當前位置:首頁 » 地質工程 » 地質災害影響

地質災害影響

發布時間: 2021-02-05 18:14:23

① 2020年南寶山受地質災害影響嗎

2020年南寶山受地質災害影響嗎?無論哪裡,如果在地質災害的時候都會受到一些影響,比如說地震或者火山泥石流等等,洪澇災害都是非常影響非常大的。

② 地質災害的危害性有哪些

地質災害是指在地球的發展演化過程中,由各種自然地質作用和人類活動所形成的災害性地質事件。一般認為,地質 災害是指由於地質作用(自然的,人為的或綜合的)使地質環境產生突發的或漸進的破壞,並造類生命財產損失的事 件或現象。 地質災害的分類,有不同的角度與標准,十分復雜。 就其成因而論,主要由自然變異導致的地質災害稱自然地質災害;主要由人為作用誘發的地質災害則稱人為地質災害。 就地質環境或地質體變化的速度而言,可分突發性地質災害與緩變性地質災害兩大類。前者如崩塌、滑坡、泥石流等,即習慣上的狹義地質災害;後者如水土流失、土地沙漠化等,又稱環境地質災害。 根據地質災害發生區的地理或地貌特徵,可分山地地質災害,如崩塌、滑坡、泥石流等,平原地質災害,如地質沉降,如此等等。 常見的地質災害有12類。 1、地殼活動災害:如地震、火山噴發、斷層錯動 2、斜坡岩土體運動災害:如崩塌、滑坡、泥石流 3、地面變形災害:如地面沉降、地面塌陷、地裂縫 4、礦山與地下工程災害:如煤層自然、洞井塌方、冒頂、偏幫、鼓底、岩爆、 高溫、突水、瓦斯爆炸 5、城市地質災害:如建築地基與基坑變形、垃圾堆積 6、河、湖、水庫地質災害:如塌岸、淤積、滲漏、浸沒、潰決 7、海岸帶災害:如海平面上升、海水入浸、海岸侵蝕、海港淤積、風暴潮 8、海洋地質災害:如水下滑坡、潮流沙壩、淺層氣害 9、特殊岩土災害:如黃土濕陷、膨脹土脹縮、凍土凍融、沙土液化、淤泥觸變 10、土地退化災害:如水土流失、土地沙漠化、鹽鹼化、潛育化、沼澤化 11、水土污染與地球化學異常災害:如地下水質污染、農田土地污染、地方病 12、水源枯竭災害:如河水漏失、泉水乾涸、地下含水層疏乾等

③ 地質災害及其基本特性

地質災害指給人類生命財產、生產活動和生存與發展造成危害的地質事件。由地質作用引起或地質條件惡化導致的自然災害都劃歸為地質災害。

地質災害既具自然屬性,又具社會屬性。自然屬性是指地質災害都是一種自然地質現象,社會屬性是指地質災害必須對人們的生命財產或資源、環境造成危害,否則,稱其地質現象。地質災害的屬性特徵如下:

1)地質災害的必然性和可防禦性。地質災害是地球物質運動的產物,是伴隨地球運動而生並與人類共存的現象。但通過科學調查、研究,揭示並掌握地質災害發生、發展的條件和分布規律,進行科學的預測預報和採取適當的防治措施,就可能對地質災害進行有效防禦。

2)地質災害的隨機性和周期性。地質災害是在多種動力作用下形成的,其發生時間、地點和強度等具有很大的不確定性,可以說,地質災害是復雜的隨機事件。受地質作用周期性規律的影響,地質災害也表現周期性特徵,多具有季節性規律。如每年的雨季往往是地質災害多發季節。

3)地質災害的突發性和漸進性。突發性地質災害大都以個體或群體形態出現,具有驟然發生、歷時短、爆發力強、成災害快、危害大的特徵,如地震、崩塌、滑坡、泥石流等。漸進性地質災害是指緩慢發生的,以物理的、化學的和生物的變異、遷移、交換等作用逐步發展而產生的災害,主要有土地荒漠化、水土流失、地面沉降等。

4)地質災害的群體性和誘發性。地質災害常常具有群發的特點,如在山區,崩塌、滑坡、泥石流等災害往往成群體發性。也可能一種地質災害的發生,是後一種災害的誘因或災害鏈中的一環,如崩塌、滑坡往往是泥石流形成區固體物的主要來源。

5)地質災害的成因多元性和原地復發性。每一次地質災害的成因均不相同,並都是多元因素作用的結果。某些地質災害具有原地復發性,如泥石溝復發頻繁。

6)地質災害的區域性。地質災害的形成通常受地質條件的控制,因此,其空間分布也呈現區域性的特點。受我國地形、地質條件的限制,我國地質災害可劃分為4個大區:東部平原沉降區,以地面塌陷和礦井突水為主;中部山地崩滑區,以崩塌、滑坡和泥石流災害為主;西部高原凍土區,主要災害是凍融、泥石流;西北部草原沙漠區。

7)地質災害的破壞性與建設性。地質災害對人類的主導作用是多種形式的破壞,但有時地質災害對人類會產生有益的建設性作用。如山區斜坡帶發生的崩塌、滑坡堆積為人類活動提供了相對平緩的台地,人們常在古滑坡體居住或耕作。

8)地質災害影響的復雜性和嚴重性。地質災害的發生、發展有其自身復雜的規律,對人類社會經濟的影響還表現出長久性、復合性等特徵。重大地質災害常造成大量的人員傷亡,使基礎設施遭受破壞,生產停頓或半停頓,社會經濟遭受巨大的直接或間接損失。

9)人為地質災害日趨顯著。由於人口的急劇增長,各種經濟開發活動愈演愈烈,許多不合理的人類活動使地質環境日益惡化,導致大量次生地質災害的發生。如過量開采地下水引起地面沉降、海水入侵和地下水污染,礦業活動引發崩塌、滑坡、泥石流、水資源枯竭、水質污染,過度放牧導致土草地退化、土地荒漠化等。

10)地質災害防治的社會性和迫切性。地質災害除了傷害人員,破壞房屋、鐵路、公路、航道等工程設施,造成直接經濟損失外,還破壞資源和環境,給災區社會經濟發展造成廣泛而深刻的影響。

④ 地質災害的危害性有哪些

地質災害是指岩土體在重力作用和誘發因素(降雨、地震、人類工程活動等)版作用下發生的變權形破壞地質現象。如滑坡、崩塌、泥石流、地面塌陷……
①地質災害與地震區別:
地質災害→力源→重力作用。
地震→力源→區域構造應力作用,構造應力作用→形變→形變應變能→能量釋放→地震,見「應力與孕震能力間關系』一文。
②地質災害危害:
a)直接危害:
一一人員傷亡統計。
一一財產損失統計。
一一險情計算。
b)間接危害:
地質災害鏈等,如滑坡堰塞湖→一旦潰壩→泥石流或洪災…→危害。
滑坡崩塌堵溝→潰決→潰決型泥石流→危害。

