費用低的區域滑坡危險性評價與制圖方法。
20世紀90年代以來,隨著計算機技術和信息科學的高速發展,以處理和分析地理空間數據為主要特點,具有屬性資料庫與圖形庫動態連接功能的地理信息系統(GIS)技術得到了空前發展,其與定量化的地質災害空間預測模型方法的結合也成為地質災害研究的新領域。
Mario Mejia-Navarro和Ellen E.Wohl(1994)在哥倫比亞的麥德林(Medellin)地區分析滑坡、泥石流等斜坡不穩定性引起的區域地質災害敏感性和土地及生命易損性的基礎上,利用GIS技術將兩者合成產生了風險評價分區圖。Anbalagan和Bhawani Singh(1996)在Anbalagan(1992)關於山區滑坡災害評估和區劃制圖研究的基礎上,提出了風險評價制圖的新方法——風險評價矩陣(RAM)。
Aleollt(2000)採用GIS技術對義大利北部阿爾卑斯山前緣的皮埃德蒙特(Piedmont)地區的滑坡、洪水、雪崩、山谷口堆積等災害的危險性及綜合風險進行了區劃性制圖研究。Michael-Leiba等(2000)在澳大利亞的一項城市發展規劃項目的斜坡地質災害研究中,把斜坡災害的危險性、易損性、風險評價作為一體,以GIS軟體為技術平台,分別採用平面和三維評價系統,對凱恩斯(Cairns)地區進行了斜坡地質災害的危險性和風險區劃研究。Ragozin(2000)從理論上研究了滑坡災害風險評價中的危險性、易損性和風險性。提出了考慮危險性評估目標有效期限在內的單個滑坡災害危險性指標,並用其主要控制因素的概率乘積表示;對於區域性滑坡災害評估,用給定地區的面積、滑坡發生面積、滑坡數量和時間之間的關系建立定量模型。
10.1.2 監測預報技術方法研究
(1)誘發滑坡和泥石流的臨界降雨量與氣象預警研究
在誘發地質災害的降雨臨界值研究方面,各國學者用來確定降雨誘發滑坡臨界值的方法很多,其不同點在於考慮的因素不同。Glade(1997)建立了確定誘發滑坡的降雨臨界值的三個模型,並在紐西蘭的惠靈頓地區進行了驗證。三個模型要求的基本數據為:日降雨量、滑坡發生日期和土體潛在日蒸發量(通過Thornthwaite method方法計算得到)。模型建立的前提是:①假設最大日降雨量的地區,蒸發量最小;②滑坡由最大降雨量誘發。這三個模型基本概括了當前確定誘發滑坡的降雨臨界值的方法。
在對美國舊金山灣地區1986年2月12~21日的滑坡和泥石流災害預警工作中,首先由美國地質調查局分析確定,通過當地電台、電視台以及美國國家氣象中心的特別預報方式來進行預警。這次滑坡泥石流災害的預警分為兩個階段:第一次是2月14日的6個小時災害危險期,另一次是17~19日之間的60小時的災害危險期。由於地質條件的復雜性和地形條件的變化,這兩次預報主要是針對整個舊金山海灣地區,而不是某一個特定的滑坡災害地點。根據滑坡泥石流災害發生後的調查,10處滑坡泥石流災害發生點有目擊者能提供精確的時間,其中有8處滑坡泥石流所發生的時間與預警的時間段一致。
據研究,舊金山灣地區的6小時降雨量達到4英時(即101.6mm)時,就可能引發大面積泥石流。為了監測降雨期間地下水位的變化,他們還設置了若干個孔隙水壓力計以觀測斜坡中地下水位變化。舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。
1984年開始,香港地區採用雷達圖像解譯小范圍地質構造,用於確定滑坡發生的潛在區域。進而建立了用於滑坡災害的降雨量監測網路,其中自動雨量計1999年由48個擴展為86個。將雨量資料定時傳給管理部門。如預測24小時內降雨量達到175mm或60分鍾內市區內雨量超過70mm,即認為達到滑坡預報閾值,即由政府發出通報。香港平均每年約發出三次山洪滑坡暴發警報。
(2)滑坡和泥石流災害監測技術方法研究
