當前位置:首頁 » 地質工程 » 地質災害預警系統

地質災害預警系統

發布時間: 2021-01-28 00:25:10

1. 北斗監測系統提前預警到哪裡有山體滑坡

北斗監測系統提前預警到石門縣有山體滑坡。據央視新聞,7月6日下午,石門縣南北鎮發生了該縣自新中國成立以來最大的山體滑坡災害,300萬立方米土石方傾瀉而下,導致300米省道路面、1座小型電站和5間房屋被毀,萬幸的是,6月24日,石門縣就接到北斗衛星監測系統地質災害橙色預警,提前轉移村民,此次災害未造成人員傷亡。

系統預警稱潘坪村雷家山地質災害隱患點監測數據出現異常,經智能地質災害風險預警評估模型分析,該處隱患點變形量偏大,且近期有加速下滑的趨勢,建議啟動應急調查,受威脅居民臨時撤離。隨後,當地馬上轉移安置危險區6戶20名村民,並開展24小時巡查值守,在收到值守幹部的異常通報後,又及時轉移走疑似危險區8戶13位村民。

(1)地質災害預警系統擴展閱讀:

北斗系統的行業及區域應用

1、交通運輸方面,北斗系統廣泛應用於重點運輸過程監控、公路基礎設施安全監控、港口高精度實時定位調度監控等領域。

截至2018年12月,國內超過600萬輛營運車輛、3萬輛郵政和快遞車輛,36個中心城市約8萬輛公交車、3200餘座內河導航設施、2900餘座海上導航設施已應用北斗系統,建成全球最大的營運車輛動態監管系統,有效提升了監控管理效率和道路運輸安全水平。據統計,2011年至2017年間,中國道路運輸重特大事故發生起數和死亡失蹤人數均下降50%。

2、農林漁業方面,基於北斗的農機作業監管平台實現農機遠程管理與精準作業,服務農機設備超過5萬台,精細農業產量提高5%,農機油耗節約10%。定位與短報文通信功能在森林防火等應用中發揮了突出作用。為漁業管理部門提供船位監控、緊急救援、信息發布、漁船出入港管理等服務,全國7萬余只漁船和執法船安裝北斗終端,累計救助1萬餘人。

3、水文監測方面,成功應用於多山地域水文測報信息的實時傳輸,提高災情預報的准確性,為制定防洪抗旱調度方案提供重要支持。

4、氣象測報方面,研製一系列氣象測報型北斗終端設備,形成系統應用解決方案,提高了國內高空氣象探空系統的觀測精度、自動化水平和應急觀測能力。

2. 愛立信山體滑坡監測及預警系統的重要組成部分是什麼

愛立信展示的這個山體滑坡監測及預警系統的重要組成部分是基於蜂窩物聯網的感測設備。蜂窩物聯網的廣覆蓋、低功耗、低成本的特點使得大量感測設備的部署成為可能。通過基於蜂窩物聯網的大量感測設備來監測山體的異常情況,實時接收處理感測器信息,及時預警可能被災害影響到的區域的人員採取防護和避險措施。該系統可以准確、實時地在指定區域進行報警,相對於目前的預警手段,具有更精確、迅速以及高效的特點。

2017中國國際通信展上,愛立信聯合中國移動展示了地質災害預警物聯網用例——山體滑坡監測及預警系統。該系統是愛立信與中國移動在"5G聯合創新項目"的一個合作案例。近期,愛立信將攜手中國移動研究院及中國地質環境監測院在災害頻發地區進行系統試點。基於中國移動全球最大的LTE網路和正在部署的蜂窩物聯網路,山體滑坡監測及預警系統可以成為國家公共安全預警系統中重要的組成部分,為保障人民生命財產安全做出積極貢獻。

中國是一個自然災害頻發的國家,在我國廣大山區,山體滑坡和泥石流是最為常見的災害。據中國國土資源公報,2011-2016年我國發生地質災害7萬余起,造成2400餘人死亡和失蹤,直接經濟損失超過300億元。目前山體滑坡災害的監測設備部署復雜、成本較高,且缺乏快速有效的報警提示方式。利用基於蜂窩物聯網技術的感測器,結合基於LTE的快速預警方式,我們可以實現對山體滑坡的監測和預警,有效地保障人員和財產的安全。

中國地質環境監測院地質災害調查監測室主任兼中國地質調查局"山地丘陵區地質災害調查工程"首席專家李媛表示:"蜂窩物聯網 '廣覆蓋、低功耗'的特點特別契合地質災害監測的需求,可以一定程度上解決廣大山區通訊信號較弱和傳統監測設備需額外配備供電裝置的問題,如果相關設備成本能進一步降低,實現大面積部署,可以顯著提升我國的地質災害監測水平。將小區廣播引入地質災害監測預警,不僅使預警手段更加多樣化,也提高了預警效率。下一步我們將聯合愛立信、中國移動進一步完善本系統,並著手開展相關設備野外環境適用性研究,共同推進蜂窩物聯網技術在地質災害監測領域的應用。"

愛立信東北亞區執行副總裁方迎表示"物聯網技術在推動各行業數字化進程中扮演著重要角色。愛立信提供領先的物聯網解決方案,與各個垂直行業的合作夥伴展開廣泛合作。此次攜手中國移動及中國地質環境監測院在自然災害預警領域打造新型應用案例,推動國家公共安全預警系統智能化。愛立信期待三方在後續的合作中實現更多新突破。"

在推動物聯網發展的進程中,愛立信始終保持領先,從推動蜂窩物聯網主流國際標准形成,到打造領先的解決方案——全球化終端連接管理平台和物聯網加速引擎。從提供車聯網應用商店能力、物聯網大數據分析能力等,到打造廣泛的物聯網應用案例。此外,愛立信還推出了一體化物聯網服務。我們志在攜手客戶與合作夥伴,努力創建共贏的物聯網生態圈,加速物聯網的普及與大發展。

3. 全國地質災害監測預警體系建設規劃的必要性、指導思想、基本原則和目標

7.2.1 必要性

《中國21世紀議程》提出了我國可持續發展的戰略目標。在我國經濟和社會快速發展的過程中,人類活動的強度和范圍達到前所未有的程度,其對包括地質環境在內的人類生態環境的干擾與破壞也日益增強,在許多地區引發的不同程度的自然地質災害造成了危害和損失成倍增加的現象,礦產資源和地下水資源等的開發利用以及各種工程活動誘發的地面沉降、崩塌、滑坡、泥石流等人為地質災害也較為普遍,對城市、公共基礎設施和廣大人民群眾的生命財產安全構成嚴重威脅。特別是地面沉降多發生在我國經濟最發達、人口密度最大、公共基礎設施最密集的東部地區,成為這些地區乃至國家可持續發展的重要制約因素。因此,保護生態環境、進行生態環境建設和防災減災,已經成為國家長期的目標和任務。為此,加強地質災害監測,進行全國地質災害監測與預警體系建設的規劃,在監測基礎上,實現對地質災害的治理與對地質環境的保護,不僅是防災減災的需要,而且也是國家經濟社會可持續發展、保護生態環境和進行生態環境建設的最基本的保障,是一項重要的基礎性和公益性的國家地質工作。現就從我國社會經濟的發展的幾個重要方面,對地質環境與地質災害監測的必要性,進行簡要論述:

(1)保障國家重大工程建設安全與西部大開發戰略的需求

全國有20餘條鐵路干線和所有山區公路不同程度地受到滑坡、崩塌、泥石流的危害或威脅。大型水庫岸邊,河流傍岸,尤其是峽谷段,常因發生滑坡、崩塌、泥石流而阻塞航道,並引起洪災。中東部沿海平原和盆地地面沉降、地裂縫和地面塌陷等地質災害嚴重威脅和破壞基礎工程設施。加強這些基礎工程設施和沿大江大河危險地段的地質環境監測,採取科學的分析方法進行預測預報,是一項長期的工作。

西部大開發戰略把加快水利、交通、能源和通訊等基礎設施建設放在首位,其中包括:長江三峽工程、南水北調工程、大江大河上中游干(支)流控制性水利樞紐工程、內河航運通道、青藏鐵路、西電東送工程、西氣東輸工程等。這些重大工程地域跨度大,多處在或穿越地質災害易發區,為保障上述工程安全施工和運營,必須加強地質環境監測工作。

(2)城市化發展對地質災害監測的需求

目前,我國有城市668座。預計2020年左右,我國城鎮化水平將提高到45%~50%,我國城市數將達到1000~1100座。城市是人類活動最集中,環境地質問題最突出的地區。為了保障城市化進程,指導城市規劃,預防由於不合理的工程活動引發的地面沉降、地裂縫、崩塌、滑坡等地質災害和其他環境地質問題,必須加強對城市地下水環境和地質災害的監測。

(3)礦產資源開發對地質災害監測的需求

我國礦產資源開發帶來了很多環境地質問題,產生大量的地質災害隱患。每年礦石開采量57億~60億t,礦山企業每年產生固體廢棄物133.8億t、產生尾礦26.5億t,處置率僅為6.95%。礦山固體廢棄物任意堆放形成了嚴重的滑坡、泥石流等地質災害隱患,地下采礦活動誘發的滑坡、地面塌陷等地質災害十分突出。礦山地質環境監測十分薄弱,礦山地質災害防治工作任重道遠。為了保障礦產資源的安全開發和礦山地質環境的有效治理,必須加強礦山地質環境監測。

7.2.2 指導思想

應堅持以人為本,全面、協調、可持續的科學發展觀和人口、資源、環境協調發展的一系列方針政策。緊密結合經濟社會發展規劃的總體目標和要求,充分認識地質災害監測預警體系建設的重要性和緊迫性。動員社會各方面的力量,從我國地質災害發生發育的實際出發,尊重自然規律和經濟規律,正確處理長遠與當前、整體與局部的關系,依靠科技進步,運用新思路、新理論、新技術、新方法,實現對地質災害的有效監控和預報預警,為我國地質災害防治、地質環境保護和資源環境的可持續利用提供有力支撐。

7.2.3 基本原則

(1)與國家國民經濟社會發展進程相適應的原則

建立和完善與全面建設小康社會相適應的、符合可持續發展要求的地質災害監測預警體系,為國家和地方宏觀調控和指導國土資源開發與整治提供依據。

(2)突出「以人為本」

堅持按客觀規律辦事,從實際出發,講求實效,山區、平原和不同災種的監測重點各有側重的原則。在以突發性地質災害為重點的地區,應以最大限度地減少人員傷亡、保障社會穩定和人民生命財產安全作為主要目的;緩變性地質災害應以專業監測為主要手段進行監測與規劃。

(3)群、專結合的原則

建立以縣、鄉、村為基礎,全民參與、群專結合的群策群防體系,是多年來地質災害防治工作中總結出來的寶貴經驗,也是避免人員傷亡,把災害損失降到最低限度的重要保證。

(4)統籌規劃、分步實施、分級管理

密切結合生產力布局和人口分布狀況,對全國地質災害監測預警體系建設工作進行統籌規劃,制定切實可行的分階段實施方案,明確各級政府和企(事)業單位在地質災害監測中的責任和義務,建立統一管理和分級(國家、省、市、縣)管理相結合,處理好全部與局部、長遠與當前的關系,優先實施重點地區和重要經濟區(帶)的監測預警體系建設。

(5)監測網建設與保護並重

擯棄重建設、輕保護的觀念,嚴禁邊建設、邊破壞,通過法律、經濟等手段,明確保護責任,落實保護費用,切實保護監測儀器、設備、設施的建設成果。

(6)站網建設與能力建設並舉

在不斷完善地質災害監測網基礎硬體設施建設的同時,加強機構建設、法規制度建設、技術規范建設、信息系統建設、人力資源建設和研究能力建設。

(7)專業服務功能與公眾服務功能並重

地質災害監測信息既要為國家決策和專業調查評價提供支持,也要為社會公眾提供地質災害現狀信息和防災減災信息。

(8)依靠科技創新、提高監測工作質量

加強科學研究,改進監測設施,依靠科技進步,全面提升監測能力和服務水平。

(9)建立多渠道籌資機制

各級地質災害監測機構的監測經費要納入同級政府財政預算。多渠道籌集監測資金,設立各級地質災害監測專項經費,確保監測工作的順利實施。

7.2.4 目標

地質災害監測預警體系建設的目的是最大限度地減少人民群眾的生命財產損失,以保障經濟、社會的可持續發展;為國家及地方宏觀調控和指導國土資源開發與整治提供依據;從地質環境可持續開發利用角度提出地區發展戰略建議;為改善人居環境,保障交通大動脈安全暢通,水電工程正常運行等提供保障;為地區社會經濟發展提供決策參考。在基本掌握全國地質災害分布狀況與危害程度的基礎上,建立並逐步完善全國地質災害的監測預警網路體系。

