地質災害測試設備
⑴ 地質災害與地下污染探測
程業勛
(中國地質大學(北京))
「環境」一詞起源於18世紀,逐步被廣泛引用到自然環境、社會環境、經濟環境等。但當代環境科學研究的環境范疇,主要是指人類生存與可持續發展的外部條件。所以《中華人民共和國環境保護法》中明確指出:「本法所指的環境,是指人類生存和發展的各種天然的和經過人工改造的自然因素的總體,包括大氣、水、海洋、土地、礦藏、森林、草原、野生生物、自然遺跡、自然保護區、風景名勝區、城市和鄉村等。」地球物理學主要研究發生在岩石圈、水圈、大氣圈和地球空間的對人類生存和發展有重要影響的環境變化和供給條件。因此,從一定意義上講,地球物理學從產生的那一天起,就是一門研究人類生存與發展環境的科學。
西方工業化300年,已經消耗地球億萬年的資源儲備,而且日益加劇,造成資源緊缺,環境惡化。2007年10月25日聯合國環境規劃署(UNEP)發布集1400位科學家智慧寫成的《全球環境展望》(GE0-4)綜合報告指出,自1978年以來的30年,人類消耗地球資源的速度,已將人類自身置於岌岌可危的境地,到目前為止,已經超出地球生態承載能力近三分之一。每年有7.5萬人死於自然災害,全球一半以上城市的環境超出世界衛生組織(WHO)制訂的污染標准。
岩石圈(含土壤)、水圈(含地下水)、大氣圈和生物圈構成地球物質循環的整體,是人類生存不可或缺的各個組成部分。地下(土壤和岩層)一直是人類處置廢棄物和垃圾的場所。包括大氣沉降物在內,超過土壤自凈(降解)能力的時候,就會構成土壤污染,特別是難以被土壤生物降解的有毒物質,還會隨著水的蒸發和大氣環流,擴散到全球(稱蚱蜢效應)。這就告訴我們,對於難以降解的有毒物質來講,地球是一個封閉的生態系統,這些有毒的污染物,只能轉移而不會消失。即使遠離污染源上萬千米,生活在北冰洋的伊努特人體內也可以檢測到持久性污染物(POP)的存在。
美國上世紀30~40年代,就開始將工業廢棄物以及活水、污油注入地下。時隔二三十年後,由於地下地質環境的變遷,有些原來埋在河谷(山谷)地區的這些物質,經歷容器的腐蝕、洪水沖刷而擴散、深灌的污水上涌,造成泄漏污染。為進一步防治,在不得已的情況下,找到地球物理方法,探測再次造成的地下污染分布區域。這也是環境地球物理分支學科建立的起始。
1 自然地質災害的勘察
地球上山地面積占陸地總面積的四分之一,居住人口占總數的10%,道路總里程佔30%,是泥石流、滑坡、崩塌等自然災害主要分布區。我國地處自然地質災害集中的太平洋環帶和地中海至喜馬拉雅山帶的聚集部位,成為地震和各種地質災害多發國家之一。據報道,全國共有地質災害隱患地點22.92萬處,威脅著3500萬人的安全,財產超萬億元,以及重大工程、城鎮和村莊的安全。1965年11月23日發生在雲南祿勸縣火山泥溝的特大滑坡,總土方量達3.9億m3,滑體流速高達5~6km,在河中迅速堆積成長1100m,高167m的攔河大壩,形成5萬m3蓄水的堰塞湖。不久滑體大壩陷落,迅速淹沒5個村莊。1981年7月9日暴雨引發成昆鐵路線上利子依達溝發生的泥石流,使400噸重的巨石沖入溝口,將數節火車推入大渡河,迅速堆積成壩,形成回水5km,積水29萬m3的堰塞湖。長江三峽鏈子崖危岩體位於秭歸縣新灘鎮,長江南岸,兵書寶劍峽的出口處,屬於西陵峽崩塌隱患區。本區有歷史記載的崩塌滑坡造成重大自然環境破壞性災害的有14次。其中1030年崩塌滑坡體堵塞長江21年,1452年滑坡堵江82年,1985年6月12日凌晨3點45分至4點20分,歷時35分的大滑坡,使總計3,000餘萬立方米的崩塌堆積體整體滑移,高速飛下的土石將位於江岸的新灘鎮全部摧毀,在江內激起54m高的巨浪,將對岸上的建築捲入江中。由於幾年前的電磁測深和淺層地震為主查明了滑體的厚度和范圍。1977年開始連續監測,及時准確預報,撤離果斷,滑區內457戶,1,371人,無一人傷亡,僅航運中斷12天。這樣大規模的滑坡,及時准確預報成功,在國內外是罕見的,被譽為一起世界奇跡。[1]
我國山地多,滑坡、泥石流、崩塌等地質災害的分布區域占國土總面積的65%。隨著自然的變遷和人為的致災作用,各種地質災害逐年增加。據四川省統計,泥石流致災的縣市:20世紀30年代有14個;50~60年代76個;70年代109個;1981年135個;1990年達200個。70年代以前地面沉降、地面塌陷和海水入侵還是少數地區,近年來由於對地下水的過度開采,至2008年有70多個城市出現地面沉降,總面積達6.4萬km2,上海、天津、西安等城市有的降幅達2m,天津塘沽達3.1m;地面塌陷3000多處,總面積300多km2;海水入侵總面積達1000km2。
各種地質災害的發生都是地質環境變化引發致災岩體內部結構變異,穩定性受到破壞的結果。因此,自然地質災害勘察的目的在於查明致災岩體(土)的地質環境和內部結構,研究致災岩體的結構變異和穩定狀態,圈定致災岩體范圍,評價發生發展趨勢。在滑坡、崩塌、泥石流、地面塌陷以及海水入侵等地質災害勘察中[2],應用地球物理勘查主要是查明致災的地質條件,為防治或預測預報提供依據。
表1 自然地質災害地球物理勘查的主要任務和可用的技術方法一覽表
為了進一步說明地球物理勘查在自然地質災害防治中的作用,列舉三個實例如下。
1.1 滑坡體和滑坡面的勘察
滑坡勘查的主要任務是查明滑坡體的深度和范圍,以及滑動面的深度與形態[3]。
黑海沿岸高加索地區是滑坡發育地區之一。滑坡所處的地形高約為20~25m,滑坡體主要由砂質粘土加碎石構成,下伏泥岩風化殼。選用電阻率法以及淺層地震進行勘察。電阻率測量結果如圖1所示。
