地質災害預測預報
㈠ 隧道施工超前地質預測預報分為哪些級別
隧道施工超前地質預測預報分為以下級別:
①根據地質災害對隧道施工安全的危害程度,分為以下四級:
A級:存在重大地質災害隱患的地段,如大型暗河系統,可溶岩與非可溶岩接觸帶,軟弱、破碎、富水、導水性良好的地層和大型斷層破碎帶,特殊地質地段,重大物探異常地段,可能產生大型、特大型突水突泥地段,誘發重大環境地質災害的地段,高地應力、瓦斯、天然氣、放射性問題嚴重的地段以及人為坑洞等。
B級:中、小型突水突泥地段,較大物探異常地段,斷裂帶等。
C級:水文地質條件較好的碳酸鹽岩及碎屑岩地段、小型斷層破碎帶,發生突水突泥的可能性較小。
D級:非可溶岩地段,發生突水突泥的可能性極小。
②不同地質風險地段的預報方式為:
A級預報:採用地質分析法、地震波反射法或聲波反射法、地質雷達、紅外探測、超前水平鑽探等手段進行綜合預報。首先以地質分析法進行長距離預報,然後採用中長距離地震波反射法或聲波反射法和一種或幾種短距離物探方法相結合進行預報,同時進行多孔超前鑽探探查。
B級預報:採用地質分析法、地震波反射法或聲波反射法,輔以紅外探測、地質雷達,進行必要的超前水平鑽孔。當發現局部地段工程地質條件復雜時,按A級要求實施。
C級預報:以地質分析法為主。對重要的地質(層)界面、斷層或物探異常地段可採用地震波反射法或聲波反射法進行探測,必要時採用紅外探測和超前水平鑽孔。
目前在隧道施工期間採用的超前地質預報方法從專業技術方面可分為常規地質法和物探法兩大類,具體有以下幾種:(1)超前導坑;(2)正洞地質素描;(3)水平超前探孔;(4)聲波測試;(5)紅外探水;(6)電磁波法;(7)彈性波法。
㈡ 年上半年全國地質災害災情及下半年地質災害趨勢預測
國土資源部通報 2011 年第 40 期
2011 年上半年全國地質災害發生數量大,人員傷亡相對較少,經濟損失較嚴重。6月份地質災害加重,原因是1 ~5月全國大部分地區偏旱,而6月出現旱澇急轉,致使東南、西南、華東地區受災嚴重。2011 年下半年防災形勢嚴峻,7 ~ 9月份是地質災害的高發期,特別是極端天氣事件誘發突發性地質災害的可能性很大;10 ~ 12月雖然是地質災害的低發期,仍然會有突發地質災害。預測下半年地質災害重災地區可能主要在東南、中南、西南等地區。汶川地震影響區、三峽庫區地質災害的危險性較高,需要重視。同時應高度重視台風 (熱帶風暴)帶來的強降雨對東南沿海地區的影響。
一、地質災害災情
(一)2011 年 1 ~6月總體災情
2011 年 1 ~ 6月全國共發生地質災害 10710 起,其中滑坡 8495 起、崩塌 1355起、泥石流608 起、地面塌陷183 起、地裂縫60 起、地面沉降9 起; 造成人員傷亡的地質災害 50 起,97 人死亡、13 人失蹤,49 人受傷; 直接經濟損失 9.39 億元。與去年同期相比,發生數量、造成的死亡失蹤人數和直接經濟損失均減少 (表 1)。
表 1 2011 年 1 ~6月與去年同期地質災害基本情況對比表
1 ~ 6月全國共成功預報地質災害 156 起,避免人員傷亡 4674 人,避免直接經濟損失 2.69 億元。
1 ~ 6月地質災害分布在 26 個省 (區、市)。按發生數量由多到少依次是湖南、江西和浙江等 (表2); 按造成的人員死亡失蹤人數依次由多到少是廣西、湖北和山西等 (表3); 按造成的直接經濟損失由大到小依次是甘肅、湖南和湖北等 (表 4)。