(1)總體目標

從現在起到2020年,在逐步查明我國地質災害分布狀況與危害程度的基礎上,建成覆蓋全國的較完善的突發性地質災害群測群防網路體系;建成以省(區、市)及部分縣(市)地質環境監測站為骨乾的突發性地質災害應急反應體系;建成我國較完善的地質災害專業監測骨幹網路,重點地區及重要經濟區(帶)達到監測數據的實時採集、分析、預警預報的水平。使地質災害防治工作以被動救災為主的局面得到根本性扭轉,人為有效控制地質災害,使損失逐年攀升的趨勢得到有效控制。

(2)階段目標

1)到2010年,地質災害監測預警體系建設的目標如下:①群測群防監測網路覆蓋到全國突發性地質災害易發區的1400個縣(市),形成縣、鄉、村三級監測體系。②初步建成由各級政府和有關部門參與的全國地質災害專業監測骨幹網路。③初步建成重要交通干線和水利工程區的專業監測預警系統。充分推廣高新技術在地質災害監測中的應用,利用計算機技術、3S技術等先進手段,提高監測預報的自動化水平。④在進一步完善群、專結合,群測群防監測網路的同時,完成分布在全國各省(區、市)重大突發性地質災害隱患點的監測預警預報示範系統。⑤建成較完善的地質災害監測信息網路系統,重點地區及重要經濟區(帶)的專業監測要初步達到監測數據的實時採集、自動分析、自動預警預報的水平。⑥初步建成重點地區及重要經濟區(帶)地面沉降等緩變性地質災害監測網路系統。力爭使我國地質災害監測預警預報的儀器、設備達到國際水平。

2)到2020年,在地質災害監測管理法規、規章的支持下,要使國土資源部門對地質災害監測監督管理的職能全面到位,並逐步納入科學化、規范化和法制化的軌道;使地質災害監測體系的科學理論與技術方法達到國際先進水平,建成覆蓋全國的較完善的地質災害重點防治區突發性地質災害群專結合的監測預警預報網路;建成全國地面沉降、地裂縫等緩變性地質災害的實時監控體系;建成完善的地質災害監測信息網路,實現地質災害監測數據的自動化採集、傳輸、存儲和信息的實時發布。建成比較完善的地質災害防災預警指揮系統。

4. 實時監測技術在地質災害防治中的應用——以巫山縣地質災害實時監測預警示範站為例

高幼龍1張俊義1薛星橋1謝曉陽2

(1中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051;2西北化工研究院,陝西臨潼,710600)

【摘要】本文在地調項目工作實踐的基礎上,系統地總結了地質災害實時監測的含義、特點和系統構成。詳細介紹了巫山縣地質災害實時監測預警示範站的構建,針對實際運行狀況,評價了實時監測技術的可行性和可靠性。

【關鍵詞】地質災害實時監測遠程傳輸示範站

1 引言

隨著現代科學技術的發展和邊緣學科的相互滲透,自動控制、網路傳輸等越來越多的技術被不斷應用於地質災害的監測當中,極大地提高了監測的自動化水平,在一定程度上緩解了生產力匱乏和地質災害急劇增加之間的矛盾。國際上,美國、日本、義大利等發達國家在一定的區域范圍內建立了基於降水量、滲透壓、斜坡變形等參數的地質災害實時監測系統,藉助國際互聯網實現了監測數據的集中處理與實時發布。與之相比,我國地質災害監測的實時化、網路化水平依然較低,監測信息為公眾服務的功能未能得到明顯體現,預警的信息渠道不暢,對重大臨災的地質災害缺乏快速反應能力。因此,在我國進行地質災害實時監測預警研究,對重大災害體實施實時化監測預警,具有十分現實的意義。

筆者在參加地質調查計劃項目《地質災害預警關鍵技術方法研究與示範》的過程中,對實時監測技術進行了較為深入的研究,並在我國重慶市巫山縣新城區建立了地質災害實時監測預警示範站,經過1.5個水文年的示範運行,驗證了實時監測的可行性和可靠性。在對示範成果初步總結的基礎上形成此文,以期實時監測技術得以快速成熟及推廣應用,為我國地質災害防治事業作出貢獻。

2實時監測的含義和特點

實時監測(Real-Time Monitor,RTM)指通過各種監測、採集、傳輸、發布技術,讓目標層人員在第一時間內了解、掌握有關災害體的變形動態和發展趨勢,進而作出決策的多種技術的集合。其最主要的特點為實時性,即遠程的目標層人員可在第一時間獲取災害體的全部變形信息,而獲取的過程是自動的,無需技術人員值守干預。顯而易見,實時的特性可以最大限度地解放勞動力,降低監測人員風險和運營成本。

同傳統監測技術相比,實時監測的數據採集方式是連續的、跟蹤式的,數據的採集周期很短,通常在數小時之內,甚至更短。這對於跟蹤災害體變形過程,進行反演分析具有十分重要的意義。其龐大的數據量通常也會對配套的軟硬體系統提出更高的要求。

不難理解,實時監測也是自動化監測。所使用的監測儀器均需自動化作業方可實現無人值守。監測儀器自動化分為兩種,一種是監測儀器本身具備定時采樣和存儲功能,另一種是通過第三方的自動採集儀控制采樣。不管使用何種方式或基於何種原理,其數據採集是能夠自動或觸發實現的。

監測數據遠程傳輸是實時監測的另一主要特點。通常情況下,監測控制中心設立在遠離災體、經濟相對發達的城鎮區,需要藉助公眾通信網路或其他介質將各種類型的監測數據「搬運」過來,進行相應的轉換計算,生成目標層人員所需要的成果。這個「搬運」過程即監測數據的遠程傳輸。傳輸分為兩種方式,一種是有線傳輸方式,如架設通信線纜或光纜,在電話線兩端載入 Modem等;另一種是無線傳輸方式,如藉助 GSM/GPRS或 CDMA網路、UHF數傳電台或通信衛星等。

由於實時監測是數據自動採集、傳輸、發布等多個技術的集合,其中的任何一個環節失敗均可導致系統無法正常工作,因此,實時監測是存在風險性的。其風險構成除電力(如斷電停電)等保障體系統風險和監測儀器(如感測器、採集儀故障)、傳輸系統(如占線、網路資源不足、數據安全)、發布系統(如網路阻塞、病毒入侵、系統崩潰)等技術風險外,還包括人為抗力風險,如監測儀器設施的人為破壞、網路系統的惡意攻擊等。對於風險的營救除最大程度地降低保障體系風險和技術風險外,需要通過立法、宣傳等有效措施降低人為抗力風險,並設技術人員對監測系統進行即時維護,保障系統正常運行。

3實時監測系統構成

實時監測系統由監測儀器設施、數據採集系統、數據傳輸系統和網路發布系統四個子系統構成。各子系統均可獨立運行,以單鏈的方式協同工作。其工作原理如圖1所示。

圖1實時監測系統工作原理示意圖

3.1監測儀器設施

監測儀器及設施是獲取災害體變形參數最前端、最主要的組成部分,固定安裝於災害體表層或深部,並能夠表徵災害體對應部位的變形、變化。監測儀器的類型取決於所採用的監測方法。在地質災害監測中,常用的監測方法包括災害體地表及深部位移、應力、地下水動態、地溫、降水量等(表1)。監測儀器的精度、數量及布設位置是在地質災害勘查及綜合分析的基礎上,從控制災害體主體變形的需要設計確定的。監測儀器通常和相應的監測設施,如監測標(墩)、保護裝置等相互配合,完成災害體相關參數的獲取。

3.2數據採集系統

顧名思義,數據採集系統用於收集、儲存各類監測數據,是通過單片機或工業控制技術實現的。目前,多數監測儀器均有配套的數據採集及存儲裝置,可按設定的數據採集間隔定時自動化工作,並對原始數據進行轉換計算。數據採集裝置通常具有 RS-232或其他標准通信介面,可以方便地將數據下載至 PC中作進一步分析處理。對於不具備配套數據採集裝置或僅具備攜帶型讀數裝置的監測儀器,則可以通過第三方的數據採集儀實現自動採集工作,通用型的數據採集儀可方便地將頻率、電壓等模擬信號轉換為數字信號加以存儲和處理,並具備標准通信介面和PC交換數據。由於數據採集儀多置於監測儀器附近,二者間通常使用線纜相連接。

表1常用監測技術方法簡表

3.3數據傳輸系統

數據傳輸系統用於完成數據採集儀—控制中心—用戶間的數據傳遞。實際上,控制中心—用戶間通常是利用國際互聯網、通過發布系統實現的,所以狹義上的數據傳輸指數據採集儀—控制中心之間(即災害體現場至控制中心)的數據傳遞。

按照災害體和控制中心空間距離的長短,可將數據傳輸分為近距離數據傳輸(一般低於2km)和遠程數據傳輸兩種類型。前者由於傳輸距離較短,一般採用線纜連接,後者則採用遠程數據傳輸裝置。

按傳輸介質,遠程數據傳輸分為有線傳輸和無線傳輸兩種方式。目前常用的有線傳輸方式有電話線連接(即在電話線兩端載入 Modem對數據進行調制、解調)、光纜連接等,無線傳輸方式有數傳電台(用於中遠距離)、GSM/GPRS或 CDMA移動通信網路、通信衛星等(圖2)。

圖2常用的數據傳輸方法

3.4信息發布系統

信息發布系統通過國際互聯網,以 Web主頁的方式向目標層人員(即用戶)提供各類監測信息。監測信息包括災害體地質條件、發育特徵、監測網布置方式、多元監測數據、監測數據隨時間推移曲線變化情況、監測信息公告及圖片、視頻等。

信息發布系統由底層資料庫和發布主頁兩部分構成。前者用於管理各類基礎信息及監測數據,為後者提供數據源,後者為用戶提供信息訪問平台。二者之間通常採用B/S等架構交換數據。

信息發布系統一旦建立完成後,一些信息內容,如災害體地質條件、發育特徵、監測網布置方式等說明性的文字便相對固定下來,在短時間內不會做大的改動,這些信息通常稱為靜態信息。而隨著時間推移,監測數據及其曲線等信息不斷產生,且呈現動態變化並需在主頁上自動更新、顯示,這些信息稱為動態信息。要實現監測數據的實時發布,需建立動態主頁來顯示動態數據。

由於監測數據是由底層資料庫管理的,故只要即時將監測數據自動寫入資料庫中,為動態主頁提供隨時更新的數據源,便可實現自動顯示,即實時發布。而這一點是易於做到的。

4巫山縣地質災害實時監測示範站簡介

重慶市巫山縣新城區是我國地質災害危害最為嚴重的地區之一,全縣約1/3的可用建設用地受到不同程度地質災害的威脅。通過論證對比,在城區27個較大滑坡(崩塌)中,選擇了近期變形相對較為明顯、危害較為嚴重的向家溝滑坡和玉皇閣崩滑體建立實時監測預警系統進行應用示範。選用GPS監測地表位移、固定式鑽孔傾斜儀和TDR技術監測深部位移、孔隙水壓力監測儀監測滑體孔隙水壓力及飽水時的水位、水溫,同時通過安裝儀器的附加功能或定期搜集的方法兼顧了地溫、降水量及庫水位等監測。截至目前,共建立GPS監測標22處(含基準標)、固定式鑽孔傾斜儀和TDR監測點(孔)各3處、孔隙水壓力監測3孔7測點。多種監測儀器在同一地理位置同組安裝,這樣不僅便於不同監測方法之間資料的相互印證對比,還可以僅使用一台採集儀及傳輸裝置採集、傳輸多種監測數據,降低監測系統建設成本;另外,同組安裝便於修建監測機房(現場站)保護監測儀器設施。以上監測方法除GPS因建設成本、人為抗力風險等原因採用定期觀測外,其餘監測方法均採用實時化監測。