⑤ 常見地質災害對工程建築的影響

舉個例子吧, 設想一個場地,要建一個高樓。
擬建場區地質條件變化較大,地質結構較復雜,岩土層性質變化較大,對其場地的地質環境條件應進行詳細的勘察和論證,尤其探明灰岩的分布和岩溶的發育情況,避免由於基岩地質條件、工程地質條件的不明而引起岩溶地面塌陷、軟弱土層地面沉降、基坑失穩破壞、基坑降水誘發地面沉降、基坑突涌、地基土浸水膨脹和失水收縮等災害的發生,從而對建築基礎造成破壞。
3、針對基坑降水地面沉降地質問題,可根據周邊環境設置有效的止水帷幕,如不能設置有效的止水帷幕,可採取回灌井方案,同時需注意進行地面沉降監測及周邊影響區域內的建築物變形監測。
4、基坑開挖面積及深度較大,開挖土方量大,堆放在評本區內可能造成堆積土邊坡失穩,施工時應注意選擇棄土堆放場所並注意控制堆放邊坡角度處於自穩范圍內。
5、在岩溶地面塌陷危險性中等區進行工程建設時,應對可溶性岩層的分布、特徵、是否存在溶洞、是否造成岩溶地面塌陷災害進行分析、論證或查明,以避免隱伏性岩溶地面塌陷災害的發生;岩溶區施工灌注樁宜選用對地基擾動和影響小的成孔工藝,如回轉鑽進成孔。灌注樁施工前應進行專門的施工勘察,查明岩溶洞隙及其伴生土洞的位置、規模、埋深等情況;當採用嵌岩樁時,應進行專門的樁基勘察;對一柱一樁的基礎,應逐樁布置勘探孔,直徑大於1m的樁應布置2-3個勘探孔。勘探孔如發現溶洞或土洞應跟蹤注漿充填。
6、本區域土層中夾有高嶺土,在施工過程中注意高嶺土與地下水作用產生的危害。基坑開挖和基礎施工時,應防止地表水及地下水浸泡地基土,也不宜暴曬地基土,保持地基土的天然濕度。
7、針對基坑涌水地質問題,需進行次重點防治。應對基坑內水量進行必要監測,同時採取合理的降水措施,並配合相應的截水和排水措施,如修建截水溝、排水井等,避免發生基坑突涌。工程建設時採取合理防排水措施,及時疏排地表水,防止浸泡沖刷地基。
8、本區內樁端持力層局部高差較大,基礎施工時應加強樁端持力層的驗收工作,確保樁端進入持力層一定深度。另外,樁身過長時樁長細比過大,在進行設計及施工時應避免過大的彎曲變形造成的建築物不均勻沉降危害。
9、場地現有的地面高度有一定的高差變化,如果本區工程建設出現或存在人工邊坡,應根據具體邊坡工程地質條件,設置相應的擋土牆的防護措施。

⑥ 地質災害產生的影響因素

環膠州灣地區地質災害的產生受很多因素的影響,總體上可以歸結為內動力地質作用、外動力地質作用和人類工程地質活動三大類。

4.7.1 內動力地質作用

內動力地質作用與地質災害的發育有著密切的關系。內動力地質作用對地質災害發育的控製作用主要表現在兩個方面: 一是地殼的區域升降運動; 二是斷裂構造活動。前者是形成現狀地形特徵的內在因素; 後者則是形成區內構造格局及岩石節理裂隙發育程度的必要條件。

4.7.2 外動力地質作用

外動力地質作用是指地表受重力和太陽能影響而產生的地表變異作用,包括流水、風化等作用及其他作用。其作用的形式可歸結為剝蝕作用和堆積作用,以及連接二者的搬運作用,即不斷地破壞和夷平那些由內動力地質作用產生的隆起部分,並把破壞下來的碎屑物質搬運堆積到低窪地區或海中。因此,外動力地質作用的過程起著改造地表形態的作用,是地貌景觀形成和發展的基本動力。現狀的地貌形態是內、外動力地質作用綜合影響的結果,也是地質災害發育的重要影響因素。

( 1) 流水作用

區內大氣降水相對比較豐富,且多集中在雨季 7 ~9 月份。由於受地形條件控制,河流功能存在較大差異,但其對地表的侵蝕,對泥砂、礫石的搬運作用和堆積作用,以及對地表形態的改造作用是相同的。當地表接受大氣降水形成徑流時,開始降水在重力作用下,以散流方式向下運動,隨著流量及流速的加大,對地表形成片狀侵蝕,對地表風化層或鬆散層進行剝蝕,若匯入溝谷底部或低窪地帶,徑流就會集中,動能增大,並以線狀形式對溝谷底部及兩側進行侵蝕。在此過程中,不僅有流水的直接沖刷作用,而且有水中砂、石塊甚至是巨大漂礫的磨蝕作用。

( 2) 風化作用

風化是外動力地質作用的重要方式,與地質災害的形成和發展有密切關系。由於山區岩石出露,風化形式多為碎屑狀風化、塊狀風化和球狀風化。

4.7.3 人類工程地質活動

人類頻繁的工程地質活動及對地質環境的破壞,是工作區內地質災害及隱患形成的不可忽視的重要因素。改革開放以來,尤其是 1990 年以來,經濟、城市建設、旅遊及第三產業、交通等設施建設得到迅猛發展,建設規模和步伐都是空前的,人類的工程活動及對地質的影響也在不斷增強,由此而產生的不良地質現象明顯呈上升趨勢。人類工程活動分布見圖 4.6。

圖 4.6 環膠州灣地區人類工程活動分布

隨著旅遊業的長足發展,旅遊線路建設發展較快。在修建公路的過程中,由於開挖路基坡腳,破壞了地質體的原有結構特徵,削坡過陡造成邊坡失穩,為地質災害的產生提供了條件,形成災害隱患。新景點的開發大都以地質地貌景觀為主,尤以怪、險、奇、玄的地貌景觀吸引遊客,加大了人類與景觀的接觸程度,也增加了災害發生的概率。

城市或城鎮的工業、民用建築的建設,特別是在丘陵、山區,建築物的建設需要對鄰近山體採取削坡、回填等措施,這些工程對地質環境的破壞,無論是時間上還是空間上,都將更加頻繁和密集,形成的災害隱患也不斷增加。

礦產資源開發、建築石材開采、河道內挖沙等資源開發活動,也是破壞地質環境、形成災害隱患的重要人類工程活動之一。開采活動破壞了山體、植被、耕地,形成的礦坑、陡峻邊坡及大量堆置的礦渣、尾礦等,是誘發或造成崩塌、滑坡等地質災害的重要因素。

