當前位置:首頁 » 地質工程 » 黃土的工程地質性質

黃土的工程地質性質

發布時間: 2021-01-30 04:09:40

❶ 簡述濕陷性黃土的基本工程地質性質

陷性黃土是一復種特殊性質制的土,其土質較均勻、結構疏鬆、孔隙發育。在未受水浸濕時,一般強度較高,壓縮性較小。當在一定壓力下受水浸濕,土結構會迅速破壞,產生較大附加下沉,強度迅速降低。故在濕陷性黃土場地上進行建設,應根據建築物的重要性、地基受水浸濕可能性的大小和在使用期間對不均勻沉降限制的嚴格程度,採取以地基處理為主的綜合措施,防止地基濕陷對建築產生危害

❷ 黃土工程地質性質的介紹

黃土工程地質性質(engineering geological property of loess)是指與黃土分布區工程建設施工及建築物穩定條件密切相關的回黃土的特殊性答質,如黃土的濕陷性、壓縮性、抗剪強度等。

❸ 黃土的岩性特徵

1. 黃土的構成

自然界的黃土剖面,根據岩性特徵可劃分為黃土層和古土壤層,它們在垂向形成交替疊覆關系。黃土層一般為棕黃、灰黃色,粒度相對偏粗,形成於比較乾冷的氣候,是黃土的主要構成; 而古土壤層顏色偏紅,一般為紅色、棕紅色、褐紅色,這與成壤的程度有關,若成壤程度深顏色偏紅,粒度相對較細,它形成於相對比較溫濕氣候。因此,野外的黃土剖面是黃土層與古土壤層交替出現的。

2. 黃土的粒度特徵

中國黃土主要由 0. 05 ~0. 005mm 粒級的粉砂組成,其中以 0. 05 ~0. 01mm 的粗至中粉砂含量最高,其平均含量達 46%~60%。不同粒級的物質在黃土中含量不同, > 0. 25mm 的顆粒(中砂)含量很低,變化幅度在 0. 04%~0. 61% ,0. 25~0. 05mm 的顆粒(細砂)含量不到30% ,0. 05~0. 005mm 的顆粒(粉砂)含量最高,一般達 55%~60% , < 0. 005mm(粘土)的顆粒僅占 15% ~30%。劉東生等(1965)根據黃土中細砂(0. 1 ~0. 05mm)、粉砂(0. 05 ~0. 005mm)和粘土(< 0. 005mm)的含量,將黃土分為砂黃土(sandy loess)、粉黃土(siltyloess)和粘黃土(claeyey loess)三類(表 7-6)。

表 7-6 砂黃土、黃土、粘黃土的劃分標准

在時間上,從老到新,黃土的粒度由細變粗,粗顆粒含量增加,而粘土含量降低(表 7-7)。在空間上,黃土的粒度也具有一定的變化規律,總體上自北西向南東粒度逐漸變細,依次為砂黃土帶、黃土帶和粘黃土帶(圖 7-21)。

表 7-7 山西午城剖面各時代黃土各粒級組成平均含量

圖 7-21 黃河中游黃土顆粒粗細分布帶(據劉東生等,1985,轉引自曹伯勛等,1995,簡化)

圖 7-22 黃土正態概率曲線圖(據劉東生等,1985,簡化)

對黃土的粒度分析表明,其正態概率曲線為細二段式,只有一個截點,出現在 5 ~6. 5Φ 之間(圖 7-22)。截點把黃土的顆粒大小分成兩組: Φ 值小於截點的為易懸浮粒組,大於截點的為挾持粒組和次生粒組。

3. 黃土的礦物成分特徵

中國黃土的礦物成分非常復雜,包括碎屑礦物、粘土礦物和碳酸鹽礦物三類。

黃土中的碎屑礦物含量最高,可占總量的 80%~90%,其中輕礦物(密度 < 2. 9g/cm3)占 90%~96% ,而重礦物(密度 > 2. 9 g/cm3)只佔4%~7% 。在輕礦物中,主要為石英(> 50% 以上)、長石(29%~43% )、雲母(< 2. 5% ); 重礦物以不透明礦物為主,主要有磁鐵礦、鈦鐵礦、褐鐵礦、角閃石、輝石等。