4.1示範站數據採集系統

固定式鑽孔傾斜儀、TDR、孔隙水壓力監測儀三種監測儀器均具備配套的數據採集裝置,其中TDR監測技術使用工業控制機作為數據採集裝置,恰好可以作為另兩種監測儀器的上位機,通過多串口擴展,將固定式鑽孔傾斜儀和孔隙水壓力監測儀連接至工控機,定時下載、存儲數據,並在預定時間統一傳輸至控制中心,同時在工控機上存放數據備份,防止數據丟失。示範站數據採集系統結構圖如圖3所示。

圖3示範站數據採集系統結構圖

4.2GPRS遠程無線傳輸系統

示範站控制中心設在巫山縣國土資源局,距向家溝滑坡直線距離2.74km,距玉皇閣崩滑體約0.6km,其間採用GPRS網路進行數據的遠程無線傳輸。

GPRS(General Packet Radio Service,通用分組無線業務)是中國移動通信在GSM網路上發展起來的2.5G數據承載業務,具有傳輸速度快、永遠在線、按量計費等優點。GPRS使用TCP/IP協議,因此可方便地將數據寫入指定(具固定IP地址)的伺服器中。

GPRS數據傳輸硬體為商用型GPRS-MODEM,控制軟體自主編寫,用於控制數據傳輸時間、目標地址及傳輸過程的錯誤處理,由伺服器端和客戶端兩部分構成。伺服器端用於設置網路配置、資料庫連接方式及數據文件、日誌文件和配置文件的存放路徑。客戶端安裝於現場站數據採集儀(工控機)上,控制網路連接、上傳時間、數據編碼、數據備份及傳輸錯誤處理。客戶端軟體和所有的數據採集軟體設置為不間斷工作狀態,在按控制參數工作的同時,接受控制中心的配置指令即時對控制參數進行調整。

4.3示範站信息發布系統

示範站信息發布系統硬體由1台小型伺服器和2台 PC終端的100M區域網構成。通過2M帶寬的ADSL接入Internet。底層資料庫和WEB主頁同時安裝於伺服器上。伺服器操作系統為Mi-croSoft Windows Server 2000,資料庫系統採用 MicroSoft SQL Server 2000。WEB主頁用 ASP.NET和Visual C﹟編寫,和資料庫之間採用B/S架構。在病毒防護和網路安全方面,採用商業軟體瑞星RAV 2004和天網防火牆系統。

(1)資料庫系統

資料庫系統是信息發布系統的基礎,按管理內容分為基礎信息管理、數據管理、輔助信息管理三部分。基礎信息管理的內容包括監測站(包括中心站和現場站)、監測鑽孔、監測點、發布信息、發布圖片等;數據管理內容包括固定式鑽孔傾斜儀、GPS、TDR監測系統、BOTDR監測系統、孔隙水壓力監測儀、環境溫度、降水量、庫水位等;輔助信息管理內容包括分級用戶、下載信息、訪問統計次數等,資料庫系統構成如圖4所示。

(2)數據伺服處理程序

數據伺服處理程序用於轉換、計算現場站傳來的數據,並即時將處理後的結果寫入資料庫中。處理程序採用Visual BASIC語言編寫,通過計時器控制的定時功能觸發寫庫過程,並在完成寫庫過程後刪除原數據以防止重寫。不難看出,數據伺服程序是傳輸系統和發布系統之間的連接,它使兩個彼此獨立的系統有機地結合起來。

(3)示範站信息發布主頁

信息發布主頁為遠程用戶提供所需的全部信息,包括示範站的概況、實時的監測曲線、最新的監測數據等。從發布信息內容、訪問方式及管理維護的角度出發,主頁設計成導航區、發布區、管理區和下載區,為遠程用戶、管理員提供交互。

圖4示範站資料庫系統構成框圖

導航區為遠程用戶提供必要的導航信息,包括公告信息、圖片及相關的專業網站鏈接,展示示範站建設工作的進展、取得的階段性成果及有關的預警內容。

發布區用於提供示範站概況、實時監測曲線及數據查詢。

示範站概況包括示範區自然地理條件、地質條件、示範站工作的整體部署,監測儀器設施(GPS、固定式鑽孔傾斜儀、TDR、BOTDR、孔隙水壓力監測儀等)的性能指標,監測現場站(含中心站)、監測鑽孔、監測點的基礎信息等內容。

實時監測用於顯示各種監測曲線,是發布主頁最核心的內容。從訪問方便的角度出發,實時監測採取了「選擇災體—選擇監測剖面—選擇監測點—選擇監測時段—顯示監測曲線」逐級打開、層層剝落的展示方式,並全部做成圖形方式鏈接,以增強訪問的直觀性。監測曲線的坐標設計成自適應型,圖形的大小在系統的配置文件中設置,並標明數據的最新更新時間。曲線是以圖片的形式顯示的,用戶可以方便地將其下載到自己的PC中保存。

從安全考慮,數據查詢進行了加密,用戶需用授權的用戶名和密碼登錄後方可查看。查詢採取了「選擇監測方法—選擇監測點—選擇監測起始時間—顯示數據表」組合式篩選的方式。輸入界定參數並提交後系統從底層資料庫中找到所有符合條件的記錄,按日期排序後列表顯示。用戶可以全部或部分選取查詢結果,粘貼至個人PC作為WORD文檔保存。

管理區專為系統管理員設計,用於管理員遠程管理文本、圖片、數據等信息,進行信息的添加、修改、刪除、上傳下載等操作。分為信息管理、圖片管理、數據管理、下載管理4個相互獨立的模塊,具有模糊查找等高級功能。

下載區為授權用戶提供工作圖片、視頻、監測報告、軟體等較大文件的下載功能,補充主頁在文件交換方面的不足。

主頁面布局如圖5所示。欲了解發布系統的更多內容,請登錄Http://www.wss.org.cn。

5示範站實時監測系統運行評價

由於本文著重論述實時監測技術的可行性和可靠性,因此不對監測成果和滑坡穩定性動態做更多分析。從以上論述明顯可以看出,在地質災害監測中,構建實時監測系統從技術上是可行性的。本節主要針對巫山縣實時監測預警示範站運行過程中出現的各種問題,從故障統計、故障原因分析等方面,對示範站採集系統、傳輸系統、發布系統的可靠性進行簡單評價,並提出意向性的改善建議。

圖5示範站信息發布主頁面

根據巫山縣地質災害監測預警示範站建設工作日誌,監測系統故障主要發生在傳輸子系統,故障表現形式為數據不傳輸或不正確傳輸,主要原因為GPRS網路信號不穩定造成傳輸隨機中斷所致;其次,撥號連接失敗後的重復嘗試連接導致伺服器80埠長期無效重復佔用,當超過伺服器最大連接數後導致網路無法正確訪問;再次,監測地區不規律的停電常常使保障體系失效,從而丟失數據。此外,示範站伺服器系統遭受過病毒破壞和惡意攻擊,兩次造成網路系統崩潰。可見,實時監測系統在基礎通信條件和保障體系完備的條件下,是能夠穩定可靠運行的。在建設過程中通過安裝長時後備電源系統、功能完善的病毒防火牆和網路防火牆,可有效降低保障體系風險,進一步提高系統運行的穩定性。

6結語

巫山縣地質災害實時監測預警示範站自2003年陸續建設運行以來,在技術人員的維護下,系統運行正常,取得了數十萬個監測數據,發布公告信息及圖片近百條(幅),編寫監測分析簡報數期,實現了監測信息遠程實時訪問,取得了良好的示範效果。實踐證明,將實時監測技術應用於地質災害防治中是完全可行的,也是比較可靠的。可以預見,實時監測技術將是地質災害監測的必然發展趨勢。

參考文獻

[1]殷躍平等.長江三峽庫區移民遷建新址重大地質災害及防治研究.北京:地質出版社,2004

[2]王洪德,高幼龍等.《地質災害預警關鍵技術方法研究與示範》項目設計書.2003(未出版)

[3]劉新民等.長江三峽工程庫區滑坡及泥石流研究.成都:四川科學技術出版社,1990

[4]何慶成,侯聖山,李昂.國際地質災害防治現狀.科學情報,2004,(5)

[5]鄔曉嵐,塗亞慶.滑坡監測的現狀及進展.中國儀器儀表,2001(3)

[6]張青,史彥新,朱汝烈.TDR滑坡監測技術的研究.中國地質災害與防治學報.第12卷,第2期.2001,(6)

[7]曹修定,阮俊,展建設,曾克.滑坡的遠程實時監測控制與數據傳輸.中國地質災害與防治學報.第13卷第1期.2002(3)

[8]夏柏如,張燕,虞立紅.我國滑坡地質災害監測治理技術.探礦工程(岩土鑽掘工程).2001年增刊

5. 地質災害預警系統研發

3.1.1 總體思路

3.1.1.1 基本認識

中國地域廣大,地質環境類型復雜多樣,斜坡岩土體含水狀態與滑坡泥石流事件發生的對應關系是復雜的,滑坡泥石流事件與降雨過程的關系具有離散性。因此,盡可能細化預警區域的劃分,對每個預警區的斜坡坡角、坡積層工程地質特徵、植被類型和人類活動方式進行系統研究,得出特定環境地質條件(地層岩性、地質結構、地貌形態、地表植被和人類工程經濟活動等)下引發地質災害的大氣降雨量臨界值,作為地質災害區域預警判據是可行的。

3.1.1.2 預警對象與預警重點區

降雨引發的區域突發性群發型地質災害:崩塌、滑坡、泥石流等。

預警重點區是:

1)威脅山區的鄉鎮、居民點,且無力搬遷的地區;

2)威脅重要工程如橋梁、水壩和電站等地區;

3)威脅線狀工程如公路、鐵路、輸油(氣)管線和輸電線路以及水上交通線等地區;

4)重要經濟區(發達經濟區、工礦區和農業區等);

5)重要自然保護區、自然景觀和人文景觀地區;

6)區域生態地質環境脆弱,且又必須開發的地區。

3.1.1.3 預警類型

突發性地質災害氣象預警可分為時間預警和空間預警兩種類型。

空間預警是比較明確地劃定在一定條件下(如根據長期氣象預報),一定時間段內地質災害將要發生的地域或地點,主要適用於群發型;

時間預警是在空間預警的基礎上,針對某一具體地域或地點(單體),給出地質災害在某一時段內或某一時刻將要發生的可能性大小,主要適用於單體如大型滑坡,並有群測群防網路或專業監測網路相配合。

空間預警是減輕區域性、全局性地質災害的有效手段。空間預警是基於地質災害的主要控制因素(如地層岩性、地質結構、地貌形態、地層突變等)和引發因素(如降雨、地震、冰雪消融、人為活動)開展工作,控制因素是基本條件,引發因素在不同地區或同一地區的不同地段常常表現出極大差異。

3.1.1.4 預警等級

根據《國土資源部和中國氣象局關於聯合開展地質災害氣象預報預警工作協議》,地質災害氣象預報預警分為5個等級:

1級,可能性很小;

2級,可能性較小;

3級,可能性較大;

4級,可能性大;

5級,可能性很大;

國家層次發布地質災害預警按以下考慮:

1~2級不發布預報,用綠色和藍色表示;

3級發布預報,用黃色表示;

4級發布預警,用橙色表示;

5級發布警報,用紅色表示。

3.1.1.5 預警時段與地域

預報預警時段是當日20時至次日20時。

預報預警地域是中華人民共和國領土范圍,暫不包括香港特別行政區、澳門特別行政區和台灣省。

3.1.1.6 技術路線

1)把全國劃分為若干預警區域。

2)確定預警判據。對每個預警區的歷史滑坡、泥石流事件和降雨過程的相關性進行統計分析,分別建立每個預警區的地質災害事件與臨界過程降雨量的統計關系圖,確定滑坡泥石流事件在一定區域暴發的不同降雨過程臨界值(低值、高值),作為預警判據。