對於滑坡和泥石流的監測,在美國、瑞士、義大利、日本、韓國等發達國家已經做了很多工作,特別是單體滑坡已經達到真正實時監測的階段。監測內容包括地面位移、地裂縫、地下位移、地下水位(水壓力)和水溫、地聲等。監測技術採用常規監測、自動觀測、GPS和衛星通信等相結合(圖10.1,10.2)。在我國的香港特別行政區,也建立了比較完善的基於降雨監測的地質災害監測網路。
圖10.1 使用太陽能無線遙控系統(左圖)和變形計(右圖)
圖10.3 分層標自動監測系統及原理示意圖(據Amelung等,1999)
在美國加利福尼亞州薩克拉門托,GPS測量已經取代了區域性的地面標高的水準測量。1986年在該區建了38個GPS監測站,1989年後達到了68個。採用嚴格的測量程序,其大地高程的精度可達到毫米級。我國上海經過近兩年應用Ashtech Z12雙頻GPS信號接收機測定大地高程,於1999年也取得了大地高程精度達3mm的好成果。其優點是對於區域性地面沉降的大范圍監測具有事半功倍的效果。
根據美國地調局資料,美國用於探測地面沉降的干涉合成孔徑雷達(InSAR)技術還處於開發和試驗之中(圖10.4)。Gabriel等率先於1989年發表了《測繪大區微小高程變化:雷達干擾測量法》的文章。1993年,Massonet等利用雷達干擾測量法測繪了著陸器地震的地面形變場區。Van der Kooij等用太空飛船干涉衛星孔徑雷達資料調查研究了荷蘭格洛寧根(Groningen)天然氣開采區的地面沉降問題。Marco等利用美國實驗研究學會干涉衛星孔徑雷達資料對美國貝爾瑞吉(Belridge)油田1992~1996年的地面沉降進行了詳細的研究。由於這種探測技術的使用,地面沉降測量的精度已達毫米級,其探測結果能很好地處理成平面二維沉降等值線圖。而且該方法可以省去常規水準標石測量的許多人力和物力的投入。因此,不能低估這一新技術的開發應用前景,在目前情況下可以參照國外成功的經驗在我國進行試驗。
(4)岩溶塌陷監測技術研究
美國學者Benson(1987)提出利用地質雷達進行監測預報的方法,並在美國北卡羅來納州威爾明頓(Wilmington)西南部的一條軍用鐵路進行了試驗,監測周期為半年,取得了良好的效果。2002年,在國土資源大調查項目的支持下,中國地質科學院岩溶地質研究所在廣西桂林柘木鎮建立了我國第一個岩溶塌陷災害監測站,為深入系統地研究岩溶塌陷預測預報方法提供了良好的條件。
圖10.4 合成孔徑雷達干涉測量獲得的內華達州拉斯維加斯谷地
(5)地質災害監測預警信息傳輸處理與發布系統研究
發達國家和地區已經越來越重視地質災害監測的信息化工作。例如美國、日本、義大利、法國和韓國等建立了地質災害實時監測系統,在實際應用中可以做到實時預警。針對單種地質災害開展監測預警方面的研究工作較多,多災種的集成系統尚不多見。
10.1.3 地質災害治理工程技術研究
(1)地質災害防治理論
重視基於地質災害形成機理的地質災害防治理論研究。如日本針對溫泉地區的滑坡特點,研究採用排氣工程和地下水截水工程進行滑坡綜合防護;法國針對降雨誘發的粘土滑坡採用虹吸排水技術;美國和日本在研究植被覆蓋好的地區發生的淺層滑坡,開展採用調整植物類型的生物措施研究等。在地質災害的防治工程中,普遍採用生物防護系統,注重生態環境保護,日本在滑坡治理中,抗滑樁和建築地基結合,實現防治工程與土地開發利用相結合。
(2)地質災害防治工程設計技術方法
國外對於復雜支擋結構設計技術、地下水排水技術設計,基於環境和景觀設計的技術規程和實用的計算機軟體開發等方面,都進行了大量研究,形成了比較配套的設計計算理論方法和產業化軟體。如:美國開發了三維連續體的快速拉格朗日分析軟體——FLAC3D,三維模擬離散元程序——3DEC;加拿大開發的地質工程問題和地質環境模擬分析的軟體包——GEO-SLOPE Office(GEO-SLOPE Office 5.0 for Windows),已經廣泛應用於世界上許多國家的滑坡等地質災害防治工程設計,形成了模塊化的設計軟體和方法。