近海地區地下水資源的不合理開發,是造成海 ( 咸) 水入侵的主要原因。

⑦ 地質災害狀況

地質災害嚴重危害人民生命、財產和生存環境,嚴重威脅國家重大工程的建設與安全運營。據統計,1995~2008年全國崩塌、滑坡、泥石流等突發性地質災害共造成13900人死亡或失蹤,平均每年死亡和失蹤993人(圖2.3)。

圖2.3 1995~2008年中國地質災害造成死亡(失蹤)人數對比(2008年「5.12」汶川地震引發的崩塌、滑坡造成的死亡數除外)

圖2.3顯示的總趨勢是明顯的。從2001年全國普遍推行群測群防工作體制和2003年開始實行全國地質災害區域預警預報以來,雖然人類活動的范圍和強度仍在發展,但全國突發性地質災害造成人員死亡或失蹤的總數量逐年呈下降趨勢。

1998年,中國南北方(長江流域和松花江流域)比較普遍的大雨和洪災以後,發生滑坡、泥石流災害的地質物質儲備相對減少,可能是1999年死亡人數出現低谷的一個原因。2006年多次超強台風暴雨登陸在中國廣大地域引發群發型滑坡、泥石流災害,具有點多分散,單點災害傷亡人數少,合計傷亡人數多的特點。

據分析對比,中國因地質災害年均致死人數與全國人口總數之比約在1∶106量級,美國和加拿大的比率約為1∶107,日本近於1∶106。中國人口基數大,又處於基礎工程建設的高速發展時期,因地質災害造成的年平均致死人數約為美國的25倍。若按等量人口計算,兩者的比例數仍高達5倍,說明中國地質環境的科學利用仍處於比較低的水平,防災減災工作的努力空間還是很大的。

據國土資源部門統計,2001~2008年因突發性地質災害造成的經濟損失在35億~51億元之間,這個數據主要反映了農村和城鎮地區的經濟損失量,對於公路、鐵路、礦山和水利、水電等工程類的反映嚴重不足。因此,由於部門管理的分割,單純地質災害造成的直接經濟損失統計尚缺乏可信的數據,估計年平均直接經濟損失在80億元以上,年最高經濟損失應在150億元以上,並有逐年增加的趨勢。

中國地質環境的復雜性造就了中國是世界上地質災害最嚴重的國家之一。中國廣大的山地丘陵區是崩塌、滑坡和泥石流災害多發區,嚴重危害山地居民的生命安全,嚴重製約中國經濟、社會、環境和人文等方面的可持續發展。

據不完全統計,全國有1588個縣(市)長期受到突發性地質災害的困擾,約200個城市受到突發性滑坡、泥石流災害的威脅,數千萬人生活在地質災害嚴重的地域,缺乏生存的安全感。全國共有各類礦山20多萬個,每年產生固體廢物140×108t、尾礦30×108t,這些廢棄物任意堆放成為比較嚴重的滑坡、泥石流災害隱患。另外,全國有20餘條鐵路干線、數千座水電工程和多數山區公路不同程度地受到滑坡、崩塌、泥石流的危害和威脅。

降雨是誘發地質災害的重要因素之一,統計數據表明,約2/3的突發性地質災害是由於大氣降雨直接誘發或與大氣因素相關。地質災害的發生頻率逐月統計結果顯示,地質災害主要集中發生在汛期(5~9月)(圖2.4)。

圖2.4 全國重大崩塌、滑坡、泥石流災害逐月分布

在空間分布上,地質災害主要分布在我國東南和西南廣大山地、丘陵地區。2004~2006年,浙江、福建、廣東、廣西、雲南、貴州、湖南、四川、重慶、陝西等省(區、市)為主要的地質災害分布地區。

2.3.1 滑坡

我國滑坡主要集中分布在西南的四川、雲南、貴州、西藏地區和西北的陝西、甘肅、山西地區,以及中南、東南的福建、湖南、湖北等地區。在上述省(區)內滑坡多成群、成片、成帶狀分布,而其餘地區則較少發生滑坡,即使有滑坡也多屬零星散布。我國滑坡分布的基本特點是:西部地區多於東部地區,南部地區多於北部地區,其中我國西南地區是滑坡分布最集中、發生頻率最高的地區。

滑坡分布的東、西兩大區存在明顯差異:在太行山—貴州高原一線,以西滑坡分布密集,以東滑坡分布明顯減少,特別在以東的北部地區幾乎很少發生滑坡,更沒有滑坡的集中發生區。大興安嶺—太行山東麓—貴州高原東緣一線是我國的第一級地貌界線,它把我國劃分為地貌景觀截然不同的兩部分,即高聳深切割的以大高原、高山、極高山和大盆地為主的西部地區和低矮而淺切割的以平原、低山、丘陵為主的東部地區,東、西兩大區滑坡分布存在明顯差異。

滑坡分布的南、北差異明顯。以秦嶺-淮河一線為界,北部滑坡稀疏,南部滑坡密集。秦嶺-淮河一線是我國氣候分區的第一級界線,年降雨量800mm等值線與此線吻合,其他的氣候要素也多以此為界。此線以北是蒸發量超過降水量的少水地區,小河流大多數是間歇性的,河流密度較小;此線以南是降水量超過蒸發量的多水地區,小河流常年有水,河流密度較大。南、北兩大區滑坡分布存在明顯差異。

2.3.1.1 滑坡分布規律

1)滑坡直接受易滑地層的控制。中國95%以上的滑坡發生在易滑地層分布區。例如,四川省的滑坡集中發生在上更新統成都粘土、下更新統昔格達組、中生代紅色砂頁岩地層和下侏羅統、二疊系煤系地層中;貴州省的滑坡集中發生在二疊系煤系地層和三疊系紅色泥岩、砂頁岩地層中;雲南省的滑坡主要分布在砂頁岩地層和凝灰岩地層中;而陝西、甘肅兩省的滑坡主要發生在第四系新、老黃土層中;山西省的滑坡主要分布在第四系黃土、上更新統—更新統的雜色粘土岩、上更新統紅色粘土和三疊系砂頁岩地層中;湖北、湖南兩省的滑坡多集中發生在第四系紅色粘土、裂隙粘土和砂板岩地層中;福建省的滑坡主要集中在富含泥質(或風化後形成泥質)的岩漿岩中。

2)滑坡集中發生在地質構造復雜地區。在強烈構造運動中形成的各種軟弱結構面是滑坡發生與分布的一個重要指標,這些軟弱結構面與有利的地貌條件相配合,為滑坡的發生提供了十分有利的條件。新構造運動對滑坡發育的影響中,一類是直接作用,地震是新構造運動的典型表現,強烈地震時會觸發大量的滑坡災害;另一類是間接作用,由於新構造運動的影響,地貌形態發生著深刻變化,地面隆升導致河谷下切和沖刷,間接地影響著滑坡的發生和分布。