圖1 電阻率與地震劃分的滑體與滑床
可劃為三層:地表層電阻率ρ1=13~29Ω●m,相當於滑體。中間層電阻率ρ2=2~4Ω●m,為風化岩,可認為相當於滑動帶。最下層電阻率ρ3=8~12Ω●m,是未風化的泥岩,為該滑坡的滑床;淺層地震資料解釋,可劃為上下兩層:上層縱波速度VP=340~360m/s,可認為是滑體和滑動帶,下層:VP=1360~1400m/s,為堅硬的未風化泥岩。在未風化的泥岩頂部用電阻率和地震測量得到的速度躍變界面和電性界面在深度上比較一致(相差1~1.5m),構成的過渡帶(弱帶)可能形成滑坡的滑動面。
1.2 滑坡的監測與預測研究
山區佔地球陸地總面積的四分之一,加上礦山開采構成的人為坡地,滑坡每年造成的經濟損失和人員傷亡巨大。對滑坡的監測和預測引起重視[3]。1985年6月12日凌晨3點45分發生在長江三峽新灘鎮大滑坡預報成功。其監測工作中的地質、物探和測量工作是從1962年開始的,基礎調查工作完成後,於1977年設置四條視准線,連續觀測滑坡堆積體的水平位移。前後監測研究23年。多年來設想主要用地球物理方法預報滑坡的研究也不在少數。其中南烏克蘭露天開采鐵礦的斜坡滑動研究是以視電阻率(ρs)觀測和礦山測量聯合研究提出的。滑坡地點如圖2(a)所示,視電阻率(ρs)觀測,採用不同供電極距的對稱四極裝置與水準點礦山測量共同布置在滑動體上。連續觀測得到三種極距視電阻率曲線如圖2(b)所示,兩種極距的視電阻率比值ρs*/ρso—t曲線;反映地電斷面變化非常靈敏。圖2中t1,t2,t3時刻視電阻率出現異常,反映t1時刻斜坡岩石形成微小裂隙;t3時刻斜坡岩石產生滑落。
圖2 傾斜露天礦場滑坡上的動態觀測
1.3 海水入侵的勘察
近年來由於地下水的過度開采,造成地下漏斗100多個,面積達15萬km2;70多個城市地面沉降達6.4萬km2;沿海城市的海水入侵達1000km2以上。萊州灣、遼東半島歷來最為嚴重。中國科學院地球物理所利用電測在這一地區進行了勘察[4]。研究了海水入侵與電阻率關系(表2)。根據電阻率分布劃出海水入侵平面圖(圖3)。該區海水入侵可分為入侵嚴重區(ρ1=2~17Ω·m);輕度區(ρ1=17~30Ω·m);受入侵影響區(ρ1=30~100Ω·m)。在王河和朱橋河地區為兩個地下漏斗區,地下水位分別為–15m和–10m,這一地區海水入侵面積最大,致使50萬畝耕地不能使用地下水灌溉。
表2 海水入侵程度與電阻率關系
圖3 山東萊州三河下游海水入侵分布圖
2 地下污染物的勘查
近30年來,隨著經濟和城市人口的迅速增長,廢棄污染物的排放量逐年增加:1999年工業廢棄物排放量7.8億噸,2007年達17.6億噸,增長率15%,截至2009年廢棄物積存量已達80億噸;城市生活垃圾2000年總量為1.4億噸,2005年為1.95億噸,2010年將達2.0億噸[5]。據調查,全國668座大中城市中2/3被垃圾圍城,1/4城市已沒有堆放場地。全國有近億輛汽車在開動,加油站林立。據北京1000多座加油站調查,有1/2存在漏油現象。
所有排放的污染物,無論是氣體、液體和固體,最終的歸宿都是土壤和水體(地表水和地下水)。截至20世紀末,我國受污染土壤的耕地面積達2000萬公頃,約占總耕地面積的1/5,每年因污染導致糧食減產1000萬噸。水污染更為突出:「70年代水質變壞,80年代魚蝦絕跡,90年代身心受害」,成為水污染的真實寫照。600座大中城市淺層地下水都不同程度地遭受污染,其中一半城市地下水已不能直接飲用。農村已有3.6億人喝不上符合標準的飲用水。
地下污染,往往不易及時發現,直到危及生產和生活。如吉林工業廢渣堆淋濾液滲入地下,導致幾十平方千米內1800眼水井被污染而報廢。佳木斯140多萬噸工業和生活垃圾堆放場,產生的硝酸基荃污染地下水,使6個自來水廠停產。北京天通苑是20世紀60~70年代的垃圾堆放場,停用後掩埋,改建住宅小區,2008年一名綠化工人下井(在三區22樓外)接水管時中毒昏倒井內,另一名下去營救也倒在井內,經查為硫化氫中毒。這就是垃圾堆掩埋產生的「定時炸彈作用」。宋家莊三位地鐵工人挖探井(2009年4月28日),3m深時聞到臭味,5m深時感到不適,一人嘔吐,醫院檢查三人為中毒,經查該地20世紀70年代曾是一家農葯廠,未作土壤污染處理,毒氣在地下土壤中積累。
人的眼力有限,不可能看清地下污染。地球物理勘查就是幫助人們即時了解地下污染存在空間以及遷移狀況。美國20世紀40年代開始在幾個河谷和山谷填埋工業廢棄物,幾十年後這些當時認為處置安全的廢棄物開始泄漏,到80年代開始,感到非治不可,但時至今日,地下污染物的空間位置及其污染流變范圍都不清楚,於是通過地球物理勘查,重新圈定地下污染物的空間位置。
應用地球物理探測方法,對地下污染物的探測和監測,防止污染擴散,保護環境。概括來看,目前主要用在以下幾個方面:
(1)用於廢物填埋場選址調查[6]。工業生產廢物和人類生活垃圾不僅量大而且成分復雜,有毒有害物質混雜其間,經雨水淋濾產生滲漏液侵入地下污染土壤和地下水水源。因此,選擇遠離地下水且緻密的防滲岩(土)層作為垃圾填埋場地是重要的。主要用電阻率法、瞬變電磁法、探地雷達、折射地震和放射性測井。目的在於查明地下:①基岩面形狀;②地表粘土層的結構;③地下水位及含水層分布范圍及地下水流向;④基岩結構及構造;⑤地下暗河及河道分布。