粘土礦物一般含量為 10%~20%,主要有伊利石、高嶺石、蒙脫石、綠泥石、蛭石等,其中含量排前三位的是伊利石(46. 6%~59%)、高嶺石(15. 9%~21%)和蒙脫石(4% ~11. 1% )。在古土壤中粘土礦物含量大於黃土母質層,時代早的黃土層中粘土礦物含量高於晚的黃土層。

碳酸鹽礦物含量在 10% ~15%之間,主要有方解石和白雲石,但中國黃土主要為方解石,白雲石幾乎不含或極低(在洛川),而在歐洲、北美兩者皆有,方解石的含量(60%~80%)高於白雲石(20% ~30%)。碳酸鹽礦物一部分來自物源區,經風搬運過來,另一部分是在當地環境下新形成的次生碳酸鹽礦物,其中次生碳酸鹽礦物占 80% ~90%。

4. 黃土的化學成分特徵

黃土的主要化學成分取決於黃土的礦物成分和風化程度,在風化過程中可能導致一些元素的流失,引起化學成分的變化。在常量元素方面,主要為 Si、Al、Ca、Fe、Mg、K、Na 等(表 7-8),它們的含量佔到 85% 。黃土中的微量元素主要有 Ti、Mn、Sr、P、Ba、F、Zn、V、Cr、B 等幾十種。

表 7-8 中國黃土的化學成分變化

中國黃土中元素的時空變化也具有一定的規律。在黃河中游地區,因受到由西北向東南風向的影響,黃土物質發生依次沉積,石英、長石含量依次降低,氣候從乾旱帶過渡到較濕潤氣候,因此反映在黃土化學成分上是 SiO2、FeO、CaO、Na2O、K2O 含量相應減少,而 Al2O3和Fe2O3含量略有增加。在時間上,從老到新,黃土中 Al2O3和 Fe2O3含量存在降低的趨勢,SiO2含量變化不大,而 CaO 和 FeO 的含量自下而上升高。

5. 黃土的微結構特徵

黃土的微結構是指黃土中固體顆粒與孔隙的空間排列形式,它將黃土中骨骼顆粒(碎屑顆粒)、細粒物質(粘粒物質)、土壤形成物(膠膜、結核等)和孔隙之間的相互關系表現出來,反映了黃土的成土作用和土壤發生過程。黃土的微結構可分為粒狀微結構(granoidic fab-ric)、斑狀微結構(porphric fabric)和膠斑狀微結構(cutans-porphric fabric)(圖 7-23)。在黃土層中一般具有粒狀微結構(表 7-9); 顯著風化的黃土和古土壤一般為斑狀微結構; 膠斑狀微結構出現在古土壤中。

圖 7-23 黃土、古土壤的微結構類型(據劉東生等,1985)

表 7-9 黃土、古土壤中的微結構特徵

古土壤中的膠膜(cutans)是附著在孔隙、裂隙、孔道、團粒或骨骼碎屑顆粒的自然表面的土壤形成物。它是土壤中細粒物質擴散、移動或淀積形成的集聚物,或由於細粒物質原地變化形成的分離物,反映了土壤形成過程的真正性質。膠膜有三種: 碳酸鹽膠膜、粘粒膠膜和復合膠膜。

黃土結構疏鬆,孔隙率高,達 40%~50%,它包括黃土中的小孔隙、裂隙、蟲孔、植物根孔等。黃土的孔隙率隨黃土的時代變化,越老的黃土孔隙率越低,而馬蘭黃土孔隙率最高。由於黃土的孔隙率高,當水體進入黃土浸潤後,致使黃土中易溶鹽類溶解、碎屑顆粒發生移動和旋轉,孔隙縮小或封閉,導致黃土地面下陷,出現黃土特殊的工程地質性質———濕陷性。