3)地形切割程度影響著滑坡分布。中國絕大多數滑坡都分布在河流、溝谷的兩岸。因此,在較小區域的滑坡分析預測時,地形切割度是非常重要的指標;但是,大區域的分析預測時,大的地貌單元界線更為重要。4)強降雨集中和劇烈的人類活動也是滑坡災害頻繁發生的重要因素。

根據滑坡、崩塌災害歷史分布情況、地質背景環境特徵、災害與環境條件相關關系分析,全國滑坡、崩塌災害易發程度分區見圖2.5。

圖2.5 全國滑坡、崩塌災害易發程度分區圖(據孟暉,2006)(台灣省專題資料暫缺)

2.3.1.2 滑坡災害特點

1)群發性:單個滑坡的成災面積一般都很有限,但是滑坡災點數量多,分布面廣,因此群發性滑坡往往會造成嚴重的損失。特別是區域強降雨往往會誘發大規模的群發性滑坡災害。

2)突發性:滑坡的突發性強,一方面表現在高速遠程滑坡方面;另一方面表現在暴雨期間和地震期間,滑坡劇滑之前宏觀前兆未被察覺或已發現但未引起警覺,往往損失慘重。

3)旋迴性:其實質是在地貌侵蝕旋迴背景中的某個階段滑坡災害發育活躍期(集中期)的一種表現。從幼年期-壯年期-老年期的地貌發育過程中,滑坡活躍發生在地貌從幼年期到壯年期的過渡階段。

4)周期性:滑坡災害的周期性是指更短時間尺度的活躍期和寧靜期交替的規律,即不同時間段內,活潑災害可能處於其活躍期,或者是寧靜期。

5)人類活動的直接誘發作用:人類工程開挖活動、爆破作業、生產生活用水入滲坡體、坡上載入、采礦、沖刷坡腳、水庫蓄水等活動對滑坡具有積極的誘發作用,能直接誘發滑坡或導致老滑坡復活。

2.3.2 泥石流

我國泥石流的分布,遍及23個省(區、市)。大體上以大興安嶺-燕山山脈-太行山山脈-巫山山脈-雪峰山山脈一線為界。該線以東,即我國地貌最低一級階梯的低山、丘陵和平原,泥石流分布零星(僅遼東南山地較密集)。該線以西,即我國地貌第一、二級階梯,包括遼闊的高原、深切割的極高山、高山和中山區,是泥石流最發育、最集中的地區,泥石流溝群常呈帶狀或片狀分布。其中成片的集中在青藏高原東南緣山地、四川盆地周邊,以及隴東-陝南、晉西、冀北等以及黃土高原東緣為主的地區。從泥石流的成因類型來看,冰川泥石流主要分布於中國西部山地,並大部分集中於西藏東南部地區;暴雨泥石流主要分布於西南地區,其次西北、華北和東北也有呈帶狀或零星分布。從泥石流物質組成看,泥石流分布遍及西南、西北和東北的基岩山區;水石流分布於華北地區,而泥流則分布於鬆散易蝕的黃土分布區。

2.3.2.1 泥石流分布規律

1)在斷裂構造帶分布密集。在多期地質構造運動影響下,構造斷裂和褶皺十分發育,一些深大斷裂活動強烈,尤其是第四紀以來差異性升降運動,致使岩層擠壓破碎,降低了岩體的穩定性。易於發生崩塌和滑坡,常成為泥石流發生的源地。因此,斷裂帶多是泥石流分布密集帶,其數量多,規模大,活動強烈,危害嚴重,諸如雲南小江、四川安寧河、甘肅白龍江等斷裂構造帶。

2)在地震活動帶成群分布。中國是一個多地震的國家,地震活動帶多分布於深大斷裂帶,尤其是新的活動斷裂和地震多發區,也是泥石流發育和分布帶。

3)在深切割的中山高山地區普遍分布。

在高程方面,主要分布在我國西部地區。我國地勢自西向東傾斜,呈現三級台階的顯著特點,在各級台階的過渡地帶的山區為泥石流普遍分布區。

在地形上,分布於具有一定坡度的山坡和一定溝床比降的溝谷內。坡面泥石流分布於25°~33°以上的坡地最為常見;溝谷泥石流多分布於溝床比降為100‰~400‰的溝谷。

在流域特徵上,泥石流多發生在小流域。因為小流域溝谷處於發育期,具有豐富的固體物質補給,降水匯流和陡峻的地形等條件有密切的關系。

在氣候方面,季風氣候區分布普遍和集中。由於地形條件復雜,地勢差異大,季風分布不均。就降水量來看,東南多於西北,山地多於河谷,迎風坡多於背風坡,使我國泥石流分布具有片狀和帶狀分布的特點,季風氣候影響和控制泥石流宏觀分布的格局。

根據泥石流災害歷史分布情況、地質背景環境特徵、災害與環境條件相關關系分析,全國泥石流災害易發程度分區見圖2.6。

圖 2.6 全國泥石流災害易發程度分區圖( 據孟暉,2006)( 台灣省專題資料暫缺)

2.3.2.2 泥石流災害特點

1) 常發性: 這類泥石流多半是高頻泥石流溝引起的,例如雲南東川蔣家溝、四川的黑沙河、雲南大盈江的渾水溝等。

2) 突發性: 主要與大規模的山區建設有關。這類泥石流溝大多是新生的,過去沒有發生過泥石流的歷史,突然發生,若不堅持治理,仍有泥石流發生的可能性,可稱為低頻泥石流。

3) 群發性: 因為局部大暴雨覆蓋范圍一般在幾百至一千多平方千米,正好是我國山區一個小流域的范圍。在某些具備泥石流條件的流域內,當遭受暴雨襲擊時,常引發流域內各條大溝同時發生泥石流。

4) 同發性: 泥石流與崩塌、滑坡、洪水在一個地區往往同時遭遇,形成災害,因為它們要求共同的最主要的發生條件,即降雨條件是一致的。

5) 轉發性: 滑坡為塊體運動,泥石流為固液混合流,它們為兩種不同方式的運動,但有時滑坡、泥石流相伴而生,滑坡可迅速轉化為泥石流災害。

⑧ 地質災害穩定性與危害性

一、地質災害穩定性分析

(一)數值法

工程地質數值法,是採用彈塑性力學理論和數值計算方法,從研究岩土體應力和位移場的角度,分析評價岩土體在一定環境條件下的穩定性狀態。近30多年來,數值法得到了迅速發展,並被廣泛地應用於工程實踐中,本文採用FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)軟體進行斜坡穩定性數值分析。FLAC3D軟體是美國ITASCA咨詢集團開發,主要用於模擬岩土體及其他材料組成的結構體,在達到屈服極限後的變形破壞行為。該軟體將流體力學中跟蹤流體運動的拉格朗日法成功地用於解決岩石力學問題,它除了能解決一般的岩土問題之外,還能進行如高溫應變、流變、或動荷載、水岩耦合分析等復雜的問題。