3)判定發生地質災害的可能性。接收到國家氣象中心發來的前期實際降雨量和次日預報降雨量數據後,對每個預警區疊加分析,根據判據圖初步判定發生地質災害的可能性。

4)判定預報預警等級。對判定發生地質災害可能性較大或以上等級的地區,結合該預警區降雨量、地質環境、生態環境和人類活動方式、強度等指標進行綜合判斷,從而對次日的降雨過程引發地質災害的空間分布進行預報或警報。

5)製作地質災害預警產品。

6)發送預警產品。將預警產品報請有關領導簽發後,發送國家氣象中心。

7)發布預警產品。國家氣象中心收到預警產品後,以國土資源部和中國氣象局的名義在中央電視台播出。同時,地質災害預警結果在中國地質環境網站上進行發布。

8)發布預警後,預警人員跟蹤校驗預警效果,總結提高預警准確率。

3.1.2 科學依據

根據1990~2002年對突發性地質災害的分類統計,發現持續降雨引發者占總發生量的65%,其中,局地暴雨引發者約占總發生量的43%,占持續降雨引發者總量的66%。也就是說,約2/3的突發性地質災害是由於大氣降雨直接引發的或是與氣象因素相關的,地質災害氣象預警工作是有科學依據的。

3.1.2.1 氣象因素引發地質災害的特點

1)區域性:一般在數百至數千平方公里內出現;單條泥石流的流域面積:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。

2)群發性:崩塌、滑坡、泥石流等在某一區域多災種呈群體出現。

3)同時性:巨大災難在數十分鍾—數小時內先後或同時出現。

4)暴發性:滑坡、特別是泥石流的發生具有突然暴發性,宏觀上完好的坡體突然滑塌或「奔流」;當地人稱為「渦旋炮」或「山扒皮」。如陝西省紫陽縣同一地點傷亡人員最多的聯合鄉魚泉村7組(瞬間造成37人遇難)是5個「渦旋炮」同時擊中的結果。

5)後續性:大型滑坡一般出現在降雨過程後期,甚至降雨結束後數天。

6)成災大:造成重大人員傷亡和各種財產損失。

3.1.2.2 氣象因素引發地質災害的成因

1)區域性持續降雨或暴雨使鬆散堆積層達到過飽和狀態。

2)成災地區地形陡峻,坡形變化復雜,坡度25°~70°。

3)地質上具備二元結構,上為鬆散堆積層,下為堅硬基岩,容易在二者的接觸處形成強大滲流帶。

4)鬆散堆積層厚度1~10m,一般1~4m。

5)一般植被覆蓋率較高,在強烈暴雨持續作用下起到滯水作用。

6)居民防災意識薄弱,房屋結構簡易,抗災強度低。房屋大多建在溪溝出山口地段,屬於泥石流的流通路徑。調查發現,雖然滑坡、泥石流災害具有暴發性,但多數地點仍有數小時至數分鍾的躲避時間,因防災基本知識缺乏,以致有的村民在搶運財物過程中喪生。

7)對大型滑坡滯後於降雨過程的機理缺乏科學認識。

3.1.2.3 來自統計學的認識

地質災害具有自然和社會的雙重屬性。理論研究與科學實踐均證明,地質災害具有可區劃性、可監測預警性。

1)分析發現,滑坡的發生在過程降雨量和降雨強度兩項參數中,存在著一個臨界值,當一次降雨的過程降雨量或降雨強度達到或超過此臨界值時,泥石流和滑坡等地質災害即成群出現。

2)不同地區具體一條溝谷的泥石流始發雨量區間為10~300mm,差異之大反映了地質條件、氣候條件等的差異。

3)在降雨過程的中後期或局地單點暴雨達到臨界值時出現突發性群發型泥石流、滑坡等地質災害,滑坡以小型者居多。

4)大型滑坡常在降雨過程後期或雨後數天內出現。

3.1.2.4 區域地質災害的時空分布

據20世紀90年代的調查,我國泥石流的時空分布頻率具有以下特點:

(1)泥石流頻率與地貌

3500m以上的高山佔9%;1000~3500m的中山佔56%;小於1000m的低山佔15%;黃土高原區佔11%。

(2)泥石流頻率與工程地質岩組

變質岩區佔43%;碎屑岩區佔32%;黃土區佔11%;岩漿岩區佔9%;碳酸鹽岩區佔7%。

(3)泥石流發生頻率與年平均降雨量(mm/a)

<400區域佔10%;400~600區域佔16%;600~800區域佔18%;800~1000區域佔24%;1000~1400區域佔22%;>1400區域佔10%

(4)泥石流暴發時間(月份)分布頻率

5月:9%;6月:18%;7月:34%;8月:24%;9月:10%

上述統計說明,泥石流主要分布在中低山地區;多出現在易於風化破碎的岩土分布區;年均降雨量過高或過低都不會暴發泥石流;發生時間主要出現在每年的6~8月。

3.1.3 中國地質災害氣象預警區劃

基於我國地質災害類型分布、全國氣候區劃和滑坡泥石流與區域降雨關系的各類研究文獻,編制中國地質災害氣象預警區劃圖。

3.1.3.1 資料依據

基於氣象因素的《中國地質災害氣象預警區劃圖(1∶500萬)》的編制主要依據以下資料:

1)中國泥石流及其災害危險區劃圖(1∶600萬),

中國科學院成都山地災害與環境研究所,1991

2)中國滑坡災害分布圖(1∶600萬),

中國科學院成都山地災害與環境研究所,1991

3)中國地質災害類型圖(1∶500萬),

地質礦產部成都水文地質工程地質中心,1991

4)中國泥石流災害圖(1∶600萬),

地質礦產部成都水文地質工程地質中心,1992

5)中國滑坡崩塌類型及分布圖(1∶600萬),

地質礦產部環境地質研究所,1992

6)中國特殊類土及危害圖(1∶600萬),

中國地質科學院水文地質工程地質研究所,1992

7)中國地形圖(立體,1∶600萬),地圖科學研究所,1999

8)中華人民共和國氣候圖集,氣象出版社,2002

9)區域降雨資料與滑坡、泥石流關系的各類文獻

3.1.3.2 預警區劃分原則

根據研究需要,在此提出斜坡劃分原理:

1)滑坡和泥石流是在斜坡地區發生的;

2)區域分水嶺的兩坡氣象降雨條件和生態環境是不同的;

3)我國的最大斜坡是帕米爾高原—東海大陸架的多級多層次斜坡;

4)區域斜坡可分為三類:一類是分水嶺到海濱,如後界燕山—魯兒虎山,左界遼河,右界永定河/海河和前界渤海圈閉的區域;二類如大別山—淮河—黃河圈閉的區域;三類如四川盆地周緣區域。

一級區以全國性分水嶺或雪線為界,考慮長時間周期、大空間尺度的氣候區劃和地質地貌環境條件;

二級區主要以重大水系、區域分水嶺、區域氣候、歷史滑坡泥石流事件分布密度、地質環境條件、斜坡表層岩土性質和年均降雨量分布。

3.1.3.3 預警區域劃分

本研究立足全國范圍,暫時提出兩級區劃,共劃分7個一級預警區,28個二級預警區,可以滿足初步工作要求(圖3.1)。

(1)預警區的地質災害特徵

A東北山地平原區

A1三江地區

圖3.1 中國地質災害氣象預警區劃圖(28個區)(台灣省專題資料暫缺)

佳木斯/牡丹江地區,氣象因素引發地質災害微弱。

A2東北平原

樺甸/敦化地區以及大興安嶺東麓,氣象因素引發地質災害較弱。

B大華北地區

B1遼南地區

遼東半島地區(千山),氣象因素引發地質災害較嚴重。

B2京承地區

北京北部和河北承德地區,氣象因素引發地質災害嚴重。

B3晉冀地區

太行山東麓地區,氣象因素引發地質災害較嚴重。

B4山東丘陵

泰山和膠東地區,氣象因素引發地質災害在小范圍較嚴重。

B5豫西地區

靈寶/許昌之間和伏牛山北麓地區,氣象因素引發地質災害較嚴重—輕微。

B6皖蘇地區

大別山北麓和張八嶺地區,氣象因素引發地質災害較嚴重—輕微。

B7江浙地區

臨安/嵊州地區,氣象因素引發地質災害在小范圍較嚴重。

C中南山地丘陵區

C1閩浙地區

武夷山/九連山以東地區,氣象因素引發小規模地質災害嚴重。

C2江西地區

九嶺山和贛南地區,氣象因素引發小規模地質災害嚴重。

C3豫鄂地區

南陽、神農架、大洪山和大別山南麓地區,氣象因素引發地質災害較嚴重。

C4湖南地區

湘西和湘南(雪峰山)地區,氣象因素引發地質災害嚴重。

C5桂粵地區

桂西和兩廣北部地區,氣象因素引發小規模地質災害嚴重。

D西南中高山區

D1陝南地區

秦嶺南麓和大巴山北麓地區,氣象因素引發地質災害嚴重。

D2四川盆地

成都平原外的其他地區,氣象因素引發地質災害嚴重。

D3黔渝地區

黔北和重慶地區,氣象因素引發地質災害嚴重。

D4滇南地區

滇南和黔南部分地區,氣象因素引發地質災害嚴重。

D5川滇地區

川西、滇西和滇中地區,氣象因素(含高山融水)引發地質災害極嚴重。

E黃土高原區

E1呂梁地區

大同—太原—臨汾一線地區,氣象因素引發地質災害較嚴重—輕微。

E2陝北地區

陝北黃土高原地區,氣象因素引發地質災害嚴重。

E3隴西地區

隴西和海東地區,氣象因素引發地質災害極嚴重。

F北方乾旱沙漠區

F1內蒙古東部地區

氣象因素引發地質災害輕微。

F2阿拉善地區

祁連山北麓、玉門/武威地區,氣象因素(高山融水)引發地質災害較嚴重。

F3南疆地區

天山南麓、阿爾金山北麓氣象因素(高山融水)引發地質災害較嚴重。

F4北疆地區

天山北麓氣象因素(暴雨和高山融水)引發地質災害嚴重。

G青藏高原區

G1藏北地區

氣象因素引發地質災害輕微。

G2藏南地區

雅魯藏布江及支流流域氣象因素(暴雨和高山融水)引發地質災害較嚴重;藏東南

暴雨引發地質災害嚴重。

(2)一級區域界線標志

A/F大興安嶺—七老圖山

漠河—鳳水山(1398)—古利牙山(1394)—太平嶺(1712)—興安嶺(1397)—巴代艾來(1540)—罕山(1936)—黃崗梁(2029)—七老圖山

A/B雲霧山—長白山

小五台山(2882)—赤城—雲霧山(2047)—七老圖山—阜新—鐵嶺—莫日紅山(1013)—白頭山

B/E太行山—中條山

小五台山(2882)—恆山(2017)—北台頂(3058)—陽曲山(2059)—歷山(2322)—華山(2160)

E/F毛毛山—靖邊—東勝—小五台

海晏—仙密大山(4354)—毛毛山(4070)—景泰—定邊—靖邊—榆林—東勝—豐鎮—小五台山(2882)

EB/DC秦嶺—伏牛山—大別山—括蒼山

海晏—龍羊峽—同仁—鳥鼠山(2609)—武山南—鳳縣—太白山(3767)—首陽山(2720)—秦嶺—華山(2160)—全寶山(2094)—老君山(2192)—太白頂(1140)—雞公山(744)—霍山(1774)—安慶—九華山(1342)—黃山(1873)—桐廬—括蒼山(1382)—北雁盪山(1057)

F/G阿爾金山—祁連山

公格爾山(7649)—慕士塔格山(7509)—賽圖拉—慕士山(6638)—烏孜塔格(6250)—九個達坂山(6303)—阿卡騰能山(4642)—阿爾金山(5798)—大雪山(5483)—祁連山(5547)—冷龍嶺(4849)—毛毛山(4070)

C/D老君山—梵凈山—岑王老山

老君山(2192)—武當山(1612)—大神農架(3053)—建始—來鳳(>1000)—酉陽—梵凈山(2494)—佛頂山(1835)—雷公山(2179)—岑王老山(2062)—富寧