❹ 如何理解黃土,膨脹土,軟土和凍土在工程地質中的排水問題

在黃土、膨脹土、軟土和凍士等特殊士中,在其工程性質和工程地質問題所表現出來的特殊性均與水的作用有關。如黃土遇水產生濕陷性,由黃土自重濕陷和地下水沅蝕形成的黃土陷穴常引起工程建築物的破壞及上覆土層或工程建築物突然陷落等問題;.
膨脹土遇水膨脹失水收縮的脹縮性問題,如果多次脹縮使建築物強度很快衰減,導致修建在膨脹土上的工程建築物開裂下沉、失穩等問題,因此只要膨脹土中水分發生變化就能引起脹縮變形;軟士自身由於天然含水量高,透水性差、壓縮性高,其承載力和抗剪強度很低呈軟塑-流塑狀態,修建在軟土地基上的建築物因軟土的變形大,透水性差,承載力低而引起破壞;凍土的形成必須有水的參與,凍土地區病害主要是凍脹融沉,使凍土工程性質變化較大,性質不良,例如多年凍土區開挖路塹,使多年凍土上限下降,則可產生基底下沉,邊坡滑塌等問題。
以上特殊土的工程地質問題均與水的因素有關。因此作為對這些特殊土的工程地質問題的有效解決措施之一就 是排水。通過排水可以有效地緩解或抑制黃土的濕陷性和黃土陷穴的發生;通過排水或保持水分可以有效緩解或抑制膨脹土的脹縮性質;通過排水可以提高軟土的固結強度,提高承載力,改善軟土的不良性質;通過排水可以抑制凍士的發生,改善凍土地區岩土的工程質。
總之,特殊士的工程性質及工程地質問題與水的因素有著密切的直接的關系,而解決這些工程地質問題,提高改善特殊土的工程性質,排除水的因素是至關重要的。.

❺ 土的主要工程性質有什麼

土的工程性質是在設計和建造各種工程建築物時所必須掌握的天然土體或填築土料的工程特性。

不同類別的工程,對 土的物理和力學性質的研究重點和深度都各自不同。對沉降限制嚴格的建築物,需要詳細掌握土和土層的壓縮固結特性;天然斜坡或人工邊坡工程,需要有可靠的土抗剪強度指標;土作為填築材料時,其粒徑級配和壓密擊實性質是主要參數。

土的形成年代和成因對土的工程性質有很大影響,不同成因類型的土,其力學性質會有很大差別(見土和土體)。各種特殊土(黃土、軟土、膨脹土、多年凍土、鹽漬土和紅粘土等)又各有其獨特的工程性質。 除土的粒徑級配外,土中各個組成部分(固相、液相、氣相)之間的比例,將影響到土的物理性質,如單位體積重,含水量,孔隙比,飽和度和孔隙度等。

粘性土中含水量的變化,還能使土的狀態發生改變,阿太堡最早提出將土的狀態分為堅硬、可塑和流動三種,並提出了測定區分三種狀態的界限含水量的方法。從流動轉到可塑狀態的界限含水量稱液性界限;從可塑轉到堅硬狀態時的界限含水量稱塑性界限。兩者之間的差值稱土的塑性指數,它反映了土的可塑狀態的范圍。

拓展資料

土的界限含水量和土中粘粒含量、粘土礦物的種類有密切關系。為反映天然粘性土的狀態,常用液性指數,它等於天然含水量和塑性界限的差值(-)與其塑性 指數的比值。≤0時,土處於堅硬狀態;>1時,為流動狀態,0≤≤1時,為可塑狀態。

砂土的密實狀態是決定砂土力學性質的重要因素之一,用相對密度表示:=( -)/( - )。為天然狀態時孔隙比, 為砂土最松狀態時的孔隙比, 則為最密狀態時的孔隙比。≈1時,最密實;≈0時,最鬆散。