表 2 2011 年 1 ~6月各省地質災害發生數量統計表 單位: 起
表 3 2011 年 1 ~6月地質災害造成死亡失蹤人數統計表 單位: 人
表 4 2011 年 1 ~6月地質災害造成直接經濟損失統計表 單位: 萬元
(二)6月災情
6月全國共發生地質災害 10268 起,其中滑坡 8327 起、崩塌 1208 起、泥石流588 起、地面塌陷 86 起、地裂縫 53 起、地面沉降 6 起; 造成人員傷亡的地質災害32 起,49 人死亡、10 人失蹤、24 人受傷; 直接經濟損失 4.22 億元。與去年同期相比,發生數量、造成的死亡失蹤人數和直接經濟損失均減少 (表 5)。受災較重的省份是湖南、湖北、福建、江西、安徽、浙江等。
6月全國共成功預報地質災害 140 起,避免人員傷亡 3007 人,避免直接經濟損失 6369 萬元。
表 5 2011 年 6月與去年同期地質災害基本情況對比表
二、1 ~6月地質災害特點
(一)多年同期相比人員傷亡最少、經濟損失較嚴重
與 2005 年以來多年同期相比,2011 年 1 ~6月地質災害發生數量排第二位,低於 2010 年 (19563 起); 因災造成死亡失蹤人數為歷年最少 (108 人); 因災造成直接經濟損失排第四位,低於 2010 年 (18.7 億元)、2006 年 (16.7 億元)、2005年 (15.7 億元)。2011 年 1 ~6月,全國地質災害發生數量大,人員傷亡相對較少,這得力於地方黨委、政府高度的重視,採取了各種有效措施落實地質災害防治責任和加強監測預警等工作,其中地質災害應急演練起到了重要的作用。
(二)年內相比,1 ~5月災情偏輕,6月加重
1 ~ 5月全國發 生 地質災害 442 起、死 亡 失 蹤 人數 51 人、直接 經 濟 損失51719.8 萬元。而 6月發 生 地質災害 10268 起、死 亡 失 蹤 59 人、直接 經 濟 損失42229.8 萬元,分別占上半年發生數量的 96% 、死亡失蹤人數的 54% 和直接經濟損失的 45%。原因是 1 ~5月全國大部分地區偏旱,造成地表土體開裂,一旦遇水極易引發地質災害; 而 6月出現旱澇急轉,南方遭遇幾次強降雨,致使湖南、湖北、福建、江西、安徽、浙江受災嚴重。尤其是湖南,發生地質災害 8727 起,占當月全國總數的 85%。
三、重大地質災害實例
(一)2011 年 3月2日,甘肅省臨夏州東鄉縣縣城撒爾塔廣場發生一起滑坡,滑坡體規模 18 萬立方米,造成直接經濟損失達 44300 萬元。
(二)2011 年 5月9日,桂林市全州縣鹹水鄉洛家村委廣坑漕採石場降雨引發大型滑坡,規模 20 萬立方米,造成 22 人死亡、1 人受傷、直接經濟損失 350 萬元。
(三)2011 年 6月10日,湖南省桃江縣馬跡堂鎮月形灣村張公塘組發生滑坡,造成 8 人死亡。
(四)2011 年 6月26日,山西省代縣新高鄉白峪里村小東溝發生滑坡,規模52200 立方米,造成 9 人死亡,4 人受傷。
四、下半年地質災害趨勢預測
根據地質災害多年發生規律,7 ~ 9月份是地質災害的高發期,防災減災形勢將更加嚴峻,特別是極端天氣事件誘發滑坡、泥石流等突發性地質災害的可能性很大,需要嚴加防範群死群傷災害事件; 10 ~ 12月雖然是地質災害的低發期,仍要重視做好地質災害防治工作,不可掉以輕心。遭遇數十年一遇旱災的南方地區,持續乾旱造成岩土體鬆散開裂,一旦遭遇強降雨,發生崩塌、滑坡和泥石流地質災害的概率將會明顯增加。另外,要十分注意防範水利水電、鐵路公路等在建工程以及采礦、削坡建房等人類工程活動引發的地質災害。