(2)一些發達國家常以地球物理監測作為垃圾填埋場和廢物堆放場的檔案資料。從垃圾填埋(堆放)開始,直至垃圾填埋場終止封場後延續30年進行監測,跟蹤監測表明,固體垃圾降解很緩慢,以固體垃圾溶解物總量(TDS)為例,前10年降解1/2,20年時餘1/5,30年後餘1/10;氯離子、硫酸鹽等30年只降解1/10。一旦發現泄漏且有擴散危險,應立即進行處理。所用的探測方法主要是電阻率法和瞬變電磁法。激發極化法也有良好的效果。而我國還沒有建立監測制度。
(3)追蹤污染源。根據地下環境中水流與污染物遷移模型以及地層滲透率的差異,或者存在地下古河道、斷裂、裂隙,使地下水和污染物在地下形成一定的遷移軌跡。在某井位或河邊、海岸發現污染可以利用地球物理方法追蹤探測出遷移路線,查出污染源所在地,為污染防治提供資料,主要利用電阻率法。
(4)探查垃圾填埋場襯底塑料膜出現漏洞位置。由於受壓、承重等原因使襯底塑料出現漏洞,使填埋場的滲漏液外泄。為了修復需要及時找到漏洞位置。主要利用直流電阻率法。
(5)地下廢棄物的調查。故舊廢棄物和垃圾堆放場填埋多年,現移作他用,為了重新處理,需了解其分布范圍和確定深度。主要採用電阻率法、地震雷達法等。
(6)廢棄物堆放場對土壤和地下水污染的監測。礦山廢棄物、選礦和冶金廢棄物,化工廠和葯廠等可能成為污染源的堆放場進行監測。主要使用電法、磁法和土壤氡測量方法等。
(7)地下儲油罐和輸油管泄漏探測。加油站世界林立,僅北京市就有1100多處。美國探測證實上世紀70年代以前建的加油站幾乎全部有泄漏。因此,加油站是土壤和地下水的主要污染源之一,對加油站進行常規監測是必要的。常用的探測方法有自然電位、電阻法以及揮發性氣體(CH4)法等。用土壤氡氣測量法也有良好效果。我國也做了試驗監測工作。
(8)深埋廢液處理場的監測。隨著區域地質結構變化和地下水位變化,廢液可能發生遷移和外溢,所以監測是必要的。一般用自然電位法圈定二次污染范圍。
(9)核電廠對核廢物處置場有深埋和淺埋兩種,其選址要求和方法各不相同。淺埋與垃圾場選址類似。深埋選址是永久性的,要進行深部選擇勘查。選址是極為慎重的地質勘查工作。深埋選址一般要選擇區域地層穩定,沒有裂縫斷層、滲透系數極小的岩層。主要使用深部探測的重力、磁法和電磁法以及地震方法。
現舉兩個應用實例如下。
2.1 保定韓村地下垃圾填埋場勘查
保定韓村垃圾堆放場,佔地200m×200m,後來加蓋1.5m原土層,掩埋了垃圾堆多年,成為平地。四周已有建築。急需查明地下垃圾堆的污染區域,以利整治(楊進,劉兆平等,2006)[7]。
為了取得好的效果,探測工作以高密度電阻率法和探地雷達為主。用了5種探測方法,測線以東西方向3條,南北方向4條,均勻分布,每條測線長度為200m。
2.1.1 高密度電阻率法
沿測區7條測線:4條南北向(HCH.1.4.7.10),3條東西向(HCH.11.12.13)進行剖面測量。使用電極64,點距3m。根據北京市北神樹等3個垃圾填埋場滲瀝液的實測電阻率資料,對比本區土壤的電性特徵,每個剖面圖可劃分出4個電性層。其對比數值列於表3。可見視電阻率小於15Ω·m的區域為垃圾及其污染區。本區掩埋的故垃圾堆及其形成的污染區分帶圖如圖4所示。
表3 工作區污染帶異常劃分表
2.1.2 探地雷達法
共測6條剖面,南北向4條,東西向2條,與高密度電阻率法同步進行。使用SIR-3000儀器,100MHz天線。探測深度10~15m。剖面圖電磁波信號分區明顯。根據本測區電性特徵,進行對比。可以認為視電阻率1~10Ω·m,相對應的介電常數均為5~100;電磁波傳播速度均在0.047~0.13m/ns。為此得到本測區垃圾污染區埋深在2.5~3.5m以下,如圖5所示,為資料解釋結果。
對已掩埋多年的韓村地下垃圾場探測後根據異常區,用洛陽鏟和挖掘的方法進行了驗證,證明在深1.5m以下見到垃圾,說明探測結果是可靠的。
圖4 韓村測區HCH.1.4.7.10線剖面污染異常分帶圖
圖5 韓村測區HCH.1.4.7.10線雷達資料解釋
2.2 安家樓第三加油站漏污染探查
北京市朝陽區安家樓住總第三加油站,1995年春發現泄漏,致使位於東南的自來水廠部分停產。7月某物探與化探研究所以氧化還原電位法、磁化率以及氣烴(CH4和C2H4)測量方法,同時進行了面積勘查。由於周圍都是道路和建築,測線基本上沿馬路兩側以及住總三公司停車場院內,寶馬汽車維修中心院內空曠地區布置。
氧化還原電位,設備輕便,在人行雜亂的市區工作方便。其測量結果的等值圖(5mV間隔)列於圖6。由圖可見,地下漏油的展布與該地區的地下水流方向一致(南偏東方向)。
土壤磁化率方法,土壤氣烴方法測量獲得的油污染展布與氧化還原電位測量結果非常吻合,展布方向的趨勢也基本一致。
輕烴(CH4)和重烴(C2H4)是直接抽取土壤中CH4(甲烷)和C2H6(乙烷)測量的結果,其平面等值圖與氧化還原電位也完全一致。
經過加油站核實,先後泄漏柴油78噸。開挖對污染土壤進行清理、更換。證明柴油逐步漏入地下包氣帶和潛水層,其地下分布於探測結果完全相符。
圖6 北京朝陽某加油站漏油污染氧化還原電位等值圖
美國楊百翰大學用探地雷達在亞利桑那州的Tuba城探測汽油罐漏油污染土壤和地下水。首先用探地雷達圈出漏油污染區,其次是鑽孔取樣分析油的含量,監測孔確定地下水位和流向,第三步是將雷達探測結果與鑽孔土樣、水分析結果進行對比,最終確定漏油引起的污染范圍和深度。研究認為,由於油污一部分出現在潛水面之上,另一部分流入淺水面下方的飽水帶,使電磁波反射變得模糊不清。所以,圖7中雷達信號反射增強部分對應於漏油處。探地雷達用的80MHz天線頻率。
圖7 石油罐泄漏區上的探地雷達記錄(中心頻率80MHz)
主要參考文獻
[1]陸業海.新灘滑坡徵兆期及成功的監測預報[J].水土保持通報,1985,(5):1~8.