1.模型計算方法

FLAC3D軟體是利用有限差的方法模擬計算由岩土體及其他材料組成的結構體在達到屈服極限後的變形破壞行為,包括靜力計算和有限差強度折減計算兩種方式。這兩種計算方式得到的結果並不完全相同,本次同時選擇這兩種計算方式,對本區黃土滑坡和不穩定斜坡做驗算分析。

靜力計算的方法需要建立的模型以及所選參數必須使得模型計算的時候完全收斂,如果計算過程快速收斂,則認為模型是基本穩定的。但是,在做滑坡穩定性分析時候,由於影響滑坡穩定性的因素較多,比如坡高、坡度以及不同坡體的黃土體力學參數的不同,往往不能得到一個快速收斂的計算模型,因此通過靜力計算的方式不能完全判斷坡體的安全性。強度折減法是FLAC3D唯一的可以計算坡體安全系數的方法。因此,可以利用這一方法求出坡體的安全系數,然後結合靜力計算的結果來判斷坡體的穩定性。根據《滑坡防治工程勘察規范》(DZ/T 0218-2006),選擇安全系數<1.05判斷為不穩定,安全系數1.05~1.15為較穩定,安全系數≥1.15為穩定,以此作為主要災害點的穩定性判據。

有限差強度折減系數法的基本原理,是將土體強度參數內聚力(C)以及內摩擦角(ϕ)值同時除以一個折減系數Ftrial,得到一組新的Ctrial和ϕtrial值。然後,作為新材料參數帶入有限差進行試算。當計算正好收斂時,也即Ftrial再稍大一些(數量級一般為10~3),計算便不收斂,對應的Ftrial被稱為坡體的最小安全系數,此時土體達到臨界狀態,發生剪切破壞。計算結果均指達到臨界狀態時的折減系數:

Ctrial=C/Ftrial

tanϕtrial=tanϕ/Ftrial

2.模型類型及參數選擇

選擇摩爾庫侖模式作為材料模型,根據勘查和力學性質測試結果,並考慮到調查區災害的發生與降雨關系密切,故選擇飽水狀態下的物理力學參數作為計算參數:

體積模量:

K=4.5MPa

剪切模量:

G=2.1MPa

內聚力:

C=3.4×104Pa

內摩擦角:

ϕ=21.4°

3.黃土邊坡分析

(1)模型建立及網格剖分

調查資料表明,30°~60°的黃土直線型斜坡發生變形破壞的可能性較大,考慮到建立模型的方便性,選擇30°~70°之間的直線型邊坡進行分析,同時建立一些階梯狀的邊坡進行比較分析。

按照鄭穎仁教授的觀點,在做邊坡模型的強度折減法求邊坡安全系數的同時,要求所建立的模型坡角到最左側的距離為1.5倍坡高,而坡頂到最右側的距離為2倍坡高,這樣計算的安全系數結果最為准確。

以坡高40m坡度45°的直線型邊坡為例,建立模型並進行網格剖分。雖然調查區黃土為層狀結構,不同時期黃土厚度和土力性質不盡相同,但勘查試驗數據表明,其飽和抗剪強度差異不大。因此,假設黃土是均質的,整個模型的強度參數均一。定義模型右側和底部為約束邊界條件,坡面和坡頂為自動邊界。

(2)常規模型和簡化模型的對比分析

在調查區黃土邊坡中,坡高的分布十分不均勻,從十數米,數十米到上百米不等,並且每種坡高都對應有不同的坡度。因此,分析黃土邊坡穩定性時需要全面分析,研究不同坡高不同坡度情況下的各種邊坡的安全穩定性。本次利用FLAC3D軟體模擬了20~50m(每5m區分)坡高情況下30°~70°(每5°區分)所有坡體的穩定性情況。由於模型的不同網格數量以及節點數量不同,造成軟體計算時間上由巨大的差異。鄭穎仁教授所提出的常規模型在計算中有一定的道理,但也同樣極大地增多了模型網格和節點數目,所以強度折減的計算時間非常長。因此,必須首先比較了一下常規模型和簡化模型的計算結果。

首先,用常規模型分析40m坡高30°~70°之間所有坡體的穩定性情況。利用強度折減系數法計算各種坡度情況下的安全系數,可利用靜力平衡計算和強度折減計算,來得到一定坡高各種不同坡度邊坡的穩定性分析(表3-16)。將常規模型計算的坡度與安全系數關系進行擬合,可以得到坡度與安全系數的影響關系曲線(圖3-10)。

圖3-10 常規模型40m坡高不同坡度與安全系數的關系曲線圖

表3-16 常規模型40m坡高不同坡度邊坡穩定性計算匯總表

由於常規模型網格個數的節和點數較多,計算機處理的過程中數據量過分龐雜,計算速度慢,而黃土邊坡的長寬高往往又比較大。這樣我們如果利用鄭穎仁教授的常規模型分析,效率不是很理想。因此,將邊坡的模型網格進行簡化處理,以這樣的處理結果對比常規模型的計算結果。對比時仍然以 40m 坡高35°~70°為例分析,計算結果如表3-17,得簡化模型的擬合曲線如圖3-11。

圖3-11 簡化模型40m坡高不同坡度與安全系數關系曲線圖

觀察一下常規模型強度折減法求得的安全系數發現:而當坡體不穩定時,兩種模型計算的安全系數相同;而當坡體穩定時,簡化模型的安全系數計算結果要比簡化模型的結果小一些,但是總體上坡體穩定性的結果影響不是很大。在實際工程應用中,我們為了安全考慮,完全可以考慮使用計算結果較小的簡化模型進行分析計算。

表3-17 簡化模型40m坡高不同坡度邊坡穩定性計算匯總

(3)坡度與安全系數的關系

利用簡化模型,分別結合靜力計算方法和強度折減系數方法,分析計算了20~50m坡高情況下的各種坡度邊坡的穩定性;同時得到固定坡高的情況下,坡度和安全系數的擬合關系曲線。通過坡度與安全系數的擬合曲線可以看出,固定坡高時,當改變坡度,安全系數隨著坡度的增加而減小,坡體逐漸不穩定。而安全系數隨著坡度變化呈現對數關系變化,擬合程度較高。

(4)土體強度參數的變化分析

根據勘查和試驗測試數據,區內黃土的內聚力C值以及內摩擦角ϕ值變化較大(如表3-18),因此有必要研究一下強度參數的變化趨勢對於坡體安全系數的影響。

表3-18 黃土物理力學指標統計表

以20m坡高60°邊坡為例,固定模型的內聚力:

C=34kPa

然後改變土體的內摩擦角,利用強度折減系數法分別計算不同內摩擦角情況下的安全系數情況,得到結果如表3-19所示。由計算結果可以看出,隨著內摩擦角的增大,安全系數逐漸增大。內摩擦角越小,潛在滑動帶越向外擴展,危險滑弧越開闊,而坡體的穩定性越差(圖3-12)。

表3-19 不同內摩擦角對安全系數的影響統計表

仍然以20m坡高60°邊坡為例,固定模型的內摩擦角:

ϕ=21.3°

然後改變土體的內聚力,利用強度折減系數法分別計算不同內聚力情況下的安全系數情況,得到結果如表3-20所示。計算結果顯示,內聚力越大,安全系數越高。但是潛在滑動面越向外伸展,滑弧越開闊,但是穩定性越高,這一點和內摩擦角的影響恰好相反(圖3-13)。

表3-20 不同內聚力對安全系數的影響統計表

圖3-12 滑弧隨內摩擦角的變化趨勢圖

圖3-13 滑弧隨內聚力的變化趨勢圖

(5)邊坡剖面形態的影響

研究區黃土邊坡的剖面形態大致分為四類:直線型、階梯型、凸型和凹型。調查結果發現凸型邊坡和直線型邊坡發生失穩變化的數目最多,可能性最大。因此有必要分析坡型的變化對於坡體穩定性的影響。在這里我們只對直線型和階梯型邊坡作對比分析。

以40m坡高45°邊坡為例,分別建立直線型和階梯型邊坡,利用靜力平衡和強度折減方法計算其各自的安全系數,並對照最大不平衡力曲線和坡體內部剪切應變雲圖分析這兩種坡體的穩定性。計算結果發現直線型邊坡明顯發生破壞,坡體內部剪切應變呈帶狀分布,而階梯型邊坡的安全系數增大,靜力計算時在4460時步收斂,坡體穩定(圖3-14,圖3-15;表3-21)。

圖3-14 直線型邊坡靜力計算下的最大不平衡力曲線圖

圖3-15 階梯型邊坡靜力計算下的最大不平衡力曲線圖

表3-21 40m、45°直線型和階梯型邊坡對比分析表

4.主要災害點穩定性分析

根據上述分析方法,對調查區的30個主要滑坡和不穩定斜坡點進行數值分析,求出坡體的安全系數,判斷坡體的穩定性,分析結果列於表3-22。

表3-22 主要災害點穩定性數值分析結果表

(二)極限平衡法

1.計算方法與軟體選擇

斜坡穩定性分析的方法較多,目前較成熟的主要有:瑞典條分法、畢肖普法、工程師團法、羅厄法、斯賓塞法、摩根斯頓法、簡化法等,由於這些方法對土體進行了不同的假定,計算結果也各有差別。本次採用Geo-Slope軟體對選擇的30處滑坡和不穩定斜坡進行穩定計算。

Geo-Slope軟體是一個集極限平衡法和有限元法於一體的計算軟體,分成斜坡穩定性分析(Slope/w)、滲流分析(Seep/w)、應力分析(Sigma/w)、地震狀態分析(Quake/w)和溫度變化分析(Temp/w)等。本次主要採用邊坡穩定性分析(Slope/w)模塊來分析黃土斜坡的安全系數,Slope/w可以採用力的極限和力矩極限平衡來計算穩定系數,其穩定分析原理主要是採用條分法原理。即通過滑面將滑動土塊分成n個垂直條塊,滑面可以是圓弧滑面和各種復合滑面,Slope/w綜合了瑞典條分法、畢肖普法、斯賓塞法、摩根斯頓法、簡化法等各種方法,Slope/w考慮了條塊間的作用力,使計算結果更趨於合理。Slope/w通過手動給定可能的圓心變化范圍,給定多個搜索步長,自動搜索最危險滑面。Slope/w可以通過在土層中給出可能的孔隙水位置來計算孔隙水存在狀況下的穩定性,也可以計算局部加荷條件下的穩定性。

現以畢肖普法為例,簡單介紹極限平衡法的計算原理。

畢肖普主要採用力的極限平衡來計算安全系數。以畢肖普法為例,說明極限平衡法的計算原理,其計算圖示如圖3-16所示。其上作用的荷載有Wi,Ui,Qi,待求的反力及內力有Ni,Si及ΔEi。根據剪切面上的極限平衡要求,可列出下式:

延安寶塔區滑坡崩塌地質災害

圖3-16 畢肖普法計算圖示

將所有的荷載及反力、內力均投影在x』軸上,可寫出:

延安寶塔區滑坡崩塌地質災害

上式可改為

延安寶塔區滑坡崩塌地質災害

將所有的分條的ΔEi迭加,由於∑ΔEi=0,得

延安寶塔區滑坡崩塌地質災害

可得

延安寶塔區滑坡崩塌地質災害

上式的Ni未知,我們利用分條上豎向力的平衡條件得出

延安寶塔區滑坡崩塌地質災害

解方程得:

延安寶塔區滑坡崩塌地質災害

代入式整理得

延安寶塔區滑坡崩塌地質災害

上式兩端都有k,因此在計算k時需要進行試算,一般首先假定右側:k=1。

求出左端的k,再代入右端重新計算k值,直到假定的k值與計算出的k值非常接近為止。

2.主要災害點穩定性分析

根據調查結果,調查區災害的發生與降雨因素關系密切,故在參數選擇上以飽水狀態下的岩土體物理力學參數作為計算參數。根據《滑坡防治工程勘察規范》(DZ/T 0218-2006),選擇安全系數<1.05判斷為不穩定,安全系數1.05~1.15為較穩定,安全系數≥1.15為穩定作為主要災害點的穩定性判據。運用Geo-Slope 軟體計算30個災害點和不穩定斜坡的安全系數進行計算,計算結果如表3-23所示。

表3-23 主要災害點安全系數計算一覽表

續表

下面以趙家岸滑坡為例來說明採用Slope/w進行穩定性分析的具體實施步驟:

(1)剖面圖引入:Slope/w可以直接從Autocad中引入斜坡剖面圖,也可以直接給出比例尺畫出斜坡的剖面圖。為了計算剖面精確起見,根據實測剖面數據,直接輸入數據點畫出剖面圖。

(2)選擇分析方法設置:Slope/w可以選擇極限平衡方法和有限單元法來計算,極限平衡法中可以選擇畢肖普法、斯賓塞法、摩根斯頓法、簡化法等各種方法來計算安全系數,有限單元計算時要引入斜坡內部應力狀態函數來計算。本次選擇極限平衡法計算。

(3)確定分塊的數目和分塊的容差。以確定分析計算的精確性,一般以軟體默認的分塊為30個,容差為0.01。

(4)劃分土層並賦予每個土層力學參數。Slope/w主要以不同岩土性質的分界線來區分各岩土性質,把不同岩性分成不同的土層區,並用不同的顏色以示區分。給土層分區後,再賦予各土層力學參數,力學參數根據延安部分地區勘查數據給出。