預測下半年地質災害重災地區可能主要在四川、雲南、貴州、重慶、湖南等省(市)部分山地丘陵區,尤其要注意汶川地震強烈影響區,其次是福建、浙江、江西、安徽、廣東、廣西、陝西、甘肅和山西等山區。要進一步加強三峽庫區由於水位消漲、降雨等因素所引發地質災害的防範,高度重視台風 (熱帶風暴)帶來的強降雨對東南沿海地區的影響。
國土資源部
二〇一一年七月六日
㈢ 當年李四光預測四大地震帶
預測如下:
1. 東南部的台灣和福建沿海;
2. 華北的太行山沿線和京津唐地區;
3. 西南青藏高原和它邊緣的四川,雲南兩省西部;
4. 西部的新疆,甘肅和寧夏。
(3)地質災害預測預報擴展閱讀:
1.李四光人物評價:
李四光在舊社會走過的道路,盡管有些曲折和坎坷,但他畢生努力的方向和最終達到的高度,以及對祖國和人民做出的貢獻,在當代中國科技界、知識界,的確是一面旗幟,無愧於黨和人民給予的這個高度評價。
他是中國地質事業也可以說是地球科學事業的奠基人之一。他對中國地質學的貢獻、他的治學精神和高風亮節,都堪稱後世師表。
李四光先生作為革命先驅者敢於向舊事物挑戰的精神,作為教育家誨人不倦、孜孜追求的品德,作為事業家從人民需要出發強烈的責任感,和作為一位地質學家在科學實踐中貫穿了前面所說的革命、育人、為人三者辯證統一的科學思想將永遠激勵著我們!
2. 獲獎記錄:
1959年5月29日,經前蘇聯科學院主席團評選,授予李四光「卡爾賓斯基金質獎章」。
1982年,李四光獲國家自然科學獎一等獎、二等獎。
2009年9月14日,李四光被評為100位新中國成立以來感動中國人物之一。
2009年10月,李四光入選蒙古族十大傑出科學家。
參考資料:網路:李四光
㈣ 全國地質災害監測預警體系建設規劃的必要性、指導思想、基本原則和目標
7.2.1 必要性
《中國21世紀議程》提出了我國可持續發展的戰略目標。在我國經濟和社會快速發展的過程中,人類活動的強度和范圍達到前所未有的程度,其對包括地質環境在內的人類生態環境的干擾與破壞也日益增強,在許多地區引發的不同程度的自然地質災害造成了危害和損失成倍增加的現象,礦產資源和地下水資源等的開發利用以及各種工程活動誘發的地面沉降、崩塌、滑坡、泥石流等人為地質災害也較為普遍,對城市、公共基礎設施和廣大人民群眾的生命財產安全構成嚴重威脅。特別是地面沉降多發生在我國經濟最發達、人口密度最大、公共基礎設施最密集的東部地區,成為這些地區乃至國家可持續發展的重要制約因素。因此,保護生態環境、進行生態環境建設和防災減災,已經成為國家長期的目標和任務。為此,加強地質災害監測,進行全國地質災害監測與預警體系建設的規劃,在監測基礎上,實現對地質災害的治理與對地質環境的保護,不僅是防災減災的需要,而且也是國家經濟社會可持續發展、保護生態環境和進行生態環境建設的最基本的保障,是一項重要的基礎性和公益性的國家地質工作。現就從我國社會經濟的發展的幾個重要方面,對地質環境與地質災害監測的必要性,進行簡要論述:
(1)保障國家重大工程建設安全與西部大開發戰略的需求
全國有20餘條鐵路干線和所有山區公路不同程度地受到滑坡、崩塌、泥石流的危害或威脅。大型水庫岸邊,河流傍岸,尤其是峽谷段,常因發生滑坡、崩塌、泥石流而阻塞航道,並引起洪災。中東部沿海平原和盆地地面沉降、地裂縫和地面塌陷等地質災害嚴重威脅和破壞基礎工程設施。加強這些基礎工程設施和沿大江大河危險地段的地質環境監測,採取科學的分析方法進行預測預報,是一項長期的工作。