[2]郭建強.地質災害勘查地球物理技術手冊[M].北京:地質出版社,2003.
[3]程業勛,楊進.環境地球物理學概論[M].北京:地質出版社,2005.
[4]蔣宏耀,程業勛.環境與地球物理,地球物理科普文選(第三集)[M].北京:地震出版社,1997.
[5]中國環境科學學會.2008—2009環境科學技術學科發展報告[M].北京:中國科學技術出版社,2009.
[6]余調梅,朱百里編譯.廢棄物填埋場設計[M].上海:同濟大學出版社,1999.
[7]劉兆平.地球物理方法在垃圾填埋場的應用研究[D].北京:中國地質大學(北京),2010.
⑵ 申請地質災害治理工程施工單位的條件中的設備是有哪些
申請地質災害治理工程施工單位的條件中的設備有三個等級,分別如下:
(一)甲級資質
1、技術人員總數不少於五十名,其中水文地質、工程地質、環境地質專業技術人員不少於三十名且具備高級職稱的人員不少於十名;
2、近三年內獨立承擔過五項以上中型地質災害勘查項目,有優良的工作業績;
3、具有與承擔大型地質災害勘查項目相適應的鑽探、物探、測量、測試、計算機等設備。
(二)乙級資質
1、技術人員總數不少於三十名,其中水文地質、工程地質、環境地質專業技術人員不少於十五名且具備高級職稱的人員不少於五名;
2、近三年內獨立承擔過五項以上小型地質災害勘查項目,有良好的工作業績;
3、具有與承擔中型地質災害勘查項目相適應的鑽探、物探、測量、測試、計算機等設備。
(三)丙級資質
1、單位技術人員總數不少於二十名,其中水文地質、工程地質、環境地質專業技術人員不少於十名且具備高級職稱的人員不少於三名;
2、具有與承擔小型地質災害勘查項目相適應的鑽探、物探、測量、測試、計算機等設備。
地質災害治理工程勘查設計施工單位資質管理辦法於2005年5月12日國土資源部第1次部務會議通過,2005年5月20日國土資源部令第30號發布,自2005年7月1日起施行。
(2)地質災害測試設備擴展閱讀:
申請地質災害治理工程勘查、設計和施工資質的單位,應當向審批機關提出申請,並提交以下材料:資質申請表;單位法人資格證明文件和設立單位的批准文件;在當地工商部門注冊或者有關部門登記的證明材料;法定代表人和主要技術負責人任命或者聘任文件。
當年在職人員的統計表、中級職稱以上的工程技術和經濟管理人員名單、身份證明、職稱證明;承擔過的主要地質災害治理工程項目有關證明材料,包括任務書、委託書或者合同,工程管理部門驗收意見;單位主要機械設備清單;質量管理體系和安全管理的有關材料。
⑶ 如何規范地質災害點的巡視和檢測
五、地質災害有什麼監測方法?
對規模大、危害嚴重的災害點原則上是採用專業設備內監測,專業設備監測法容指機械—電子位移感測器觀測法、精密大地測量觀測法(視准線法、交匯法)、全球衛星定位系統(GPS)觀測法,一般只用於危險性大、危害嚴重的地質災害的精密測量。
一般點用目視監測和簡易觀測。
目視監測主要指定期或不定期地人工巡視地質災害點及其周圍一定范圍內微地貌、地表植物、建築物標志的各種細微變化。
常規簡易監測方法指用排樁法,三角樁法和建築物裂縫觀測法測量地表位移和裂縫的變化。
參考:
DZ/T 0286-2015 地質災害危險性評估規范
⑷ 地質災害監測方法技術現狀與發展趨勢
【摘要】20世紀末期以來,監測理論和技術方法有長足發展,常規技術方法趨於成熟,設備精度、設備性能已具較高水平,並開發了部分高精度(微米級位移識別率)、自計、遙測、自動傳輸的監測設施。未來,將充分綜合運用光學、電學、信息學、計算機和通信等技術(諸如光纖技術—BOTDR、時域反射技術—TDR、激光掃描技術、核磁共振技術、NUMIS、GPS技術、合成孔徑干涉雷達技術—InSAR及互聯網通訊技術等),進一步開發經濟適用、有效可行的地質災害監測新技術,提高精度、准確性和及時性,最大程度地減小地質災害造成的損失。
【關鍵詞】地質災害監測技術方法新技術優化集成
20世紀80年代以來,我國地質災害時空分布特點呈現新的變化。隨著人類工程活動越來越強,人為地質災害日趨嚴重,規模、數量和分布范圍呈增加趨勢;人口密集、經濟發達地區地質災害造成的損失越來越大。崩塌、滑坡和泥石流等突發性地質災害發生頻度和造成的損失不斷加大,地面沉降、海水入侵等緩慢性地質災害的范圍逐漸增加。據相關統計資料顯示,1995~2002年,地質災害共造成9000多人失蹤或死亡,突發性地質災害共造成直接經濟損失524億元,緩慢性地質災害造成直接經濟損失590億元,間接經濟損失2700億元。地質災害已經成為嚴重製約我國經濟發展的重要因素之一。
為了摸清我國地質災害的分布情況,我國系統地開展了地質災害調查工作,先後出台了《地質災害防治管理辦法》和《地質災害防治條例》,明確指出:防治地質災害,實行「以人為本,防治結合,統籌規劃,突出重點,分期實施,逐步到位」的方針。並於2003年4月啟動了全國性地質氣象預報。對已經查明的地質災害體,特別是對生產建設、人民生命財產安全構成嚴重威脅的地質災害,若能運用適當、有效、經濟可行的監測措施,作出科學的監測預報,則可最大程度地減小災害損失。
滑坡監測在不同條件、不同時期其作用不同,總的來說有以下幾個方面:
(1)通過綜合分析多種監測方法的監測數據,確定地質災害穩定狀態及發展趨勢,及時作出預測,防止或減輕災害損失。
(2)研究導致災害體變形破壞的主導因素、作用機理,為防治工程設計提供依據。
(3)在防治工程施工過程中,監測、分析災害體變形發展趨勢及工程施工的擾動,保障施工安全。