D/G九寨溝—察隅

武山—九寨溝—雪寶頂(5588)—馬爾康—爐霍—新龍—巴塘—察隅

(3)二級區域界線

A1/A2小興安嶺—張廣才嶺—白頭山

呼瑪—大黑頂山(1047)—平頂山(1429)—大青山(944)—大禿頂子山(1690)—大石頭(1194)—甑峰山(1677)—白頭山

B1/B2下遼河

B2/B3永定河—海河

B3/B4黃河

B4/B5黃河故道

B5/B6淮河—黃河故道

B6/B7長江

C1/C2武夷山—九連山

黃山(1873)—玉京峰(1817)—黃崗山(2158)—白石峰(1858)—木馬山(1328)—九連山(1248)—龍門

C2/C34霍山—幕阜山—羅霄山脈

霍山(1774)—九江—九宮山(1543)—幕阜山(1596)—連雲山(1600)—武功山(1918)—井岡山—八面山(2042)—石坑埪(1902)

C3/C4長江

C124/C5南嶺山脈

雷公山(2179)—貓兒山(2142)—韭菜嶺(2009)—石坑埪(1902)—雪山嶂(1379)—龍門—飛雲頂(1282)—蓮花山(1336)—神泉港

D1/D23米倉山—大巴山

九頂山(4984)—廣元—米倉山—大巴山—大神農架(3053)

D2/D3長江—重慶—華鎣山—萬源北

D123/D5夾金山—大涼山

雪寶頂(5588)—九頂山(4984)—二郎山(3437)—貢嘎山(7556)—鏵頭尖(4791)—大涼山(3962)—長江—五蓮峰(2561)—陸家大營(2854)

D3/D4苗嶺山脈

陸家大營(2854)—黃果樹瀑布—惠水—雷公山(2179)

D4/D5烏蒙山—哀牢山—高黎貢山

陸家大營(2854)—黎山(2678)—馬龍—玉溪—哀牢山(3166)—貓頭山(3306)—高黎貢山—(3374)—尖高山(3302)

E1/E2呂梁山脈

岱海—管涔山—荷葉坪(2784)—黑茶山(2203)—關帝山(2831)—禹門口

E2/E3屈吳山—六盤山脈

景泰—屈吳山(2858)—六盤山(2928)—太白(2819)

F1/F2

古爾班烏蘭井—呼和巴什格(2364)—賀蘭山(3556)—香山

F2/F3

馬鬃山(2583)—大雪山(5483)

F3/F4天山山脈

托木爾峰(7443)—比依克山(7443)—天格爾峰(4562)—博格達峰(5445)—巴里坤山—托木爾提(4886)

G1/G2岡底斯山—念青唐古拉山脈

扎西崗—岡仁波齊峰(6656)—冷布岡日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦達—巴塘。

3.1.4 地質災害氣象預警判據研究

3.1.4.1 判據確定原則與資料依據

根據有限研究積累和歷史經驗,滑坡、泥石流的發生不但與當日激發降雨量有關,而且與前期過程降雨量關系密切,本項研究選定1d,2d,4d,7d,10d和15d過程降雨量等6個數據進行統計分析,期望對一個地區氣象因素引發滑坡、泥石流地質災害的原因與臨界雨量判據的確定具有全面認識。

本次研究的資料依據主要有兩方面:

1)中國地質環境監測院建立的全國地質災害調查資料庫中氣象因素引發的歷史滑坡泥石流災害數據(999個);

2)國家氣象中心根據中國地質環境監測院提供的滑坡、泥石流數據,整理提供了731個相關站點15d內歷史降雨量數據。

3.1.4.2 預警區的臨界降雨量判據研究

(1)不同降雨過程代表數據的選定

中國氣象局系統對日降雨量(Q)的預報是按當日20時到次日20時計算,而滑坡、泥石流事件可能發生在此24h的任一時段。

若災害事件在接近24時發生,則基本可對應1d(即當日)過程降雨量;若災害事件在次日0時以後的夜間發生,則對應前一日(2d)過程降雨量更符合實際。因此,本項研究選定的數據代表時段(日:24h)是:

1d過程降雨量:0≤Q1≤1

2d過程降雨量:1≤Q2≤2

4d過程降雨量:3≤Q4≤4

7d過程降雨量:6≤Q7≤7

10d過程降雨量:9≤Q10≤10

15d過程降雨量:14≤Q15≤15

(2)臨界過程降雨量預警判據圖的建立

根據滑坡泥石流與降雨關系的研究,製作滑坡泥石流與不同時段臨界降雨量關系散點圖,發現散點集中成帶分布,其上界可用β線表示,下界可用α線表示。因此,利用1d,2d,4d,7d,10d和15d等過程降雨量,可以建立地質災害預警判據模式圖(圖3.2)。

圖中橫軸是時間(1~15d),縱軸是相應的過程降雨量(mm)。我們規定,α線和β線為兩條滑坡、泥石流發生的臨界降雨量線,α線以下的A區為不預報區(1,2級,可能性小、較小),α~β線之間的B區為地質災害預報區(3,4級,可能性較大、大),β線以上的C區為地質災害警報區(5級,可能性很大)。

(3)預警區臨界降雨判據圖研究

在28個氣象預警區中,18個預警區可以形成完整的滑坡、泥石流發生的臨界降雨預警判據圖(上限值β線、下限值α線);10個預警區因缺乏資料尚不能形成判據圖,其中,A1,B5,F1和G24個區完全缺數據;B4,B6,E1,E2,F3和F46個區數據不全(只能形成α線或β線,甚至散點)。這10個區主要為滑坡、泥石流不發育區或人口稀疏地區,暫時對全國的預警工作效果影響不大。

圖3.2 預報判據模板圖

代表性數據及曲線舉例

A2東北平原

中國地質災害區域預警方法與應用

*3個樣本。

A2氣象預警區判據圖

B1遼南地區

中國地質災害區域預警方法與應用

*9個樣本。

B1氣象預警區判據圖

C1閩浙地區

中國地質災害區域預警方法與應用

*50個樣本。

C1氣象預警區判據圖

D1陝南地區

中國地質災害區域預警方法與應用

*45個樣本。

D1氣象預警區判據圖

D5川滇地區

中國地質災害區域預警方法與應用

*60個樣本。

D5氣象預警區判據圖

E3隴西地區

中國地質災害區域預警方法與應用

*50個樣本。

E3氣象預警區判據圖

F2阿拉善地區

中國地質災害區域預警方法與應用

*8個樣本。

F2氣象預警區判據圖

G1藏北地區

中國地質災害區域預警方法與應用

*15個樣本。

G1氣象預警區判據圖

3.1.4.3 預警判據校正

為了提高預警精度,依據以下資料對預警區判據圖進行了校正:

1)中國大陸滑坡、泥石流與降雨關系的各類科技文獻;

2)歷年中國地質災害公報;

3)部分省(區、市)的地質災害年報;

4)全國縣(市)地質災害調查區劃成果資料(主要是福建省);

5)重點地區地質災害專項研究報告等。

檢索發現有13個預警區具有部分滑坡、泥石流與臨界過程降雨量研究資料,有15個預警區暫未收集到或完全缺乏研究資料。

13個具備部分研究資料的預警區分別整理成圖、表,可供確定相應預警區預警級別時參考,或與預警判據圖配合使用。

以C1區為例,見下表(圖3.3):

圖3.3 C1區地質災害點分布與臨界降雨量統計關系

3.1.5 預警尺度精度評價

3.1.5.1 預警尺度

(1)空間預警尺度

圖面表示3000km2(基於1∶500萬~1∶600萬地質災害預警區劃圖)。

(2)時間預警尺度

地災預警與氣象預警時間尺度同步。

3.1.5.2 預警精度評價

1)取決於氣象預報精度。目前全國性的氣象預報精度尚不高,特別是對引發泥石流影響明顯的局地單點暴雨的預報有待加強。

2)雨量站點代表性精度。地質災害氣象預警判據圖依賴於氣象站點經(緯)度和地質災害發生點的經(緯)度(距離)的接近程度。

本次資料地質災害災情點的經(緯)度與相鄰氣象站點的經(緯)度之差在0.3°~1.0°之內,也即相差40~50km,反映在平面上即存在約2000km2的誤差。

3)地質環境-氣象因素耦合機制的研究精度。地形坡度、植被、岩土類型、含水狀態、地表入滲和產流等的研究尚很薄弱。

4)人類活動方式、強度與斜坡變形破壞模式尚缺乏科學界定。

3.1.6 地質災害預警產品製作與發布

3.1.6.1 預警產品製作、簽批與發布

1)國家氣象中心提供全國每次降雨過程的天氣預報資料,每天16:00通過適當方式(E-mail)發送前期實際降雨量和次日預報降雨量數據;

2)中國地質環境監測院接到降雨量數據後,根據此數據和預警判據圖對各預警區發生地質災害的等級進行逐個分析和判定;

3)專家會商、分析判定預報預警結果,根據會商後的結果,做出空間預警,在預警圖上劃出預報或警報區,此稱預警產品;

4)領導審定、簽批預警產品;

5)經簽批的預警產品於當天16:30通過適當方式(E-mail)發回國家氣象中心;

6)國家氣象中心接收預警產品,並和天氣預報產品統一製作,配音;

7)中央電視台在當天晚上19:30新聞聯播後播出地質災害氣象預報或警報及等級;

8)預報或警報地區的有關省級地質環境監測總站應在預警發出24h至48h內,向中國地質環境監測院反饋預警效果校驗結果;

9)中國地質環境監測院分析研究預警效果校驗結果,改進預警判據,逐步提高預警精度。

3.1.6.2 預警產品發布形式

(1)中央電視台發布播出

預警產品署名:國土資源部

中國氣象局

模擬預報詞:

今天晚上到明天白天,××地區發生地質災害的可能性較大,請注意防範。

(2)中國地質環境信息網站發布

主要供專業人士和政府管理部門參考,跟蹤研究預警效果,討論研究預警方法與對策。

設計製作了地質災害氣象預警預報專用「符號」(圖3.4)。

圖3.4 地質災害氣象預報預警專用「符號」

從2005年開始,在中央電視台發布地質災害氣象預警預報信息圖片時,同時配發崩塌、滑坡和泥石流動畫,增強了地質災害預警信息的視覺沖擊力,也提高了地質災害氣象預報預警的社會影響力。

3.1.7 地質災害預警軟體系統

3.1.7.1 基於C語言的預警預報軟體

2004~2006年,模型採用第一代臨界雨量判據法,基於C語言的預警預報軟體。具備自動生成降雨等值線、雨量站點上自動計算預報等級、查看雨量站點雨量等功能(圖3.5)。缺點是無法自動成區、不具備GIS圖層操作功能。

圖3.5 基於C語言的第1套預警軟體Predmap抓圖

3.1.7.2 基於ArcGIS開發了第2套預警預報軟體

2007年,基於ArcGIS開發了第2套預警預報軟體,模型仍採用第一代臨界雨量判據法(圖3.6)。主要改進在於將軟體系統升級為基於GIS開發,且實現預警區的自動圈閉。缺點是ArcGIS軟體龐大,軟體操作、升級等方面不便。

圖3.6 基於ArcGIS的第2套預警軟體抓圖

6. 四信地質災害監測預警系統主要功能有哪些

主要作用是:通過野外監測站對降雨量、表面位移、泥水位、地聲、次聲內、孔隙水壓力容、視頻、深部位移、土壓力等要素進行實時監測,使用GPRS/LoRa/3G/4G等通信方式將數據傳輸到管理及監測預警雲平台,為防災減災提供實時信息服務。
廣泛應用於滑坡監測預警、泥石流監測預警、地面沉降監測預警、崩塌監測預警等,有效保障地質災害多發地區人民群眾的生命與財產安全。

7. 全國地質災害監測預警體系建設的主要任務

全國地質災害監測預警體系建設的總體規劃如圖7.1所示。

7.3.1 國家、省、市、縣級地質災害監測預警站網建設

縣級以上國土資源行政主管部門建立地質災害監測預警體系,會同建設、水利、交通等部門承擔地質災害監測任務,負責業務技術管理,並可受政府委託行使部分地質災害監測管理職能,發布地質災害監測預警信息。地質災害監測機構是公益性事業單位。