(3)地質災害治理工程技術
在治理技術上,廣泛應用土工織物、預應力復雜支擋結構、地下水排水技術。尤其以美國、西歐、日本和我國的香港特別行政區在地質災害治理方面投入大,成就顯著。如日本地附山滑坡治理工程,耗資達150億日元(約15億人民幣),可算得上地質災害防治工程的博物館。
國外對崩塌和滑坡災害治理的常見技術工程包括:①沖刷防護工程:防沖壩、沉積壩、護岸、防波壩、丁壩;②減重和反壓工程;③地面排水工程:地面排水溝、防滲工程;④地下排水工程:地下排水溝、泄水洞、水平鑽孔、集水井和虹吸排水工程;⑤地下截水工程:隔滲芯牆截水,灌漿截水,化學固化法截水;⑥支擋工程:擋土牆、格柵牆、抗滑樁、岩石錨桿;⑦排氣工程:用於治理溫泉地區的滑坡;⑧生物護坡技術和輕型網狀防護系統結合用於崩塌和小型滑坡災害的治理。
由於水是形成滑坡的重要誘發因素,地面排水工程和地下排水工程總是被首先考慮的治理技術,也是在大型滑坡防治中首選採用的治理技術。美國、日本、紐西蘭等國在滑坡治理中廣泛應用地下排水工程技術,採用水平鑽孔排水和排水井、排水隧洞聯合排水技術治理滑坡。法國採用虹吸排水技術治理100多處降雨誘發的粘土滑坡。它是一個密封的聚氯乙烯管系統。該技術的最大優點是可以自流排水,降低滑坡的地下水位。
在支擋工程技術應用方面,研究應用大截面抗滑樁、錨索抗滑樁、錨索、小型鋼架樁加錨索、微型樁群等多種支擋結構,並在錨索防腐技術、通用的計算方法、設計軟體和技術標准方面取得明顯進展。減重和反壓工程是經濟有效的防治滑坡的工程措施。英國Huchinson提出的「中性線」方法為減重和反壓計算提供了理論依據。
近年來,發達國家在地質災害防治工程實踐中,在崩塌和小型滑坡災害治理中應用輕型網狀防護系統與生物護坡系統的配合技術,使防治工程進一步向輕型化和美觀化方向發展。如SNS柔性支護系統和生物護坡系統,在歐洲許多國家應用比較普遍。
10.1.4 國際地質災害防治科技研究發展趨勢分析
地質災害防治科技未來總體發展趨勢是:重視地質災害早期預測、預警能力建設,提高地質災害領域防災減災科技水平和能力,建立3S(即:RS——遙感,GPS——全球定位系統和GIS——地理信息系統)技術平台,發展和建立區域地質災害動態實時監測網站和預測預警信息系統,建立地質災害信息系統平台和共享通道,提高地質災害減災防災技術的支撐能力。
對地質災害形成機理的深入研究一直是國際地質災害研究的難點,而降雨型滑坡研究是滑坡研究中的熱點課題之一,重點是研究誘發泥石流、淺層滑坡的臨界降雨量隨區域和氣候變化而變化,揭示降雨與滑坡的各種關系,預測可能的滑坡狀態。
應用GIS技術開展地質災害的區域特徵分析和災情空間制圖正成為熱點。通過計算機高技術手段(GIS,GPS,RS等)將災情分析與危險性評價、風險性預測有機結合起來,形成實時預警決策體系將成為災害地質研究的一個重要趨勢。
在各種監測技術方面,發達國家在加強各類地質災害實時監測台站建設的同時,均十分重視高新技術的應用,高科技空間對地觀測技術在地質災害方面的應用研究也是發達國家的重要研究方向。各種更為先進的遙感探測系統的應用逐步深入,美國、法國、義大利和日本等國都將GPS、干涉雷達遙感在滑坡、地面沉降等動態調查和監測中的應用作為重點研究方向。
近年來,發達國家在地質災害治理工程技術方面具有如下特點和發展趨勢。
在防治理論上:重視基於地質災害形成機理的地質災害防治理論研究;注重防治工程與生態環境保護和土地利用結合;形成模塊化的設計軟體和方法,研究開發新的治理技術方法。
在災害信息處理方面:各種高速的數值預報已逐步實現;高速、智能化、綜合化的通信網路技術、分布式資料庫技術和海量數據操作技術的發展,又使災害通信、計算機網路和信息開發處理融為一體,形成了綜合的災害信息網路系統,使各種分散的災害信息真正做到資源共享;人工智慧、多媒體和三維模擬技術的發展,推動了災害信息產品的應用和再加工。