(4)施工結束後,進行工程效果監測。
(5)綜合利用長觀監測資料,分析災害體變形破壞機制和規律,檢驗在防治工程設計中所採用的理論模型及岩土體性質指標值的准確性,對已有的監測預報理論及模型進行驗證改進,改善、提高監測預測預報技術方法。
1地質災害監測技術綜述
地質災害監測的主要任務為監測地質災害時空域演變信息(包括形變、地球物理場、化學場)、誘發因素等,最大程度獲取連續的空間變形數據,應用於地質災害的穩定性評價、預測預報和防治工程效果評估。
地質災害監測是集地質災害形成機理、監測儀器、時空技術和預測預報技術為一體的綜合技術。地質災害的形成機理是開展地質災害監測工作的基礎;監測儀器是開展工作的手段;更為重要的是只有充分利用時空技術,才能有效發揮地質監測的作用;預測預報是開展地質災害監測的最終目的。
崩塌、滑坡、泥石流等突發性地質災害,具有爆發周期短、威脅性及破壞性顯著、成因復雜等特點,因此,當前地質災害的監測技術方法的研究和應用多是圍繞突發性地質災害進行的。1.1監測方法
監測方法按監測參數的類型分為四大類:即變形、物理與化學場、地下水和誘發因素監測(見表1)。
表1主要地質災害監測方法一覽表
1.1.1 變形監測
主要包括以測量位移形變信息為主的監測方法,如地表相對位移監測、地表絕對位移監測(大地測量、GPS測量等)、深部位移監測。該類技術目前較為成熟,精度較高,常作為常規監測技術用於地質災害監測。由於獲得的是災害體位移形變的直觀信息,特別是位移形變信息,往往成為預測預報的主要依據之一。
1.1.2物理與化學場監測
監測災害體物理場、化學場等場變化信息的監測技術方法主要有應力監測、地聲監測、放射性元素(氡氣、汞氣)測量、地球化學方法以及地脈動測量等。目前多用於監測滑坡等地質災害體所含放射性元素(鈾、鐳)衰變產物(如氡氣)濃度、化學元素及其物理場的變化。地質災害體的物理、化學場發生變化,往往同災害體的變形破壞聯系密切,相對於位移變形,具有超前性。
1.1.3地下水監測
地下水監測主要是以監測地質災害地下水活動、富含特徵、水質特徵為主的監測方法。如地下水位(或地下水壓力)監測、孔隙水壓力監測和地下水水質監測等。大部分地質災害的形成、發展均與災害體內部或周圍的地下水活動關系密切,同時在災害生成的過程中,地下水的本身特徵也相應發生變化。
1.1.4誘發因素監測
誘發因素類主要包括以監測地質災害誘發因素為主的監測技術方法,如氣象監測、地下水動態監測、地震監測、人類工程活動等。降水、地下水活動是地質災害的主要誘發因素;降雨量的大小、時空分布特徵是評價區域性地質災害(特別是崩、滑、流三大地質災害的判別)的主要判別指標之一;人類工程活動是現代地質災害的主要誘發因素之一,因此地質災害誘發因素監測是地質災害監測技術的重要組成部分。
1.2監測儀器
1.2.1按從監測儀器同災害體的相對空間關系分為接觸類和非接觸類
(1)接觸類:是指必須安裝於災害體現場或進行現場施測的監測儀器系列。如滑坡地表或深部位移監測、物理和化學場監測等。該類儀器所獲得的信息多為災害體細部信息,信息量豐富。
(2)非接觸類:是指於現場安裝簡易標志或直接於災害體外圍施測的監測儀器系列。該類監測方法多以獲得災害體地表的絕對變形信息為主,易採用網式施測;特別是突發性地質災害的臨災前後,具有安全、快捷等特點。如激光微位移監測、測量機器人、遙感雷達監測等。
1.2.2按監測組織方式分為簡易監測、儀表監測、控制網監測、自動遙測
(1)簡易監測:採用簡易的量測工具(皮尺、鋼尺、卡尺)對災害體地表的裂縫等部位進行監測。
(2)儀表監測:採用機測或電測儀表(安裝、埋設感測器)對滑坡進行地表及深部的位移、應力、地聲、水位、水壓、含水量等信息監測。
(3)控制網監測:在滑坡變形破壞區及周邊穩定地帶,布設大地測量或GPS衛星定位測量控制點網,進行滑坡絕對位移三維監測。
(4)自動遙測:利用有線和無線傳輸技術,對儀表監測所得信息進行遠距離遙控自動採集、傳輸,可實現全天候不間斷監測。
2地質災害監測方法技術現狀
地質災害監測技術是集多門技術學科為一體的綜合技術應用,主要發展於20世紀末期。伴隨著電子技術、計算機技術、信息技術和空間技術發展,國內外地質災害調查與監測方法和相關理論得到長足發展,主要表現在:
(1)常規監測方法技術趨於成熟,設備精度、設備性能都具有很高水平。目前地質災害的位移監測方法均可以進行毫米級監測,高精度位移監測方法可以識別0.1mm的位移變形。
(2)監測方法多樣化、三維立體化。由於採用了多種有效方法結合對比校核以及從空中、地面到災害體深部的立體化監測網路,使得綜合判別能力加強,促進了地質災害評價、預測能力的提高。
(3)其他領域的先進技術逐漸向地質災害監測領域進行滲透。隨著高新技術的發展和應用的深入,衛星遙感、航空遙感等空間技術的精度逐漸提高,一些高精度物探(如電法、核磁共振等技術)的發展,使得地質災害的勘查技術與監測技術趨於融合,通過技術上的處理、提升,該類技術逐漸適用於區域性的地質災害和單體災害的監測工作。
「八五」以來,我國在地質災害監測技術研究方面取得了豐碩的成果,並積累了豐富的經驗,使我國的地質災害監測預警水平得到很大程度的提高;但是還存在一定的局限性,主要表現在:
(1)地質災害監測技術、儀器設施多種多樣,應用重復性高,受適用程度、精度、設施集成化程度、自動化程度和造價等因素的制約,常造成設備資源浪費,效果不明顯。
(2)所取得的研究成果多側重於某一工程或某一應用角度,在地質災害成災機理、誘發因素研究的基礎上,對各種監測技術方法優化集成的研究程度較低。