土的壓縮和固結性質 土在荷載作用下其體積將發生壓縮,測定土的壓縮特性可分析工程建築物的地基沉降和土體變形。飽和粘土的壓縮時間決定於土中孔隙水排出的快慢。逐漸完成土壓縮的過程,即土中孔隙水受壓而排出土體之外,同時導致孔隙壓力消失的過程稱土的固結或滲壓。

K.泰爾扎吉最早提出計算土固結過程的一維固結理論,並指出某些 粘土中超靜孔隙水壓力完全消失後,土還可能繼續壓縮,稱次固結。產生次固結的原因一般認為是土的結構變形。反映土固結快慢的指標是固結系數,土層的水平向固結系數和垂直向的不一定相同。

土的壓縮量還和它的應力歷史有關。土層在其堆積歷史上曾受過的最大有效固結壓力稱先期固結壓力。它與現今作用的有效覆蓋壓力相同時,土層為正常固結土;若先期固結壓力大於現今的覆蓋壓力,則為超固結土;反之則為欠固結土。對於超固結土,外加荷載小於其先期固結壓力時,土層的壓縮很微小,外加荷載一旦超過先期固結壓力,土的變形將顯著增大。

土的強度性質 通常指土體抵抗剪切破壞的能力,它是土基承載力、土壓和邊坡穩定計算中的重要指標之一。它和土的類型、密度、含水量和受力條件等因素有關。飽和或干砂或砂礫的強度表現為顆粒接觸面上的摩阻力,它與作用在接觸面的上法向有效應力σ和砂的內摩擦角有關,即=σtg。純粘性土的不排水抗剪強度僅表現為內聚力,而與法向應力無關,即=。

一般土則既有內聚力又有摩阻力,即=+σtg。式中的和不是常量而是變數,不僅決定於土的基本狀態,還和外加荷載速率、外加荷載條件、應力路線等有關。飽和土中的孔隙為水充滿,受外加荷載作用時,控制土體強度的不是其所受的總應力σ,而是有效應力σ′(即總應力與孔隙壓力μ之差):σ′=σ-μ。

因而強度試驗的條件不同,所得的強度指標亦異。試驗時,不允許土樣排水所得到的是土的總強度指標;如允許完全排水則得到的是土的有效強度指標。理論上用有效應力和有效強度指標進行工程計算較為合適,但正確判別實際工程土體中的孔隙水壓水較困難,因而目前生產上仍多用總強度原理和總強度指標。

土體的強度還因其沉積條件的影響而存在各向異性。 土的流變性質土工建築物的變形和穩定是時間的函數。有些人工邊坡在建成後數年甚至數十年才發生坍滑,擋土牆後的土壓力也會隨時間而增大等,都與土的流變性質有關。

土的流變特性主要表現為:①常荷載下變形隨時間而逐漸增長的蠕變特性;②應變一定時,應力隨時間而逐漸減小的應力鬆弛現象;③強度隨時間而逐漸降低的現象,即長期強度問題。三者是互相聯系的。作用在土體上的荷載超過某一限值時,土體的變形速率將從等速轉變至加速而導致蠕變破壞,作用應力愈大,變形速率愈大,達到破壞的時間愈短。通過試驗可確定變形速率與達到破壞的時間的經驗關系,並用以預估滑坡的破壞時間。

產生蠕變破壞的限界荷載小於常規試驗時土的破壞強度。從長期穩定性要求,採用的土體強度應小於室內試驗值。土體強度隨時間而降低的原因,當然不只限於蠕變的影響。土的蠕變變形因修建擋土牆或其他建築物而被阻止時,作用在建築物上的土壓力就隨時間逐漸增大。

土的壓實性質 對土進行人工壓實可提高強度、降低壓縮性和滲透性。土的壓實程度與壓實功能、壓實方法和含水量有關。當壓實方法和功能不變時,土的干容重隨含水量的增加而增加,達到最大值後,再增加含水量,其干容重將逐漸下降。