(1)國家級地質災害監測站

國家級地質災害監測站負責全國性地質災害專業監測網、信息網的建設與運行工作,並承擔國家級地質環境監測任務;承擔全國地質災害預警預報和相關的調查研究工作;擬編全國地質災害監測規劃、計劃、工作規范和技術標准;開展科技交流與合作,研究和推廣新技術、新方法;承擔全國地質災害監測數據、成果報告的匯總、分析、處理和綜合研究,為政府決策部門和社會公眾提供信息服務;負責對省(區、市)級地質災害監測業務的指導、協調和技術服務。

(3)地質災害監測預警研究試驗區

針對我國突發性地質災害具有區域性、同時性、突然性、暴發性和危害大等特點,結合國土整治規劃和資源能源開發,在代表性地區開展地質災害監測預警示範。在試驗區建立自動遙測雨量觀測站網,逐步建立試驗區滑坡、崩塌和泥石流區域爆發的降雨臨界值,為突發性災害的區域預警提供依據。同時,在試驗區開展降雨期斜坡岩土體滲流觀測,研究降雨誘發滑坡、崩塌和泥石流的機理。

2010年前,進一步完善和建設三峽庫區立體式監測預警示範區。完成三峽庫區滑坡、崩塌、泥石流災害的立體監測網建設,在庫區60處地質災害點實現監測數據的自動採集、實時傳輸和自動分析;完善庫區20個縣級監測點建設;完成1∶1萬航攝飛行;建立全庫區的遙感(RS)監測系統,完成全球定位系統(GPS)控制網、基準網建設。

2010年以前重點在重慶市區、北京市、甘肅蘭州市、陝西安康市、四川雅安、雲南新平、雲南東川、浙江金華市、江西宜春市等地區開展突發性地質災害監測預警試驗研究。

(4)地面沉降和地裂縫監測網

1)國家級地面沉降監測網選址原則:①跨省區的地面沉降災害區域;②有一定的監測工作和設施基礎;③地方政府有積極性,並提供配套資金;④具有較為完善的法規和管理體系。

2)工作部署:2010年之前,重點開展長江三角洲、華北平原、關中平原、淮北平原和松嫩平原地面沉降和地裂縫監測網的建設;2010年以後逐步開展汾河谷地、遼河盆地、珠江三角洲以及全國其他主要城市地面沉降和地裂縫的調查及監測網的建設。

長江三角洲地面沉降和地裂縫監測網包括上海市全部,江蘇的蘇錫常地區、南通地區和鹽城地區南部的三個縣(市),浙江的杭嘉湖平原,控制面積近5萬km2

華北平原地面沉降和地裂縫監測網包括北京、天津市的平原區,河北省的環渤海平原區和山東的魯西北平原,控制面積5萬多km2

關中平原和汾河谷地地面沉降和地裂縫監測網的覆蓋范圍自六盤山南麓的寶雞,沿渭河向東,經西安到風陵渡轉向北東,沿汾河經臨汾、太原到大同,寬近100km,長近1000km,包括渭河盆地、運城盆地、臨汾盆地、太原盆地、大同盆地等,涉及近50個(縣)市。

7.3.3 群測群防體系建設

突發性地質災害群測群防網主要針對地質災害較嚴重的山區農村,以縣為單位,在專業隊伍指導下,建立由當地政府領導下的縣、鄉、村三級群測群防體系。在各級地方政府的組織和領導下,充分發揮各級監測站的技術優勢,提高群眾的防災意識和參與程度,完善監測預報制度,到2010年,建成1400個縣(市)突發性地質災害易發區的群測群防網路體系。

(1)群眾監測網路建設

1)監測點選定原則:①危險性大、穩定性差、成災概率高,會造成嚴重災情的地質災害隱患體;②對集鎮、村莊、工礦及重要居民點人民生命安全構成威脅的地質災害隱患體;③一旦發生將會造成嚴重經濟損失的地質災害隱患體;④威脅公路、鐵路、航道等重要生命線工程的地質災害隱患體;⑤威脅重大基礎建設工程的地質災害隱患體。

2)監測點的建設:根據上述原則確定需要監測的地質災害隱患點後,由專業調查組及時向當地政府提出監測方案,同時協助搞好監測點的建設工作。①監測范圍的確定:除對地質災害隱患點和不穩定斜坡本身的變形跡象進行監測外,還應把該災害點威脅的對象和可能成災的范圍,納入監測范圍。②監測方法與要求:對當前不宜進行治理或暫時不能進行治理的隱患點,危害大的應建立簡易監測點,同時要對宏觀地面變形、滑坡體內的微地貌、地表植物和建築物標志等進行觀察。以定期巡測和汛期強化監測相結合的方式進行。定期巡測一般為半月或每月一次,汛期強化監測將根據降雨強度,每天或24小時值班監測。③監測點的設置:簡易監測點一般採用設樁、設砂漿貼片和固定標尺,對滑坡體地面裂縫相對位移進行監測,對危害大的隱患點,如有條件也可用視准線法測量監測點的位移。

3)監測網點的管理與運行:①監測責任落實到具體的單位與個人。被監測的地質災害隱患點所在的鄉(鎮)、村和有關單位為監測責任人,在其領導下,成立監測組,監測組由受危害、威脅的居民點或有關單位的群測人員組成。②建立崗位責任制,縣、鄉(鎮)、村應逐級簽訂責任書。調查過程中,採取多種方式進行宣傳與培訓,教會監測責任人、監測組成員和群眾,如何監測、如何判斷災害可能發生的各種跡象和災情速報及有關應急防災救災的方法。③信息反饋與處理。縣(市)國土資源主管行政部門負責監測資料與信息反饋的收集匯總,上報到市(地、州)國土資源行政部門(或地質環境監測站)進行綜合整理與分析,省國土資源廳地質環境處(或省地質環境總站)將上報的資料與信息錄入省地質災害空間資料庫,進行趨勢分析,同時對下一步監測工作提出指導性意見。④預測有重大險情發生時,當地政府和有關單位應立即採取應急防災減災措施,同時應立即報告省、市、縣政府和國土資源主管部門,派出專業人員赴現場協助監測和指導防災救災。⑤建立地質災害速報制度,按國土資發[1998]15號文附件執行。

4)資料的收集與監測數據的整理:①監測數據包括地質災害點基本資料、動態變化數據、災情等。②所有監測數據均應以數字化形式儲存在信息系統中,同時,必須以紙介質形式備份保存。③監測點必須進行簡易定量監測,並須整理成有關曲線、圖表等。應編制有關月報、季報和年報,同時,對今後災害發展趨勢進行預測。④監測數據應按有關程序逐級匯交。

(2)群專結合的預報預警系統建設

1)縣(市)國土資源行政主管部門歸口管理和指導群眾監測網路,負責監測資料與信息反饋的收集匯總。

2)縣(市)國土資源行政主管部門的地質環境職能部門應根據氣象、水文預報和監測資料進行綜合分析,預測地質災害危險點,並及時向有關鄉(鎮)、村和礦山及負有對重要設施管理的有關部門發出預警通知。

3)縣(市)國土資源行政主管部門負責組織各鄉(鎮)、礦山、重要設施主管部門編制汛期地質災害防災預案。編制全縣(市)汛期地質災害防災預案,並負責組織實施。

4)縣(市)國土資源行政主管部門負責組織地質災害防治科普宣傳活動和基層幹部培訓工作。

7.3.4 地質災害監測預警信息網建設

地質災害監測預警與防治數據是國家與地方進行地質災害防治,保障社會與經濟建設的重要信息,具有數量大、更新快、用途廣等特點。通過信息網的建設,實現數據的採集、存儲、分析和發布,切實做到為政府、研究人員和社會提供所需的地質災害信息,為國家經濟建設宏觀決策提供基礎的科學依據。

到2010年,在完善中國地質災害信息網與各省地質災害信息網及部分地(市)地質災害信息網的同時,建成集地質災害監測、地下水環境監測等為一體的全國地質災害監測信息系統,實現地質災害監測數據的自動採集、傳輸、存儲、數據管理、查詢、應用和信息實時發布系統。

到2020年,以科學技術為先導,不斷完善全國地質災害監測信息系統,結合氣象、水文、地震等相關因素,建成多專業領域、多信息處理技術的信息系統;全面提升我國地質災害監測信息水平,滿足社會和民眾對地質災害信息的需求,實現遠程會商、應急指揮等重要決策功能。

地質災害監測預警信息系統建設依託於各級地質災害監測機構,具有統一要求、統一流程、分級管理等特點,是一個與現代計算機技術緊密結合的系統工程。本書在第11章(全國地質災害防治信息系統建設規劃研究)全面討論了包括地質災害監測預警信息系統在內的整個地質災害防治信息系統的建設問題,本節不再贅述。

7.3.5 突發性重大地質災害應急反應機制建設與遠程會商應急指揮系統建設

(1)應急反應機制建設

從現在(2004年)起,國家、各省(區、市)要組建以省國土資源行政主管部門為指揮中心,以地質環境監測總站(院、中心)為主體,地(市、州)、縣(市、區)國土資源行政主管部門和地方專業隊伍協同作戰的地質災害監測預警應急反應系統。

1)應急反應系統要配置必備的應急設備,每年汛前對防災預案中地質災害隱患點的主要縣(市)進行險情巡查,重點檢查防災減災措施、群測群防網路、監測責任制是否落實到位,並對主要災害隱患點進行險情巡查,汛中加強監測,汛後進行復查。

2)發現險情和接到險情報告能在最短的時間內趕到現場,進行險情鑒定,同時能夠及時對災害進行動態監測、分析,預測災害發展趨勢,根據災害成因、類型、規模、影響范圍和發展趨勢,劃定災害危險區,設置危險區警示標志,確定預警信號和撤離路線,組織危險區內人員和重要財產撤離,情況危急時,強制組織避災疏散。

3)接到特大型和大型地質災害隱患臨災報告,指揮部辦公室會同相關部門,迅速組織應急調查組趕赴現場,調查、核實險情,提出應急搶險措施建議。

(2)突發性重大地質災害遠程會商與應急指揮系統建設

隨著國家經濟建設規模的日益擴大和人民生活水平的不斷提高,地質災害造成的損失日趨突出,地質災害的防治工作必須針對重大地質災害及時作出反應,提出科學的決策意見,及時指揮應急處理工作。

突發性重大地質災害遠程會商及應急指揮系統,是針對突發重大地質災害的預報和應急指揮,在建立地質災害綜合資料庫的基礎上,構建連接國務院國土資源主管部門、地質災害數據中心與重點地質災害發生區的遠程會商和應急指揮網路化多媒體環境及地質災害應急數據傳輸環境,形成一套信息化的地質災害遠程會商和應急指揮工作流程。

其主要工作內容如下:

1)對重大地質災害預報和應急指揮相關的信息進行提取、加工、整理、集成與分析,建立地質災害綜合資料庫。信息內容包括地理、地質背景數據;氣象分析數據;地質災害調查與監測數據;地質災害情況資料;救災條件信息等。

2)建立地質災害信息發布平台。開發和建設重大地質災害信息預報與應急指揮相關的動態信息發布系統、空間信息提取與發布系統、多媒體信息發布系統。

3)構建地質災害遠程會商和應急指揮的網路和多媒體運行環境。包括多點、多級視頻會議系統、大屏幕顯示系統及有關音像、電話系統;國家與重點地質災害區域之間的網路信息傳輸系統;構建地質災害重點區域應急調查數據快速傳輸環境。

4)研究與制定形成一套地質災害遠程會商和應急指揮系統工作規范。分析地質災害遠程會商和應急指揮工作的特點,提出地質災害遠程會商和應急指揮系統工作的模式,建立一套相關的工作規范。

8. 北斗監測系統提前預警到山體滑坡是怎麼回事

今年入汛以來,湖南省常德市石門縣連續遭遇幾輪強降雨過程。7月6日下午,石門縣南北鎮潘坪村雷家山發生大型山體滑坡,垮塌山體達300萬立方米。幸運的是,北斗衛星監測系統發現了這里的地質災害隱患,並提前發出了預警。當地及時組織人員疏散,這次災害並未造成人員傷亡。

7月6日下午5點左右,正在潘坪村雷家山監測巡查的交警和公路建設養護中心工作人員,在發現山體出現異常後,一邊緊急報告,一邊封閉道路實施交通管制。鎮村幹部在疏散完人員和車輛不久,山體突然出現滑坡。