(3)監測儀器設施的研究開發、數據分析理論同相關地質災害目標參數定性、定量關系的研究程度不足,造成監測數據的解釋、分析出現較大的誤差。
因此,要提高地質災害預警技術水平,必須在地質災害研究同開發監測技術方法相結合的基礎上,進行地質災害監測優化集成方案的研究。
3地質災害監測技術方法發展趨勢
3.1高精度、自動化、實時化的發展趨勢
光學、電學、信息學及計算機技術和通信技術的發展,給地質災害監測儀器的研究開發帶來勃勃生機;能夠監測的信息種類和監測手段將越來越豐富,同時某些監測方法的監測精度、採集信息的直觀性和操作簡便性有所提高;充分利用現代通訊技術提高遠距離監測數據信息傳輸的速度、准確性、安全性和自動化程度;同時提高科技含量,降低成本,為地質災害的經濟型監測打下基礎。
監測預測預報信息的公眾化和政府化。隨著互聯網技術的發展普及,以及國家政府的地質災害管理職能的加強,災害信息將通過互聯網進行實時發布,公眾可通過互聯網了解地質災害信息,學習地質災害的防災減災知識;各級政府職能部門可通過所發布信息,了解災情的發展,及時做出決策。
3.2新技術方法的開發與應用
3.2.1調查與監測技術方法的融合
隨著計算機的高速發展,地球物理勘探方法的數據採集、信號處理和資料處理能力大幅度提高,可以實現高解析度、高采樣技術的應用;地球物理技術將向二維、三維採集系統發展;通過加大測試頻次,實現時間序列的地質災害監測。
3.2.2 智能感測器的發展
集多種功能於一體、低造價的地質災害監測智能感測技術的研究與開發,將逐漸改變傳統的點線式空間布設模式;由於可以採用網式布設模式,且每個單元均可以採集多種信息,最終可以實現近似連續的三維地質災害信息採集。
3.3新技術新方法
3.3.1光纖技術(BOTDR)
光導纖維監測技術又稱布里淵散射光時域光纖監測技術(BOTDR),是國際上20世紀70年代後期才迅速發展起來的一種現代化監測技術,在航空、航天領域中已顯示了其有效性。在土木、交通、地質工程及地質災害防治等領域的應用才剛剛開始,並受到各發達國家研究機構的普遍重視,發展前景十分廣闊。
通過合理的光纖敷設,可以監測整個災害體(特別是滑坡)的應變信息。
3.3.2時間域反射技術(TDR)
時間域反射測試技術(Time Domain Reflectometry)是一種電子測量技術。許多年來,一直被用於各種物體形態特徵的測量和空間定位。早在20世紀30年代,美國的研究人員開始運用時間域反射測試技術檢測通訊電纜的通斷情況。在80年代初期,國外的研究人員將時間域反射測試技術用於監測地下煤層和岩層的變形位移等。90年代中期,美國的研究人員將時間域反射測試技術開始用於滑坡等地質災害變形監測的研究,針對岩石和土體滑坡曾經做過許多的試驗研究,國內研究人員已經開始該方法的研究工作,並已經在三峽庫區投入試驗應用階段,同時開展了與之相關的定量數據分析理論研究。
所埋設電纜即是感測器,又可傳輸測試信號;該方法相對於深部位移鑽孔傾斜儀監測具有安裝簡單、使用安全和經濟實用等特點。
3.3.3激光掃描技術
該技術在歐美等發達國家應用較早,我國近期開始逐漸引進。主要是用於建築工程變形監測以及實景再現,隨著掃描距離的加大,逐漸向地質災害調查和監測方向發展。
該技術通過激光束掃描目標體表面,獲得含有三維空間坐標信息的點雲數據,精度較高。應用於地質災害監測,可以進行災害體測圖工作,其點雲數據可以作為地質災害建模、地質災害監測的基礎數據。
3.3.4核磁共振技術(NUMIS)
核磁共振技術是國際上較為先進的一種用來直接找水的地球物理新方法。它應用核磁感應系統,通過從小到大地改變激發電流脈沖的幅值和持續時間,探測由淺到深的含水層的賦存狀態。我國於近期開始引進和研究,目前已經在三峽庫區的部分滑坡體進行了應用試驗,效果較好。
應用於地質災害監測,可以確定地下是否存在地下水、含水層位置以及每一含水層的含水量和平均孔隙度,進而可以獲知如滑坡面的位置、深度、分布范圍等信息,從而對滑坡體進行穩定性評價,並對滑坡體的治理提出科學依據。
3.3.5合成孔徑干涉雷達技術(InSAR)
運用合成孔徑雷達干涉及其差分技術(InSAR及D-InSAR)進行地面微位移監測,是20世紀90年代逐漸發展起來的新方法。該技術主要用於地形測量(建立數字化高程)、地面形變監測(如地震形變、地面沉降、活動構造、滑坡和冰川運動監測)及火山活動等方面。
同傳統地質災害監測方法相比,具有如下特點:
(1)覆蓋范圍大;
(2)不需要建立監測網;
(3)空間解析度高,可以獲得某一地區連續的地表形變信息;
(4)可以監測或識別出潛在或未知的地面形變信息;
(5)全天候,不受雲層及晝夜影響。
但由於系統本身因素以及地面植被、濕度及大氣條件變化的影響,精度及其適用性還不能滿足高精度地質災害監測。
為了克服該技術在地面形變監測方面的不足,並提高其精度,國內外技術人員先後引入了永久散射點(PS)的技術和GPS定位技術,使InSAR技術在城市及岩石出露較好地區地面形變監測精度大大提高,在一定的條件下精度可達到毫米級。永久散射(PS)技術通過選取一定時期內表現出穩定干涉行為的孤立點,克服了許多妨礙傳統雷達干涉技術的解析度、空間及時間上基線限制等問題。
隨著衛星雷達系統資源的改進和發展,以及相應數據處理軟體的提高,該技術在地質災害監測領域的應用將趨於成熟。
3.4地質災害監測技術的優化集成
3.4.1問題的提出