對應於最大幹容重時的含水量稱最佳含水量。壓實功能不增大而僅增加壓實次數或碾壓次數所能提高土的壓實度有一定限度,超過該限度再增加壓實或碾壓次數則無效果。填築土堤,在最佳含水量附近可用最小的功能達到最大的干容重,因而要在室內通過壓實試驗確定填料的最佳含水量和最大幹容重(見路基填土壓實)。

但壓實的方法也影響壓實效果,對非粘性土,振動搗實的效果優於碾壓;對粘土則反之。研究土的壓實性能,可選擇最合適的壓實機具。為改善土的壓實性能,可鋪撒少量添加劑。中國古代已盛行摻加生石灰來改善土的壓實性能。

此外,人工控制填料的級配,也可達到改善壓實性能的目的。 土的應力-應變關系 土的變形和強度是土的最重要的工程性質。60年代以前,在工程上通常分別確定土的變形和強度指標,不考慮強度與變形間的相互影響。因為土的應力-應變關系是非線性的並具有彈塑性、 甚至粘彈塑性特徵,而當時的計算技術,尚無法進行分析。

隨著計算機和數值分析法的普及,已可能把土的應力-應變關系納入土工建築物的分析計算中。正常固結粘土和松砂的剪應力和軸向應變的曲線呈雙曲線型,在整個剪切過程中,土的體積發生收縮,這類土具有應變硬化的特性。 超固結粘土和密實砂的應力-應變曲線則有峰值,其後應變再增大時,則土的強度下降,最後達穩定值。

剪切過程中,土的體積先有輕微壓縮,隨後即不斷膨脹,這類土具有應變軟化的特徵。為了使用數學方程描述各類土的應力-應變特性,現已有各種非線性彈性、彈塑性和粘彈塑性模型。利用這些模型和數值分析法,可以分析一些復雜邊界條件和不均質土體的變形和穩定問題。但是這些模型中所對應的土的參數,目前尚難正確測定,土體的原始應力狀態也難確定,因而還難於在工程中普遍應用。 土的動力性質 土在岩爆、動力基礎或地震等動力作用下的變形和強度特性與靜荷載下有明顯不同。

土的動力性質主要指模量、阻尼、振動壓密、動強度等,它與應變幅度的大小有關。應變幅度增大(<10),土的動剪切模量減小,而阻尼比例則增大。土的動模量和阻尼是動力機器基礎和抗震設計的重要參數,可在室內或現場測試。1964年日本新潟大地震,大面積砂土液化造成大量建築物的破壞,推動了對飽和砂土液化特性的研究。

液化的主要機理是土的有效強度在動荷載作用下瞬時消失,導致土體結構失穩。一般松的粉細砂最容易發生液化,但砂的結構和地層的應力歷史也有一定的影響。具有內聚力的粘性土一般不發生 液化現象。 黃土的工程性質 一般分為新黃土和老黃土兩大類,其性質也有顯著差異(見黃土地區築路、路基設計)。

軟土的工程性質 軟土一般指壓縮性大和強度低的飽和粘性土,多分布在江、河、海洋沿岸、內陸湖、塘、盆地和多雨的山間窪地。軟土的孔隙比一般大於1.0,天然含水量常高出其液限,不排水抗剪強度很低,壓縮性很高,因而常需加固處理。最簡單的方法是預壓加固法(見預壓法)。軟土強度的增加有賴於孔隙壓力的消失,因而在地基中設置砂井以加快軟土中水的排出,這是最常用的加固方法之一。

預壓加固過程中通過觀測地基中孔隙水壓力的消失來控制加壓,這是保證施工安全和效率的有效方法。此外,也可用碎石樁(見振沖法)和生石灰樁等加固軟土地基。 膨脹土的工程性質 粘土中的粘土礦物(主要是蒙脫石),當遇水或失水時,將發生膨脹或收縮,引起整個土體的大量脹縮變形,給建築物帶來損害(見膨脹土地基)。