(8)地質災害預警系統擴展閱讀

北斗衛星監測系統地質災害橙色預警

6月24日,石門縣接到上級通報的北斗衛星監測系統地質災害橙色預警,稱潘坪村雷家山地質災害隱患點監測數據出現異常。經智能地質災害風險預警評估模型分析,該處隱患點變形量偏大,且近期有加速下滑的趨勢,建議啟動應急調查,受威脅居民臨時撤離。

隨後,當地馬上轉移安置危險區6戶20名村民,並安排人員24小時巡查值守。7月6日下午山體滑坡發生前,在收到值守幹部的通報後,當地又及時轉移走了疑似危險區8戶13位村民。

目前,受災群眾都已得到妥善安置,嚴防次生災害發生及災後重建工作正有序開展。

9. 美國和日本等國地質災害預警服務

目前,實現地質災害預警的國家和地區,一般具備如下條件:

1)模型方法方面:對降雨和地質災害的發生進行深入研究,獲得了地質災害預警的理論模型方法。

2)降雨監測和降雨預報方面:一是降雨預報數據,能夠實現區域未來一段時間內的降雨預報;二是實時降雨監測數據,該數據一般可以通過兩種方式獲得:

a)雨量計,通過在區域上埋設一定數量的雨量計,實時精確掌握點上的降雨情況,從而實現區域上實時降雨的獲得。通過安裝自動遙測雨量監測儀(截至1995年,在舊金山灣地區安裝了60台),當雨量每增加1mm時,通過電波自動傳送數據到任何可接收到信號的地方(要求有接收器、計算機、數據接收分析顯示的軟體)。

b)降雨雷達,通過多普勒雷達(通過降雨雲層上反射的雷達波)數據來進行降雨實時監測,該方法的難題在於,雷達回波值與地面上的降雨自動遙測值之間的關系確定上。原因有二:一是冰的反射能力遠遠大於水滴,因此溫度成為一個關鍵的因素,且雲中水滴的大小與溫度、高度都相關,同時,除了水滴外,粉塵、昆蟲、鳥等都能反射雷達的能量,都有回波;二是地面發散,即接近地面的雷達回波存在問題,特別是受到地形的影響。因此,將雷達回波值轉換到降雨強度難度較大,且不同地區轉換關系又不一樣。

3)預警系統:根據降雨引發災害的理論模型方法,實時進行分析預警。

4)預警信息發布平台:一般通過廣播電台或電視台,向公眾發布預警信息。

存在不足:理論模型方法需要更多的校驗;缺乏有關斜坡岩土體方面的實時監測。

1.4.1 美國

美國是最早開展區域泥石流災害預警的國家之一。

1.4.1.1 舊金山海灣地區

1985年,美國地質調查局(USGS)和美國氣象服務中心(NWS)聯合在舊金山海灣地區正式建立了泥石流預警系統。該系統於1986年2月12~21日在舊金山海灣地區的一次特大暴雨災害中用於滑坡預報,並得到檢驗。由於技術復雜、機構變動和人員變動等方面原因,該預警系統在1995年被迫停止運行。

基於1982年1月3~5日在美國舊金山海灣地區發生的一次特大暴雨所引起的滑坡災害數據,這次特大暴雨持續了34h,降雨量616mm,引發了大量的滑坡,造成25人死亡和超過6600萬美元的經濟損失。Mark&Newman通過對1982年1月的降雨情況分析得出,當前期雨量超過300~400mm,暴雨量超過250mm,即超過年平均降雨量的30%時,滑坡將大規模發生。該系統的基本原理是考慮了臨界降雨強度和持續時間,並且考慮地質條件、降雨的空間分布,以及地形條件。美國地質調查局和美國氣象服務中心在整個舊金山海灣地區共設計了45個自動降雨記錄點,當降雨每增加1mm時,降雨觀測點就通過自動方式將數據傳送到美國地質調查局的接收中心和計算機系統。同時,為了監測降雨期間地下水壓力的變化,工作人員還設置了若干個孔隙水壓力計以觀測斜坡中地下水壓力變化。當降雨量和降雨強度將要超過臨界值時,提前進行滑坡災害的預報,以減少滑坡災害的損失和可能的人員傷亡。

舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。

1986年2月12~21日的滑坡災害預警首先由美國地質調查局決定,通過當地電台、電視台以及美國氣象服務中心的特別預報的方式來進行的。這次滑坡災害的預警分為兩個階段:第一階段是2月14日的6h災害危險期;第二階段是17~19日之間的60h的災害危險期。由於地質條件的復雜性和地形條件的變化,這兩次預報主要是針對整個舊金山海灣地區,而不是某一個特定的滑坡災害地點。根據滑坡災害發生後的調查,10處滑坡災害點有目擊者能提供精確的時間,其中有8處滑坡所發生的時間與預警的時間段是完全一致的(圖1.17)。

圖1.17 累計降雨量、滑坡預警時間(水平線段)、滑坡發生時間空心三角為滑坡;實心三角為泥石流

進一步研究要點:

a) 降雨—滑坡關系需精練,要考慮長期中等強度的降雨影響,使降雨與滑坡發生之間有更准確的模型,同時要針對滑坡的臨界值,而不僅僅是泥石流;

b) 土體含水量和孔隙水壓力的測量方法要更精確、有效;

c) 預警系統需要模式化和自動化,以便在暴雨期能夠更快、更有效地得到數據;

d) 與滑坡有關的地形、水文和地質條件等內容,需進一步考慮,以使今後的預警更准確、有效。

作為第一個預警系統,從 4 個方面保證運行:

a) 降雨方面: 國家氣象服務中心降雨預報( 未來 6h 預報) ,降雨實時連續監測( 多於 40個實時雨量計) ;

b) 預警方法方面: Canon and Ellen( 1985) 的臨界降雨判據;

c) 預警運行上: 美國地質調查局根據降雨預報和實時降雨監測,實時預警系統進行分析;

d) 美國地質調查局和氣象服務中心共同確定預警,並向社會發布。

1.4.1.2 俄勒岡州

1997 年,美國的 Oregon 政府建立了泥石流預警系統。該系統,由林業部的氣象學家、地調系統( DOGAMI) 的地質學家、交通部( ODOT) 的工程師一起創建的。預警信息和建議通過 NOAA 天氣節目和 Law Enforcement Data System 進行廣播發布。DOGAMI 負責向媒體和相關地區提供關於泥石流的追加信息; ODOT 負責在更風險時段向機動車輛提供預警,包括在高泥石流風險路段安裝預警信號。

1.4.1.3 夏威夷州

1992 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wilson 等,1992) 。

1.4.1.4 弗基尼亞州

2000 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wieczoic 等,2000) 。

1.4.1.5 波多黎各島

1993 年,加勒比海的波多黎各島建立了與舊金山海灣類似的 I-D 的預警模型,並進行了數次實時預報( Larsen & Simon,1993) 。

1.4.2 日本福井縣

Onodera et al.( 1974) 通過研究發現,在日本,累計降雨量超過 150 ~ 200mm,或每小時降雨強度超過 20 ~30mm 時,大量滑坡將發生滑動。

日本在泥石流預警系統研製和開發方面處於國際領先地位。以發展具體一條或相鄰溝的小規模地區的泥石流預報系統為主,通過上游泥石流形成區降雨資料的統計分析,確定臨界雨量值和臨界雨量報警線,通過上游雨量實時數據採集、演算和比較判別,自動發出報警信號。

山田剛二等( 1977) 通過滑坡的位移和地下水壓力的監測,認為滑坡位移速率以及地下水壓力不僅與當天降雨量有關,而且還與以前的降雨量有關,所以用有效雨量來表示雨量,有效雨量可以從下式求得:

中國地質災害區域預警方法與應用

式中:Rc為有效雨量;R0為當天降雨量;Rn為日前降雨量;α為系數;n為經過的天數。

通過對山陰干線小田—天儀之間403km,400km附近的滑坡研究發現,日有效降雨量、位移速率、地下水壓力隨時間而變化的曲線,位移速率v,Rc與地下水壓力(p)之間關系分別是二次曲線和直線:

中國地質災害區域預警方法與應用

目前,日本在福井縣開展了地質災害預警預報工作。以點代面,根據區域地形、地貌和環境地質特徵以及災害可能發生的危險程度,在全縣范圍內布設了 66 個預警預報監測點,實現了定點、定時和災害程度的預警預報。同時通過該系統還可以了解過去某一時間的雨量情況和發布情況等內容。

1.4.3 巴 西

Guidicini and Iwasa( 1977) 通過對巴西 9 個地區滑坡記錄和降雨資料的分析,認為降雨量超過年平均降雨量的 8% ~17%,滑坡將滑動; 超過 20%,將發生災難性滑坡。

1996 年,里約熱內盧( Rio de Janeiro) 州建立了預警系統( Geo-Rio) 。由地質力學所設計並安裝了 30 台自動雨量計,向中心計算機( Geo-Rio) 發送數據。中心計算機接收數據,並發布預警。2001 年滑坡災害中,對里約熱內盧的部分地區發布了預警,但在向北 60 km 處的 Petropolis 損失慘重。由於火災,Geo-Rio 系統於 2002 年 11 月被迫停止。

10. 滑坡、泥石流地質災害氣象預警預報

氣象因素是誘發滑坡、泥石流等地質災害的關鍵因素,開發基於Web-GIS和實時氣象信息的實時預警預報系統,實現地質災害實時預警預報與網路連接的地質災害預警預報與減災防災體系,對可能遭受的地質災害進行實時預警預報,及時廣泛地發布預警信息,有利於實現科學高效、快速地開展災害防治,從而最大限度地減少災害損失,保護人民生命財產安全,變被動防治為主動防治地質災害。

一、滑坡、泥石流地質災害氣象預警預報的主要依據

區域地質災害(滑坡、泥石流等)空間預測主要是圈定地質災害易發區,也就是前面論述的地質災害危險性評估與區劃。在區域地質災害空間預測的基礎上,結合實時的氣象動態信息,分析研究滑坡、泥石流等地質災害的主要誘發因素,研究同一地質環境區域,在不同氣象條件下發生地質災害的統計規律和內在機理,通過確定有效降雨量模型、降雨強度模型、降雨過程模型的臨界閥值,建立基於實時動態氣象信息的區域地質災害預警預報時空耦合關系,從而對區域性的滑坡、泥石流等地質災害進行危險性時空預警預報。

根據研究區域的地質條件、災害調查情況、氣象條件等,劃分地質災害易發區等級,統計已發生滑坡、泥石流等地質災害與有效降雨量、24小時降雨強度的相關性,確定出不同易發區不同等級的臨界降雨量(I、II),作為判別分析的閥值,確定降雨量危險性等級。降雨量小於I級臨界降雨量的為低危險性,降雨量介於Ⅰ-Ⅱ級臨界降雨量之間的為中危險性,降雨量大於II級臨界降雨量的為高危險性。

將各單元的有效降雨量與臨界有效降雨量進行對比,確定出各單元的降雨量危險性等級,將降雨量危險性等級和地質災害易發區等級進行疊加,疊加結果見表3-4和圖3-2,對應於4個不同的易發區把地質災害預警預報等級劃分為5級:其中,3級及3級以上為預警預報等級,5級為預警預報區的最高等級,1級和2級為不預警區,不同的預警預報等級採用不同的顏色予以表示。3級預警區是指應加強對災害點的監測地區;4級預警區是指應密切加強對災害點監測的地區,採取一定的防範措施;5級預警區是指應全天對災害點進行監測,直接受害對象尤其是住戶和人員在必要時應該採取避讓措施。在預警預報中,3級為注意級,4級為預警級,5級為警報級。