西部大開發戰略把加快水利、交通、能源和通訊等基礎設施建設放在首位,其中包括:長江三峽工程、南水北調工程、大江大河上中游干(支)流控制性水利樞紐工程、內河航運通道、青藏鐵路、西電東送工程、西氣東輸工程等。這些重大工程地域跨度大,多處在或穿越地質災害易發區,為保障上述工程安全施工和運營,必須加強地質環境監測工作。
(2)城市化發展對地質災害監測的需求
目前,我國有城市668座。預計2020年左右,我國城鎮化水平將提高到45%~50%,我國城市數將達到1000~1100座。城市是人類活動最集中,環境地質問題最突出的地區。為了保障城市化進程,指導城市規劃,預防由於不合理的工程活動引發的地面沉降、地裂縫、崩塌、滑坡等地質災害和其他環境地質問題,必須加強對城市地下水環境和地質災害的監測。
(3)礦產資源開發對地質災害監測的需求
我國礦產資源開發帶來了很多環境地質問題,產生大量的地質災害隱患。每年礦石開采量57億~60億t,礦山企業每年產生固體廢棄物133.8億t、產生尾礦26.5億t,處置率僅為6.95%。礦山固體廢棄物任意堆放形成了嚴重的滑坡、泥石流等地質災害隱患,地下采礦活動誘發的滑坡、地面塌陷等地質災害十分突出。礦山地質環境監測十分薄弱,礦山地質災害防治工作任重道遠。為了保障礦產資源的安全開發和礦山地質環境的有效治理,必須加強礦山地質環境監測。
7.2.2 指導思想
應堅持以人為本,全面、協調、可持續的科學發展觀和人口、資源、環境協調發展的一系列方針政策。緊密結合經濟社會發展規劃的總體目標和要求,充分認識地質災害監測預警體系建設的重要性和緊迫性。動員社會各方面的力量,從我國地質災害發生發育的實際出發,尊重自然規律和經濟規律,正確處理長遠與當前、整體與局部的關系,依靠科技進步,運用新思路、新理論、新技術、新方法,實現對地質災害的有效監控和預報預警,為我國地質災害防治、地質環境保護和資源環境的可持續利用提供有力支撐。
7.2.3 基本原則
(1)與國家國民經濟社會發展進程相適應的原則
建立和完善與全面建設小康社會相適應的、符合可持續發展要求的地質災害監測預警體系,為國家和地方宏觀調控和指導國土資源開發與整治提供依據。
(2)突出「以人為本」
堅持按客觀規律辦事,從實際出發,講求實效,山區、平原和不同災種的監測重點各有側重的原則。在以突發性地質災害為重點的地區,應以最大限度地減少人員傷亡、保障社會穩定和人民生命財產安全作為主要目的;緩變性地質災害應以專業監測為主要手段進行監測與規劃。
(3)群、專結合的原則
建立以縣、鄉、村為基礎,全民參與、群專結合的群策群防體系,是多年來地質災害防治工作中總結出來的寶貴經驗,也是避免人員傷亡,把災害損失降到最低限度的重要保證。
(4)統籌規劃、分步實施、分級管理
密切結合生產力布局和人口分布狀況,對全國地質災害監測預警體系建設工作進行統籌規劃,制定切實可行的分階段實施方案,明確各級政府和企(事)業單位在地質災害監測中的責任和義務,建立統一管理和分級(國家、省、市、縣)管理相結合,處理好全部與局部、長遠與當前的關系,優先實施重點地區和重要經濟區(帶)的監測預警體系建設。
(5)監測網建設與保護並重
擯棄重建設、輕保護的觀念,嚴禁邊建設、邊破壞,通過法律、經濟等手段,明確保護責任,落實保護費用,切實保護監測儀器、設備、設施的建設成果。
(6)站網建設與能力建設並舉