(5)給定潛在圓弧滑面的圓心位置,給出圓心位置x和y方向上的增量步和圓弧半徑范圍和半徑增量步,程序自動搜索潛在的最危險滑面,計算其安全系數。對趙家岸滑坡,搜索的最危險滑面如圖3-17所示,從圖上可以看出,趙家岸滑坡後壁最不穩定。

圖3-17 趙家岸滑坡最危險滑面圖

(三)類比法

工程地質類比法,是把已有的滑坡或邊坡的穩定性研究經驗應用到條件相似的對象滑坡或邊坡的穩定性判定中去。在進行類比時,不但要考慮滑坡或邊坡結構特徵的相似性,還應考慮促使滑坡或邊坡演變的主導因素和發展階段的相似性。影響滑坡或邊坡穩定性的因素可分為地形地貌、地質特徵(地層岩性、岩土體結構面特徵、構造節理等)、降雨、人類工程活動(開挖、載入、蓄水等)。這些因素對滑坡或邊坡的穩定性是相互作用、相互影響的。在這些因素的相互作用下,結合坡體變形特徵,判別坡體的穩定性。

1.地形地貌

通過對調查區災害點坡度與坡高統計認為,調查區滑坡多發生於25°以上、坡高大於30m的斜坡,且集中坡度在30°~50°、坡高在40~120m的坡體上。在調查的滑坡中,原始坡型為凸型坡的,占滑坡總數的36.52%;直線型坡占滑坡總數的52.56%;合計占滑坡總數的89.08%,即調查區滑坡發育坡體以凸型、直線型坡為主,安全隱患斜坡坡度在40°以上,且集中於坡度為60°~90°、坡高大於20m的地段內,在地貌上大多位於沖溝兩側或坡體前部的人工斬坡、開挖地段。

2.地層岩性

調查區地層岩性主要由更新世黃土、新近紀泥岩、侏羅紀和三疊紀砂、泥岩及互層組成。由於更新世黃土(主要是晚更新世黃土)的濕陷性崩解性,以及紅粘土及泥岩的相對隔水和遇水軟化、強度降低的性質,使其成為斜坡失穩、發生滑坡、崩塌災害的易發地層。基岩是全區的基座地層,構成黃土-基岩接觸面滑坡的滑床;在基岩出露較高、風化強烈地段或砂泥岩互層地段,是岩質斜坡失穩形成地質災害的易發區。在黃土斜坡地帶,人工開挖形成高陡邊坡,成為地質災害潛在隱患地段。

3.岩土體結構面

調查區岩土體結構面主要是黃土內部順坡披覆的古土壤層、黃土與紅粘土層界面、黃土與砂、泥岩層界面、滑坡所形成的滑塌節理面、滑面以及坡體內部發育的構造節理面、垂直節理面、裂隙等。由於滲透性的差異,在性質差異較大地層岩性界面上形成了隔水層,匯聚的雨水使得上覆黃土、泥岩軟化、泥化,抗剪強度降低,形成軟弱帶,誘發滑坡的發生;而滑坡體內部發育的滑塌節理面、滑面是誘發滑坡復活或發生滑塌的主要因素。這些結構面的存在對坡體的穩定性有著潛在的威脅,一旦條件成熟,可能引起滑坡或誘發滑坡復活而造成災害的發生。黃土內部發育的構造節理及垂直節理、裂隙等是黃土邊坡失穩的一個重要因素。黃土邊坡常常沿這些內部節理面發生破壞,比如居民窯洞發育構造節理,則常常沿構造節理面發生塌窯事故。高陡邊坡地帶,土體常沿垂直節理發育並形成卸荷裂隙、拉張裂縫,形成危岩、危坡。受構造作用,岩體內部發育共軛節理,岩體被切割為不同大小、不規則的岩塊,受物理風化作用,發育風化裂隙,使得岩體更加破碎,在邊坡尤其是高陡地段易發生崩墜現象,造成災害。在砂泥岩互層高陡邊坡地段,泥岩抗剪強度較低,與砂岩強度差異較大,再加之易受風蝕作用,致使上部砂岩懸空、鼓脹外傾,形成危岩體,易發生傾倒、拉裂、鼓脹等形式的崩塌災害。

4.人類工程活動

人類工程活動是誘發地質災害發生的直接因素。人類工程活動主要以不合理的斬坡、開挖及修建蓄水庫為主。由於受地形地貌因素的制約,調查區居民為了居住、生活及經濟建設等的需要,工程活動強烈,進行大量的開挖、斬坡等,造成坡腳應力集中並急劇增大,原有的應力平衡狀態遭到破壞而失去平衡,誘發坡體失穩而發生塌方事故。比如尚合年村滑塌,麻塔崩塌等災害,均是由於不合理的開挖,造成邊坡過陡,引起坡腳應力過於集中,在其他因素的影響下發生的塌方事故,造成傷亡及財產損失。再如延安市衛校東側溝內滑坡,是由於人為不合理的斬坡、開挖坡腳,導致滑坡發生,將石砌擋牆推倒,滑體涌至居民屋牆。目前,坡體坡度約45°,處於不穩定狀態,對居民生命財產構成直接威脅。而人工修建蓄水庫,引起地下水位抬升,導致坡體容重增加,破壞了原有的應力平衡狀態,且地下水導致坡體內部軟弱帶軟化、泥化,抗剪強度降低,易誘發滑坡的發生或老滑坡的復活。趙家岸滑坡由於坡後庫岸蓄水,導致地下水位上升,村民地基嚴重滲水,且地下水位達到了老滑面上部,並有泉水出露,滑坡體穩定性很差,有復活的危險,危及趙家岸村民的生命財產安全。

根據以上因素分析對比,結合坡體變形跡象及特徵,對部分重大災害點進行穩定性判別(表324,表3-25)。

表3-24 主要滑坡災害點穩定性分析

續表

表3-25 主要不穩定邊坡點穩定性分析表

(四)主要地質災害穩定性綜合評價

前面已經用數值分析法、極限平衡法和工程地質類比法對主要災害點的穩定性進行了分析,三種方法分析的側重點不一樣。數值法主要是採用彈塑性力學理論和數值計算方法,從研究岩土體的應力和位移場的角度,分析評價岩體在一定的環境條件下的穩定性狀態;極限平衡法主要運用極限平衡理論來評價斜坡穩定性;而工程地質類比法則是把已有的滑坡或斜坡的穩定性研究經驗應用到條件相似的滑坡或斜坡的穩定性判定中去。影響斜坡穩定性的因素比較復雜。因此,本節將綜合這三種方法的計算結果,來綜合判斷主要地質災害點所處坡體的穩定性。