(1)監測方法的適應性。對於各種監測方法所使用的監測儀器設施,均有各自的應用方向和使用技術要求;針對不同地質災害災種、類型,其使用技術要求(包括測點布設模式、安裝使用技術要求等)不同。
(2)地質災害不同的發展階段。對於崩塌、滑坡等突發性地質災害,不同發展階段所適用的監測方法和儀器設施各異,監測數據採集周期頻度不同。
(3)監測參數與監測部位。實踐證明,一方面,不同的監測參數(地表位移、深部位移、應力、地下水動態、地聲等)在不同類型的災害體監測中具有不同程度的表現優勢;另一方面,同一災害體不同部位的監測參數隨時間變化趨勢特點並不相同,即存在反映災害體關鍵部位特徵的監測點,又存在僅反映局部單元(不具有明顯的代表性,甚至是孤立的)特徵的監測點。因此,監測要素(監測參數、監測部位)的優化選擇,是整個監測設計工作的基礎。
(4)自動化程度。決定於設備的集成度、控制模式、數據標准化程度和信息發布方式。
(5)經濟效益。決定於地質災害的規模、危害程度、監測技術組合、設備選型等因素。
3.4.2設計原則
地質災害監測技術優化集成方案遵循以下原則:
(1)監測技術優化原則:針對某一類型地質災害,確定優勢監測要素,進行監測內容、監測方法優化組合,使監測工作高效、實用。
(2)經濟最優原則:首先,不過於追求高、精、尖的監測技術,而應選擇發展最為成熟、應用程度較高的監測技術;其次,對於危害程度較大的大型地質災害體,可選擇專業化程度較高的監測技術方法,由專業人員進行操作、維護,對於危害程度低,規模小的災害體,可選擇操作簡單、結果直觀的宏觀監測技術,由群測群防級人員進行操作。
3.4.3最終目標
根據不同種類地質災害和不同類型地質災害的物質組成、動力成因類型、變形破壞特徵、外形特徵、發育階段等因素,研究適用於不同類型地質災害的監測要素(監測參數、監測點位的集合)、監測方法、監測點網的時空布置模式、監測技術要求,建立典型地質災害監測的優化集成方案。
⑸ 環境地質與工程地質監測技術的任務和作用
9.1.1 環境地質和工程地質監測的內容
人類生存在由大氣圈、水圈、生物圈和岩石圈組成的地球表層環境中,環境監測的對象就是組成地球表層環境系統的各個部分或局部,監測的內容是監視和檢測影響人類生存環境的各種有害物質和因素的變化趨勢及對環境質量的影響程度。
9.1.1.1 環境地質與工程地質監測的對象
在相對穩定的生態環境系統中,任一種因素的變化都可能引起生態環境系統的平衡失調或破壞。由於環境系統具有一定的穩定性和適應外界變化的能力,當外界變化較小時,環境系統能自動調節恢復平衡。通常把環境所具有的自動調節和恢復系統動態平衡的能力稱為自凈能力(self-purification ability)。環境的自凈能力不僅與進入環境的有害物的量有關,還與環境的容量有關。環境容量和環境的自凈能力都有一定的限度。當地質作用或人類活動使環境因素的變化超過了環境生態系統動態平衡的恢復能力時,環境系統恢復不到原來的動態平衡狀態,這種超過部分即構成了對環境系統的污染(或危害)。環境學中把產生(或排放)物理的、化學的和生物的有害物質和因素的發生源稱為污染源(pollution source)。每一種對環境產生污染(或危害)的物質或因素稱為污染物或污染因子。
環境監測的目的是及時、准確、全面地反映環境質量和污染現狀及發展趨勢為環境管理、環境規劃和環境治理提供依據。環境地質與工程地質監測是環境監測的重要組成部分。其監測的對象是岩石圈淺表層地質環境,監測的內容是監視和檢測導致地質環境惡化和地質災害發生的天然污染源和人類工程活動引發的污染源的變化趨勢及對環境質量的影響程度。
環境地質與工程地質監測的內容,以其監測的介質(或環境要素)可歸納為以下三個方面。
(1)環境介質污染監測(pollution monitoring of enviromental media):包括對大氣污染監測,水質污染監測,土質污染監測,生物污染監測,振動、放射性等物理污染的監測。
(2)地質災害監測(monitoring of geological calamity):包括對火山、地震、崩塌、滑坡、泥石流等地球內力和外力地質作用造成的地質災害的監測。
(3)岩土工程環境監測(enviromental monitoring in geotechnical engineering):包括對地基變形、地面沉陷、邊坡變形、圍岩變形、壩體安全、誘發地震等人類工程活動引發的地質環境效應的監測。
在上述各對象的監測中,都包括有許多項目。例如,水質污染監測的主要監測項目可分兩類:一類是反映水質污染的綜合指標,如溫度、色度、濁度、pH、電導率、懸浮物、溶解氧、化學耗氧量和生化需氧量等;另一類是有毒物質,如酚、氰、砷、鉛、鉻、鎘、汞、鎳等。此外還有水體流速、流量的測定等。在實際工作中因人力、物力、技術條件及環境條件等限制不可能對所涉及的項目全部監測,須根據監測的意圖、污染物的性質和危害程度,對監測項目進行必要的篩選,從中挑選最關鍵和最迫切需要解決的項目實施監測。
9.1.1.2 環境監測的類型
9.1.1.2.1 監視性監測(general monitoring)
又稱常規監測或例行監測,是按一定的要求和計劃,定時、定點地測定污染源的變化情況,分析污染物超標程度和頻率,評價環境質量,預測環境變化趨勢。這是一項經常性的監測工作,使管理部門和研究機構可及時掌握環境要素的受害現狀和變化趨勢,以便隨時調整控制措施和實施治理方案。
9.1.1.2.2 特定目的性監測(special monitoring)