在不斷完善地質災害監測網基礎硬體設施建設的同時,加強機構建設、法規制度建設、技術規范建設、信息系統建設、人力資源建設和研究能力建設。
(7)專業服務功能與公眾服務功能並重
地質災害監測信息既要為國家決策和專業調查評價提供支持,也要為社會公眾提供地質災害現狀信息和防災減災信息。
(8)依靠科技創新、提高監測工作質量
加強科學研究,改進監測設施,依靠科技進步,全面提升監測能力和服務水平。
(9)建立多渠道籌資機制
各級地質災害監測機構的監測經費要納入同級政府財政預算。多渠道籌集監測資金,設立各級地質災害監測專項經費,確保監測工作的順利實施。
7.2.4 目標
地質災害監測預警體系建設的目的是最大限度地減少人民群眾的生命財產損失,以保障經濟、社會的可持續發展;為國家及地方宏觀調控和指導國土資源開發與整治提供依據;從地質環境可持續開發利用角度提出地區發展戰略建議;為改善人居環境,保障交通大動脈安全暢通,水電工程正常運行等提供保障;為地區社會經濟發展提供決策參考。在基本掌握全國地質災害分布狀況與危害程度的基礎上,建立並逐步完善全國地質災害的監測預警網路體系。
(1)總體目標
從現在起到2020年,在逐步查明我國地質災害分布狀況與危害程度的基礎上,建成覆蓋全國的較完善的突發性地質災害群測群防網路體系;建成以省(區、市)及部分縣(市)地質環境監測站為骨乾的突發性地質災害應急反應體系;建成我國較完善的地質災害專業監測骨幹網路,重點地區及重要經濟區(帶)達到監測數據的實時採集、分析、預警預報的水平。使地質災害防治工作以被動救災為主的局面得到根本性扭轉,人為有效控制地質災害,使損失逐年攀升的趨勢得到有效控制。
(2)階段目標
1)到2010年,地質災害監測預警體系建設的目標如下:①群測群防監測網路覆蓋到全國突發性地質災害易發區的1400個縣(市),形成縣、鄉、村三級監測體系。②初步建成由各級政府和有關部門參與的全國地質災害專業監測骨幹網路。③初步建成重要交通干線和水利工程區的專業監測預警系統。充分推廣高新技術在地質災害監測中的應用,利用計算機技術、3S技術等先進手段,提高監測預報的自動化水平。④在進一步完善群、專結合,群測群防監測網路的同時,完成分布在全國各省(區、市)重大突發性地質災害隱患點的監測預警預報示範系統。⑤建成較完善的地質災害監測信息網路系統,重點地區及重要經濟區(帶)的專業監測要初步達到監測數據的實時採集、自動分析、自動預警預報的水平。⑥初步建成重點地區及重要經濟區(帶)地面沉降等緩變性地質災害監測網路系統。力爭使我國地質災害監測預警預報的儀器、設備達到國際水平。
2)到2020年,在地質災害監測管理法規、規章的支持下,要使國土資源部門對地質災害監測監督管理的職能全面到位,並逐步納入科學化、規范化和法制化的軌道;使地質災害監測體系的科學理論與技術方法達到國際先進水平,建成覆蓋全國的較完善的地質災害重點防治區突發性地質災害群專結合的監測預警預報網路;建成全國地面沉降、地裂縫等緩變性地質災害的實時監控體系;建成完善的地質災害監測信息網路,實現地質災害監測數據的自動化採集、傳輸、存儲和信息的實時發布。建成比較完善的地質災害防災預警指揮系統。
㈤ 滑坡預測預報研究
1.滑坡失穩時間預測預報