多年凍土的工程性質 高緯度或高海拔地區,氣溫寒冷,土中水分全年處於凍結狀態且延續三年以上不融化凍土稱多年凍土。凍土地帶表層土隨季節氣溫變化有凍融交替的變化,季節凍融層的下限即為多年凍土的上限,上限的變化對建築物的變形和穩定有重大影響(見凍土 地基、多年凍土地區 築路)。

鹽漬土的工程性質見鹽漬土地區築路。 紅粘土的工程性質 熱帶和亞熱帶溫濕氣候條件下由石灰岩、白雲石、玄武岩等類岩石風化形成的殘積粘性土。粘土礦物主要是高嶺石,其活動性低。中國紅粘土的特點一般是天然含水量高、孔隙比大,液限和塑性指數高,但抗水性強,壓縮性較低,抗剪強度也較高,可用作土壩填料。

❻ 中國濕陷性黃土的工程地質性質

一、前言

中國濕陷性黃土就其工程地質性質而言,可分為高原濕陷性黃土和河谷濕陷性黃土兩類。前者分布於高原(或台塬高地),為晚更新世馬蘭黃土,屬於風積成因;後者分布在河谷,為全新世沖積黃土。

二、高原濕陷性黃土

在黃土高原地帶,雖然工業建築較少,但民用建築、生土建築和窯洞建築卻很多,因此,對於高原濕陷性黃土的工程地質性質進行試驗研究是很有必要的。現將有關資料敘述如下。

1.顆粒成分

顆粒成分是決定黃土的工程地質性質的基本因素之一,特別是粘土成分。從分布在不同地區的資料(表1)來看,高原濕陷性黃土的顆粒成分是有區域性變化的,粘土顆粒由西而東、由北而南逐漸增加。

表1 高原濕陷性黃土的顆粒成分

2.物理性質

物理性質是工程地質性質中的一個重要組成部分,是工程措施的直接指標。現從分布在不同地區的資料(表2)來看,高原濕陷性黃土的物理性質也是有區域性變化的,如含水量和容重等存在由西而東、由北而南的變化趨勢。但某些指標,如孔隙比等差別不大。

表2 高原濕陷性黃土的物理性質

續表

3.濕陷特徵

濕陷性是黃土獨特的工程地質性質,是評價黃土地基的重要依據,隨著實際資料的積累,目前可獲得如下的認識。

1)在平面分布上,由表3中得知,高原濕陷性黃土的相對濕陷系數值是存在著明顯的區域性變化的,並且有由西而東、由北而南、從大變小的趨勢。

表3 高原濕陷性黃土的相對濕陷系數

2)垂直剖面上,由表3和圖1中得知,相對濕陷系數值是隨深度增加而減小的,一般在近地表為最大,往下就反復地變小,至一定的深度時,濕陷性基本消失,而過渡到非濕陷性土層。這個消失的深度界限,是隨地區的不同而不同的,明顯地反映了區域性的差異。但總的看來,這個界限一般在10~16m的深度內。建立這個概念,對地基的評價是非常重要的,因為在高原區,黃土層的厚度很大,常達百米以上,過去曾有人認為,黃土層的厚度與濕陷層的厚度是等同的,現在看來,這是不正確的。

三、河谷濕陷性黃土

工業與民用建築廣泛坐落在黃土河谷平原地帶,這里是建築部門的研究重點,我們曾對分布在不同地區具有代表性的重工業城市開始了調查和試驗工作,現簡述如下。

1.試驗場地的簡況

試驗場地地質地貌簡況示於表4。

表4 試驗場地的地質地貌簡況

續表

圖1 相對濕陷系數隨深度變化圖

1—太原;2—乾縣;3—蘭州

2.物質成分

(1)顆粒成分

顆粒成分所採取的分析方法是密度計法,其結果列於表5。

表5 河谷濕陷性黃土的顆粒成分

從表5中可以獲得這樣的認識,就大范圍而言,分布在河谷平原的濕陷性黃土,其粘土的含量與高原濕陷性黃土的分布規律一樣,存在著由西而東、由北而南逐漸增加的總趨勢。

(2)粘土礦物成分

從粘土礦物成分的分析資料(表6)來看,3個場地黃土的粘土礦物,主要都是伊利石,但其含量各地不同。這從粘土礦物的化學分析中也得到反映。

表6 河谷濕陷性黃土的粘土礦物成分

(3)化學成分

化學成分的分析結果及其特徵,可從表7中看出如下幾點:

1)化學成分在這3個場地是有差別的,尤其對黃土工程地質性質有重大影響的易溶鹽、中溶鹽和交換容量等有較大差別。

2)易溶鹽的含鹽量,以蘭州為最大,其次是西安,再次是太原,同時蘭州含有大量的易溶性的硫酸根離子,而西安和太原則含量微弱;再以介質溶液的pH 值來看,蘭州較西安和太原為小,故蘭州為硫酸鹽型的黃土,而西安和太原為碳酸鹽型的黃土。

3)中溶鹽(石膏)在蘭州的黃土中含量較多,而在西安和太原的黃土中就沒有。

表7 河谷濕陷性黃土的化學成分

3.物理力學性質

物理力學性質的特徵見表8、表9。

表8 河谷濕陷性黃土的物理性質

表9 河谷濕陷性黃土的力學性質

1)在物理指標中,含水量等存在著較大的區域性差異,且一般有由西而東、由北而南、從小變大的趨勢。但孔隙比等,在某幾個地方又基本上是相似的。

2)在力學指標中,凝聚力、內摩擦角的區域性變化較小,但野外的形變模量變化范圍很大。

4.濕陷特徵

近些年來,對濕陷性的認識有了新的發展,除了相對濕陷系數這個指標外,還新添了濕陷起始壓力的指標。

(1)相對濕陷系數

1)在平面分布上:從表10中得知,河谷濕陷性黃土的相對濕陷系數與高原上的濕陷性黃土一樣,也存在著區域性變化和一般的由西而東、由北而南、從大變小的趨勢。

2)在垂直剖面上:由表10和圖2中得知,河谷濕陷性黃土的相對濕陷系數與高原上的濕陷性黃土一樣也存在著隨深度增大而減小的規律。一般在地表為最大,往下就反復地變小,至一定深度時,濕陷性就要消失。濕陷性消失的深度是有區域特徵的,具有西深而東淺的變化趨勢,但總的看,它一般都消失在地表下10~15m的深度內。

表10 河谷濕陷性黃土的相對濕陷系數

圖2 相對濕陷系數隨深度變化圖

1—太原;2—蘭州;3—西安

(2)濕陷起始壓力

濕陷起始壓力,在我國已發展成為一個有實用意義的力學指標。從表11來看,它也存在著顯著的區域性特徵,並也有一般的由西而東、由北而南、從小變大的趨勢。

表11 灌谷濕陷性黃土的濕陷起始壓力

四、幾點認識

1)高原濕陷性黃土和河谷濕陷性黃土,在不同地區內,其工程地質性質具有區域性的差異。且在區域性的基礎上,大致都存在著由西而東、由北而南的方向性變化趨勢。

2)高原濕陷性黃土和河谷濕陷性黃土,在同一地區內的工程地質性質是存在著類別上的差異的。

3)不同地區的高原濕陷性黃土和河谷濕陷性黃土的工程地質性質是既存在類別上的差異,又存在區域上的差異的。

4)在區域性的差異上,河谷濕陷性黃土遠較高原濕陷性黃土的差異要大。這是由於前者的沉積環境遠比後者的沉積環境復雜。

5)我國濕陷性黃土的工程地質性質是存在著方向性和地區性的變化特徵的,這是由於各地在黃土堆積時的古地理、古氣候、沉積環境、發育歷史及人類活動等因素的不同所致。因此,在建築時,要區別對待,因地制宜。