又稱應急監測或特例監測,是為完成某項特種任務而進行的專門監測。有如下方面。
(1)事故監測:在危害環境事件發生後進行現場追蹤監測,測定危害的影響范圍和程度,為防止事態發展提供監測依據。此外,通過監測可發現事故的苗子,預報事故再次發生的可能性。這種監測對查清事故的原因、控制事故的發展及善後處理起著重要作用。如核電站泄漏事故引起放射性對周圍環境的污染、地質災害和岩土工程事故等突發性危害的監測等均屬此類。
(2)仲裁監測:是為解決執行環境法規過程中所發生的矛盾和糾紛,而向管理部門或司法部門提供仲裁意見的監測。
(3)考核驗證監測:為檢查環境管理制度和措施的實施情況而進行的監測,以及建設項目的竣工驗收監測、治理項目的竣工驗收監測等。
9.1.1.2.3 研究性監測(scientific monitoring)
又稱科研監測,屬高層次、高水平、技術比較復雜的監測,是探索危害環境的因子和因素的形成原因和發展規律,研究危害環境事件對人體和自然環境的危害性質及影響程度,研究如何提高環境監測和環境治理的水平,以及對某個環境工程或建設項目的開發預評進行綜合性研究等。
環境監測在環境管理中起重要作用,佔有主要地位。隨科技進步和生活水平的提高,在環境管理中科學化、定量化的要求將更為嚴格,從而將更加依賴環境監測。
9.1.2 環境地質和工程地質監測技術的任務和作用
環境地質和工程地質監測技術是實施環境地質和工程地質監測任務的手段和保證。隨科學技術的進步,環境監測技術迅速發展,儀器分析、計算機控制等現代化手段在環境監測中已廣泛應用。環境監測技術從以化學分析為主的單一環境分析發展到物理監測、生物監測、流動監測及衛星遙感監測等。監測的范圍從一個斷面發展到一個城市、一個國家乃至全球。監測的過程從間斷性監測逐步過渡到自動連續監測,各種連續監測系統相繼問世。地理信息系統(GIS)、大地定位系統(GPS)和遙感技術(RS)的3S技術用於區域性地質災害及地質環境的監測與評價,已在國民經濟建設中發揮了重要作用。
9.1.2.1 環境地質和工程地質監測技術的任務
環境地質和工程地質監測技術的任務是運用現代科學技術方法,間斷地或連續地監視和檢測,導致地質環境惡化和地質災害發生的自然地質作用或人類工程活動的現狀、變化趨勢及對環境質量的影響程度,為環境管理、環境規劃、環境治理和保證工程質量與安全提供科學依據。地質環境的監測技術不僅僅是各種測試技術,還包括布點技術、采樣技術、數理技術和綜合評價技術等,所涉及的知識面廣、專業面寬,需要化學、物理學、生物學、生態學、氣象學、地質學、工程學等多方面的知識。此外,環境質量綜合評價時還必須考慮社會性問題。據統計,發展中國家每年由地質災害和地質環境惡化所造成的經濟損失,達國民生產總值的5%以上。在我國由地質災害造成的損失約占整個災害損失的35%,其中,崩塌、滑坡、泥石流及人類活動誘發的地質災害所造成的損失約佔55%。自上世紀80年代以來,這類災害已造成千餘人死亡,直接經濟損失達數億元,事故的善後處理和整治費用高達數十億元。而由此給社會帶來的間接損失,則更無法估量。近十年來,直接由工程建設活動誘發的地質災害造成的工程處理費用達數千萬至上億元的有近十起。隨著進一步的開發,必將帶來更大規模、更大范圍的災害與環境問題。正確評價和監測地質環境的惡化、及時預測地質災害的發生、嚴格控制和規范人類工程建設活動,以提高地質環境的質量,減輕災害對人類的威脅,從而保持人類文明的可持續發展。因此,不斷提高環境地質和工程地質監測技術水平,已不僅是學科發展的需要,而是提高人類生存環境質量的需要,更是維護人類社會可持續發展的迫切需要。
9.1.2.2 環境地質和工程地質監測技術的作用
環境地質和工程地質監測技術有如下主要作用:
(1)地質環境質量信息的獲取必須依靠環境地質和工程地質監測技術。及時、准確的環境質量信息是確定環境管理目標,進行環境決策的重要依據。而信息的獲取必須依靠監測技術,否則難以實現科學的目標管理。
(2)強化環境管理和保護制度的貫徹執行必須依靠監測技術。因為沒有監視和督察,制度和措施將流於形式。
(3)評價和檢驗環境管理和保護的效果必須依靠監測技術,否則難以提高科學管理水平。
(4)環境地質和工程地質監測技術工作在防範地質災害、避免工程事故方面的社會效益和經濟效益是不可估量的。
⑹ 地質災害滑坡檢測記錄怎麼寫
滑坡地質災害來隱患觀測記自錄
監測時間 監測人
距上次監測時間 天氣情況
監測點 監測內容 異常情況 監測點所在位於該滑坡隱患的 , 斜坡上土體有陷坑、坍塌( ) 具體位置 在 村民房子的 。 樹木、電桿明顯傾斜( )
長度 ?、寬度 ?、 泉水、井水變渾、斷流( ) 地面裂縫位深度 ?、下沉 ?。 動物驚恐() 號移變形 其他( ): 監測點 牆體裂縫變長度?、寬度 ?、 形 深度 ?、錯位 ?。 監測建築物斜距 cm 的傾斜變化
⑺ 地質災害的測試設備包括哪些
很多上圖書館吧孩紙
⑻ 哪些不良地質災害是可以檢測的
檢測不良地質災害你可以找共拓岩土科技幫你,他們還能防治不良地質災害呢。
⑼ 地質災害監測員是干什麼的
地質災害監測採用傳統人工監測和遙感監測兩種方法。
人工監測需要監測員到實地考回察。通過目測和藉助一些答簡易監測儀器進行,主要依靠經驗。
遙感監測是在信息化時代建立在互聯網平台上的一種新技術,已經被普遍採用,如晶合微震聲發射技術,可以檢測到土地深處變化,通過觀察這些細微的變化,作出災害預警。
信息化監測系統可以做到在線實時監測,自動運行,出現問題自動報警。地質災害監測員需要對系統進行調試和維護。