綜合分析結果表明:30處滑坡和不穩定斜坡中,穩定的3處,占總數的10%;較穩定的7處,占總數的23.3%;不穩定的20處,占總數的66.7%(表3-26)。

表3-26 地質災害穩定性綜合評判表

二、地質災害危害性評估

(一)評估標准

地質災害的威脅對象包括人口和財產。人口可以直接用數量來表徵;財產包括土地、牲畜、房屋、道路等。根據遙感解譯和實際物價調查資料,建立主要經濟價值評估標准(表3-27),按照威脅對象的危險程度和易損性,依據標准逐一累加計算。地質災害災情與危害程度分級標准按表3-28的規定評估。

表3-27 承災體經濟價值評價標准表

表3-28 地質災害災情與危害程度分級標准表

1)災情分級:即已發生的地質災害災度分級,採用「死亡人數」或「直接經濟損失」欄指標評估;2)危害程度分級:即對可能發生的地質災害危害程度的預測分級,採用「受威脅人數」或「直接經濟損失」欄指標評估。

(二)現狀評估

1.滑坡

根據收集以往滑坡資料,以及本次實地調查結果,調查區近些年來有記載的、造成一定經濟損失和人員傷亡的滑坡共有34處。在這34處滑坡災害中,除1處較大級滑坡外,其餘33處災情均為一般級,總共造成5人死亡,以及102.6萬元的財產損失。從已查明日期的滑坡來看,新滑坡災害發生率為0.76處/年(表3-29)。

表3-29 滑坡災害災情與危害程度評價表

2.崩塌

崩塌發生後,其遺跡不易保存,地質歷史時期的崩塌一般多不存在,對其發生時間尚難以進一步查明。據有時間記載的崩塌調查資料,可對近年來崩塌發生的頻率給出基本的數據。從20世紀60年代以來,共發生有記載的崩塌災害16處,其中較大級崩塌2處,一般級崩塌14處,死亡12人,經濟損失48萬元(表3-30)。由於調查根據災情分級,區地質環境條件差,人口密集,盡管年發生頻率低,亦應引起人們的特別關注,每一處都有可能帶來生命財產的損失。

表3-30 崩塌災害災情與危害程度評價表

(三)預測評估

地質災害危害性預測評估就是對可能危及居民生民財產安全、工程建設的地質災害的危害性做出評估。本次評估分滑坡、崩塌以及不穩定斜坡三種類型,對其危害性進行預測評估。評估內容主要是受威脅人數以及由於財產損毀而可能造成的潛在經濟損失。

1.滑坡

區內滑坡可分為古滑坡、老滑坡和新滑坡3類型,這些滑坡在自然和人為因素的雙重誘發下,均存在復活的可能性。野外調查滑坡總共有293處,可分為活動滑坡和不活動滑坡。本節篩選出活動滑坡39處,占調查滑坡總數的13%,對其危害性進行預測評估。

通過對這39處滑坡的危害性預測評估,危害性大的有8處,危害性中等的有25處,危害性小的有6處。總共有約2098人受到滑坡威脅,潛在經濟損失約2863萬元(表3-31)。

表3-31 滑坡災害危害性預測評估

續表

2.崩塌

調查區地質災害以黃土滑坡為主,崩塌居次;調查中所指的崩塌,有崩塌隱患和已發生崩塌兩種,這里所指的是已發生崩塌的潛在危害性預測。根據實地調查和以往資料調查結果,區內所發生的52處崩塌災害中有14處目前還處於不穩定狀態,存在潛在危險,占調查崩塌總數的27%。崩塌發生的坡面,在以降水為主的風化作用下,也被改造,且極易生長植被,也不易發覺。既成崩塌少,並不意味著崩塌的危害性小。崩塌的形成條件在調查區普遍存在,黃土深厚,直立性好,垂直節理發育,延河及其支流兩岸黃土陡壁懸崖比比皆是,大多窯洞都是選擇很陡的坡面(>65°)水平掘進,窯洞前平房和院子都置於高陡黃土懸崖崩塌的威脅下。

這14處崩塌災害中,危害性中等的有6處,危害性小的有8處,危害性大的暫無,這與崩塌災害規模、影響范圍較小有關。14處崩塌共威脅240人,潛在經濟損失56萬元(表3-32)。

表3-32 崩塌災害危害性預測評估

3.不穩定斜坡

不穩定斜坡是一種潛在地質災害,既有基岩斜坡,也有黃土斜坡,以及黃土-基岩斜坡,在調查區廣泛分布。坡下多有居民居住,或為企事業單位辦公、生產基地,是全區生產建設和人民生活的主要場所,從而構成潛在危害。不穩定斜坡只是對斜坡的穩定性做出不穩定的基本判斷,但對其不穩定的變化模式沒有給出確定的結論。這是由於潛在的變化存在許多不確定的因素,尚不能對其未來變化做出准確的預測。

在詳細調查的51處不穩定斜坡中,有11處存在較大潛在威脅,占不穩定斜坡總數的22%。對其威脅人口和潛在經濟損失進行估算統計表明,危害性較大的不穩定斜坡有3處,危害性中等的有8處,其他40處危害性較小(未列入)。總共威脅909人,潛在經濟損失652萬元(表3-33)。調查中只是有選擇性地在不同地區選取了部分不穩定斜坡作為調查點,以反映不穩定斜坡的基本特徵。實際上,未發生過崩滑災害的不穩定黃土斜坡其危害性最難評估,對不穩定斜坡的預測評估工作有待於進一步的研究探索。

表3-33 不穩定斜坡危害性預測評估

續表

⑨ 地形地貌特徵對地質災害的影響

地殼活動強烈的地區,山體斷裂發育,岩石破碎,鬆散的地表堆積物容易為泥石流滑坡提版供物質條件,也較為容易權發生泥石流滑坡等地質災害
地形的話,一般就是山地,尤其是植被覆蓋不高、水土流失嚴重的山地容易發生滑坡泥石流

⑩ 常見地質災害對土木工程的影響

定義
自然變異和人來為作用導致的地自質環境或地質體發生變化而給人類和社會造成的危害稱為地質災害。
常見的地質災害有滑坡、崩塌、泥石流、地面沉降、地面塌陷、岩土膨脹、砂土液化、土地凍融、土壤鹽漬化、土地沙漠化以及地震、火山、地熱害等。
地質災害分類
地質災害按地質作用分為內生地質災害、外生地質災害和人類活動誘發的地質災害。
1.內生地質災害
是由地球內部動力作用(岩漿活動、構造運動等)引發的地質災害,如地震、火山噴發等;
2.外生地質災害
是由外動力(如重力、水力等)作用產生的地質災害。
3.人類活動誘發的地質災害
主要指由於人類的工程活動(如開挖、搬運和堆填等)誘發的地質災害。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864