6)在反映方向性和區域性的差異上,若簡單地以物理力學性質或以單一指標去了解,則這種內在的方向性或區域性規律就難於識別,只有把這種因素中的各個特徵指標聯系起來,作出綜合的工程地質性質的評價,才能把握其規律。因為黃土是自然作用的產物,它一方面是具有一定物理力學性質,一定的物質成分和組織結構的自然體系;另一方面又是在地質歷史過程中形成,且在天然和人為因素影響下,不斷改變的自然地質體。這種以黃土的形成、發展,以及相互聯系的全面觀點所揭露出的我國濕陷性黃土的區域性和方向性的規律,對於今後的科學研究和生產實踐,將會起到重要的作用。

參考文獻

劉東生,張宗祜.1962.中國的黃土.地質學報,42(1)

劉東生等.1965.中國的黃土堆積.北京:科學出版社

張宗祜.1962.中國黃土類土濕陷性及滲透性基本特徵.中國地質,(12)

(本文原載:《中國第四紀研究》,1985年,第六卷,第二期,139~145頁)

❼ 濕陷性黃土的工程特性是什麼

濕陷性黃土是一種特殊性質的土,其土質較均勻、結構疏鬆、孔隙發育。在未受水浸濕內時,一般容強度較高,壓縮性較小。當在一定壓力下受水浸濕,土結構會迅速破壞,產生較大附加下沉,強度迅速降低。故在濕陷性黃土場地上進行建設,應根據建築物的重要性、地基受水浸濕可能性的大小和在使用期間對不均勻沉降限制的嚴格程度,採取以地基處理為主的綜合措施,防止地基濕陷對建築產生危害。

❽ 黃土工程性質

黃土工程地質(engineering geological property of loess)是指與黃土分布區工程建設施工及建築物穩定條件密切相關的黃土的特殊性質,如黃土的濕陷性、壓縮性、抗剪強度等。黃土的工程地質性質要闡明了許多出現的問題。基本內容
①黃土一般的工程地質指標,主要包括黃土的物理性質、化學性質和力學性質三大指標;②不同地貌單元、不同時代、不同成因類型的黃土的粒度成分、濕陷性及與濕陷性有關的特殊性質,不同區段內的黃土的濕陷性的評價;③結合區內工程建設進行區域黃土工程地質條件的評價及黃土工程地質區域的劃分。在對黃土高原多次暴雨洪水災害調研的基礎上,提案指出:黃土高原水保措施基本能應對一般侵蝕性降雨,但抵禦特大暴雨能力有限。由於黃土高原的水資源匱乏,長期以雨洪資源化為主要目標,存在「重蓄輕排」問題,較少考慮流域各地貌單元之間的匯水連通關系,加上工農業生產擠占溝道與河道,進一步導致了流域洪水泥沙連通性的惡化。在極端暴雨條件下,洪水超出流域蓄水能力,土壤侵蝕與洪澇災害愈發嚴重,坡耕地溝蝕廣布、梯田被嚴重破壞,在承接上方匯流的部位形成切溝或造成滑坡,莊稼被淹淤埋,淤地壩排水建築物及壩體被沖毀,甚至淹沒下游村莊、城鎮,危及人民生命財產安全。同時,大多數流域無整體蓄水與排洪規劃,水窖、壩庫等措施的蓄水量無法與小流域用水需求相協調,既不能抵禦極端暴雨洪水災害,也不能有效搜集和利用雨洪資源,甚至一度造成「不下雨就乾旱,一下雨就水災」的尷尬局面。

❾ 黃土地區的主要的工程地質問題是什麼

研究地形的起伏和地面水的積聚、排泄條件,調查洪水淹沒范圍及其發生規律;內
劃分不容同的地貌單元,確定其與黃土分布的關系,查明濕陷凹地、黃土溶洞、滑坡、崩坍、沖溝、泥石流及地裂縫等不良地質現象的分布、規模、發展趨勢及其對建設的影響;
劃分黃土地層或判別新近堆積黃土,應符合規定;
調查地下水位的深度、季節性變化幅度、升降趨勢及其與地表水體、灌溉情況和開采地下水強度的關系;
調查既有建築物的現狀;
了解場地內有無地下坑穴,如古墓、井、坑、穴、地道、砂井和砂巷等。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864