表3-4 地質災害預警區等級劃分表

圖3-2 區域地質災害宏觀預警構建思路示意圖

我國自2003年開展全國地質災害氣象預警預報工作以來,一些專家學者就致力於預警預報模型方法的研究與探索,主要經歷了兩個階段。

第一階段,2003~2006年,採用的是第一代預警方法,即臨界雨量判據法。該方法的主要原理是根據中國地貌格局、地質環境特徵及其與降雨誘發型崩滑流地質災害關系統計分析結果,以全國性分水嶺、氣候帶、大地構造單元和區域地質環境條件,進行一級分區;以區域分水嶺、歷史滑坡泥石流事件分布密度、地形地貌特徵、地層岩性、地質構造與新構造運動、年均降雨量分布等,進行二級分區;將全國劃分為7個預警大區、74個預警區;並分區開展歷史地質災害點與實況降雨量之間的統計關系,確定各預警區誘發滑坡泥石流災害的臨界雨量,建立預警預報判據模板(圖3-3);利用全國地質災害資料庫和縣市調查信息系統中的地質災害樣本和中國氣象局提供的降雨資料,通過統計分析,確定地質災害發生前的1日、2日、4日、7日、10日和15日的臨界雨量作為判據模板,建立地質災害氣象預警預報模型,開展地質災害預警預報。

圖3-3 預警預報判據模板

第二階段,即第二代預警方法。2006~2007年,「全國地質災害氣象預警預報技術方法研究」項目設立,開展了全國地質災害氣象預警預報方法升級換代的研究工作。劉傳正教授提出了地質災害區域預警理論的三分法,即隱式統計預報法、顯式統計預報法和動力預報法;並提出了顯式統計預警方法(稱為第二代預警方法)設計思路。該方法改進了第一代預警方法中僅依靠臨界過程雨量方法的局限,實現了臨界過程降雨量判據與地質環境空間分析相耦合。2007年該項工作取得初步研究成果,經完善後已在2008年全國汛期預警工作中正式使用。

根據地質災害區域預警原理和顯式預警系統設計思路,具體預警模型建立過程如下:

(1)地質災害預警分區。將全國分為7個預警大區,分區建立預警模型。

(2)地質災害氣象預警信息圖層編制。充分考慮地質災害發生的地質環境基礎信息、地質災害歷史發生實況等,共編制預警信息圖層30個。

(3)地質災害潛勢度計算。探索一條計算地質災害潛勢度的計算方法,根據歷史地質災害點分布情況,採用不確定系數法計算地質環境CF值、採用項目組創新提出的權重確定法確定權重,從而計算地質災害潛勢度。

(4)統計預警模型建立。以10km×10km的網格進行剖分,將地質災害潛勢度、歷史災害點當日雨量、前期雨量作為輸入因子,地質災害實發情況作為輸出因子,採用多元線性回歸方法,建立預警指數計算模型,從而確定預警等級。

二、美國舊金山灣滑坡泥石流氣象預警系統

目前世界上滑坡泥石流災害氣象預警主要是依據美國舊金山灣滑坡泥石流預警系統提出的臨界降雨閥值的方法。該系統在1985年至1995年期間運行了10年,後因種種原因被迫關閉。它是世界上運行時間最長的滑坡泥石流預警系統,其經驗值得思考。

Campbell從1969年開始研究洛杉磯滑坡發生機制,1975年提出了建立基於國家氣象局(NWS)降雨預報和(前多普勒)雷達影像的洛杉磯泥石流預警系統的設想。Campbell指出,泥石流預報還是可能的,可通過降雨強度和持續時間的監測,並與根據降雨-滑坡發生概率的關系所建立的臨界值進行比較,進行泥石流災害等級的等級預報。一旦超過臨界值,就要對居住在山腳下的居民發出預警,撤離危險地,最大程度地減少災害損失。Campbell提出的泥石流預警系統由以下方面構成:①雨量計觀測系統,記錄每小時的降雨量;②具有能夠識別暴雨地區降雨強度中心的氣象編圖系統;將降雨數據標繪在地形(坡度)圖及相關滑坡影響圖上;③實時採集數據和預警管理和通訊網路。

1982年1月初,災難性暴雨襲擊了舊金山灣地區,引發了數以千計的泥石流及其他類型的淺層滑坡。經濟損失達數百萬美元,25人死亡。盡管該地區的人們得知暴雨預報,但並沒有得到任何關於滑坡、泥石流的警報。盡管Campbell提出的建議沒有在舊金山灣地區得以實施,但1982年的這場災難性事件使得建立泥石流預警系統變得十分緊迫和必要。

圖3-4 加州La Honda的泥石流降雨臨界線

Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨臨界線(圖3-4)。他們用年均降雨量(MAP)對臨界降雨持續時間和臨界降雨強度進行了修正(標准化),即將臨界降雨強度修正為臨界降雨強度/年均降雨量(MAP)。他們建立的滑坡降雨臨界值是舊金山灣地區泥石流預警系統的基礎。1986年2月舊金山灣地區連降暴雨,美國地質調查局和國家氣象局聯合啟動了泥石流災害預警系統,通過NWS廣播電台系統發布了兩次公共預警。這是美國首次發出的泥石流災害預警。該次暴雨引發了舊金山灣地區數以百計的泥石流,造成1人死亡,財產損失達1000萬美元。如果不是預警系統的准確預報,損失將會更加嚴重。

1986年的泥石流災害預警是根據Cannon和Ellen(1985)確定的經驗降雨臨界值發布的。1989年Wilson等人在該經驗降雨臨界值的基礎上,建立了累積降雨量/降雨持續時間關系曲線,對不同的規模和頻率的泥石流確定不同的臨界值降雨量。據此USGS滑坡工作組進行泥石流災害預報。

Wilson自1995年一直研究困擾早期滑坡預警系統的泥石流降雨臨界值強烈受局部降水條件(地形效應)影響的難題。

如前所述,Cannon(1985)建立的舊金山灣地區的區域泥石流降雨臨界值,試圖用長期降雨量(MAP)來修正地形效應的影響。MAP是用來描述長期降雨氣候條件最常用的參數,可從標准氣象圖中獲得。Cannon建立MAP標准化臨界值,是滑坡預警系統的主要技術基礎。然而,正如Cannon本人所說,在早期滑坡預警系統運行過程中,發現降雨少的地區ALERT系統的雨量數據會產生「假警報」,反映了MAP標准化會出現低MAP地區的不一致性問題。後來Wilson(1997)將舊金山灣地區的MAP標准化方法應用到南加州和美國太平洋西北部地區,出現了明顯的低估或高估降雨臨界值的問題。

降雨量作為參數實際上反映了暴雨規模和頻率兩個綜合作用過程。美國太平洋西北部地區降雨量頻率高但每次降雨量小,導致年均降雨量大;而南加州地區則降雨頻率小但每次降雨量大,結果是年均降雨量小。年均降雨量標准化方法應識別出那些「極端」的降雨事件,即降雨量遠遠超過那些頻率高但降雨量小的暴雨事件。因此,對於估計泥石流降雨臨界值來說,單個暴雨的規模要比降雨頻率重要得多。

長期的氣候作用使斜坡本身達到了一種重力平衡狀態,即斜坡入滲與蒸發及地表排水之間達到了平衡。這種長期的平衡作用過程可能包含著無數已知和未知的機制。斜坡土壤的岩土工程性質、地表排水率及水網分布、本土植被都可能對局部氣候產生影響。Wilson用日降雨規模—頻率分析,重新檢查了年均降水量標准化臨界值的不一致性。在年均降雨量低的舊金山灣地區,泥石流的降雨臨界值高於MAP標准化的預測值。Wilson提出了參考的泥石流降雨臨界值,這有益於研究降雨與地表排水之間的相互作用。Wilson的研究表明,5年暴雨重現率可以代表降雨頻率與侵蝕率的優化組合關系。對三個具有明顯不同降雨氣候模式的不同地區(南加州洛杉磯地區、舊金山灣地區、太平洋西北部地區),採集了觸發致命泥石流災害事件的歷史雨量數據,建立了(引發廣泛泥石流發生)歷史上觸發大范圍泥石流的24小時峰值暴雨降雨量與參考降雨值(5年暴雨重現值)之間的關系曲線(圖3-5)。該關系曲線可用來估計泥石流的降雨臨界值,與Cannon的MAP標准化降雨臨界值相比,特別是可以在更加可靠點的范圍內通過插值估計出特定地點(特別是受地形效應影響的山區)的臨界值。

圖3-5 歷史觸發大范圍泥石流的24小時峰值暴雨降雨量與

盡管舊金山灣地區的滑坡泥石流氣象預警系統在1995年關閉了,但自1995年以來沒有停止對降雨/泥石流臨界值方面的研究。這些研究加深了對降雨、山坡水文條件、長期降雨氣象條件和斜坡穩定性之間相互作用的認識,這將為舊金山灣地區乃至世界其他地區的滑坡氣象預警工作奠定很好的科學基礎。

三、降雨監測與預報

舊金山灣地區滑坡預警系統運行的十年間,當地NWS的天氣預報主要依靠1987年2月發射的氣象衛星GOE-7(1997年被GOES-10所取代)。每隔30分鍾,GOES氣象衛星傳送覆蓋從阿拉斯加灣至夏威夷的北美西海岸雲團圖像。根據這些圖像,當地NWS可以估計出大暴雨的速度、方向和強度。圖像中的紅外波譜圖像還能指示雲團的溫度,它是估計降雨強度的重要信息。另外,地面氣象觀測站可獲得大氣壓、風速、溫度、降雨數據,與衛星氣象數據雨季NWS國家氣象中心提供的長期天氣趨勢預報信息相結合,當地NWS天氣預報辦公室綜合分析這些數據,准備和提供定量天氣預報(QPT),一天發布兩次加州北部和南部地區未來24小時天氣預報。

雨量監測(ALERT)系統能遠距離自動採集高強度降雨觀測數據,並將數據傳送到當地實時天氣預報中心。到1995年,舊金山灣地區ALERT系統已建立了60個雨量觀測站點(圖3-6)。盡管每個站點的建立得到了NWS的支持,但每個站點的設備購買、安裝和維護則由其他聯邦、州和地方政府機構負責。從1985年到1995年滑坡預警系統運行期間,USGS一直負責維護設在加州Menlo公園的ALERT接收器和數據處理微機系統。

要評估即將到來的暴雨是否會引發泥石流災害,要考慮兩個臨界值:①前期累積降雨量(即土壤濕度);②臨近暴雨的強度和持續時間的綜合分析。為此,USGS滑坡工作組在La Honda研究區安裝了淺層測壓計,並對土壤進行了監測。如果測壓計首先顯示出對暴雨的強烈反應,即認為已達到前期臨界值。通常冬至後需幾個星期的時間才能使土壤濕度超過前期臨界值,之後要隨時關注暴雨強度和持續時間是否足以觸發泥石流災害。

圖3-6 1992年舊金山灣滑坡預警雨量監測系統—ALERT

四、泥石流災害預警的發布

當暴雨開始時,開始監測降雨強度,估計暴雨前鋒到來的速度。根據觀測的降雨量,結合當地NWS的定量降雨預測(QPF);與建立的泥石流降雨臨界值進行對比分析,確定泥石流災害的類型和規模。NWS和USGS的工作人員共同參與該階段的工作,向公眾發布三個等級的泥石流災害預警:即①城市和小河流洪水勸告(urban and small streamsflood advisory);②洪水/泥石流關注(flash-flood/debris-flow watch);③洪水/泥石流警報(flash-flood/debris-flow warning)。在1986年至1995年間,多次發布了不同級別的泥石流災害預警。

五、小結

滑坡和泥石流災害的危險性預測主要是通過災害產生條件分析,預測區域上或某斜坡地段將來產生滑坡泥石流災害的可能性,圈定出可能產生滑坡泥石流災害的影響范圍及活動強度。滑坡泥石流災害危險性預測的指標體系結構層次如圖3-7所示,根據滑坡泥石流災害危險性預測的研究對象的差異性,可從三種研究尺度建立滑坡泥石流災害危險性預測指標體系。

圖3-7 地質災害空間預測指標體系結構層次圖

區域性滑坡泥石流災害危險性預測就是通過分析滑坡泥石流災害在區域空間分布的聚集性及規律性,圈定出滑坡泥石流災害相對危險性區域,從而為國土規劃、減災防災、災害管理與決策提供依據。不同的預測尺度對應於不同的勘察階段和研究精度。滑坡泥石流災害危險性區劃對應於可行性研究階段,要求對擬開發地域工程地質條件的分帶規律進行初步綜合評價,確定滑坡泥石流災害作用發生的可能性及敏感性,提交的成果是區域工程地質條件綜合分區圖和地質災害預測區劃圖。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864