滑坡失穩時間預報研究,若從日本學者齋藤在第六屆蒙特利爾國際土力學與基礎工程會議發表的論文算起,至今已經有近30年的歷史。該問題的研究是世界公認的尖端課題。由於滑坡地質過程、形成條件、誘發因素的復雜性、多樣性及其變化的隨機性、非確定性,從而導致了滑坡動態信息難以獲得,又由於滑坡動態監測技術的不成熟和分析理論的不完善,因此,滑坡失穩時間的預測預報一直是一個十分困難的課題。很多學者對該難題進行了很多研究和實踐,取得了豐碩的成果。滑坡形成與變形過程是滑坡體岩土體蠕動變形的過程,所以幾十年來,滑坡時間預測預報的基礎一直是岩土體蠕動變形理論。以此為基礎,許多學者進行了多種研究和工程實踐,用於預報滑坡時間的方法主要有以下幾種。
(1)宏觀現象預報法
該方法是根據邊坡失穩前兆的反映進行直接預報。滑坡失穩前,表現出許多宏觀先兆,如坡體前緣頻繁崩塌、地下水突然變化、地聲異常、動物表現失常等現象,利用臨滑前這些宏觀現象,進行臨滑預報很有效。我國曾利用該方法成功地預報了寶成線須家河滑坡。但該法的有效性依賴於正確的地質分析和經驗判斷。
宏觀現象預報是指根據滑坡失穩前兆的反映進行直接預報的方法。滑坡失穩前宏觀現象可歸納為以下幾類:
1)地下水異常,如泉點數目、水量、水質、水溫等變化;
2)動物異常,如狗、蛇、黃鼠狼等出現異常行為;
3)地聲,如地下有隆隆的響聲和氣味異常;
4)滑坡地表變形,如拉張裂縫、鼓脹裂縫、地傾斜等;
5)滑體上的地物變形,如房屋牆壁開裂、倒塌、沉陷、樹林同向傾斜等;
6)滑體前端小型崩塌突然急劇增多。
宏觀現象預報只能大致判斷滑坡的危險狀況和可能破壞的時間,其精度不高。
(2)經驗型預報
經驗型滑坡失穩時間預報是指預報者根據自身的經驗和感覺而做出的預報,也可稱之為工程類比法時間預報。這些經驗和感覺來自於滑坡失穩前的宏觀現象、有限的位移觀測資料和其他工程滑坡失穩實例。
根據智利Chuquicamata露天礦滑坡位移監測資料,用外移法(順勢延伸變形曲線)做出的失穩預報見圖7-1。
日本學者齋藤通過大量實驗得出均質土坡發展為滑坡的時間與蠕變速率之間的經驗關系式為
南水北調西線工程地質災害研究
式中:tr為達到最終破壞所經歷的時間(min);ε為等速蠕變速率(min-1), 其中l為變形體後緣沿滑移方向兩側點間距,△l為兩側點間相對位移,△t為觀測時間。當ε=1×10-5/min時,距整體滑動大約還有1d時間;當ε=1×10-4/min時,距整體滑動僅有3h左右。tr與ε兩者在雙對數坐標上大致呈線性關系。
圖7-1 智利Chuquicamata露天礦滑坡的滑坡位移-時間關系曲線A,B為加速變形狀態;C為臨界失穩狀態;D為失穩狀態
(3)統計分析預報
統計分析預報也稱位移預報,是根據滑坡變形監測時間-位移曲線,統計分析出預報模型來預報滑坡失穩的時間。近幾年來,由於國內十分重視重大工程山體變形監測,如我國三峽庫區黃臘石、鏈子崖、黃河龍羊峽、雅礱江二灘、紅水河龍灘、湖南的五強溪水電站,以及重要礦山都建有觀測網,自動監測和半自動監測儀器逐漸增多。隨著監測手段的完善,為統計分析預報提供了先決條件。目前,國內外已提出許多統計分析預報方法和預報模型。主要有齋藤法、黃金分割法、曲線擬合法、灰色系統理論、Markov鏈狀預測、時間序列法、突變理論等。
滑坡失穩預報的宏觀現象預報、經驗型預報和統計分析預報方法為定性和半定量的時間預報方法。宏觀現象預報和經驗預報在精度上顯然不高,統計分析預報也多停留在滑坡變形時間位移曲線的數學處理和統計擬合上。齋藤法中很難確定蠕變曲線的加速度蠕變階段;黃金分割法中的分割系數也同樣很難確定;位移監測數據跳躍的不穩定性,使得時間位移曲線具有不可導(不連續)性和不光滑的特點,也影響著曲線多項式擬合;灰色系統預測、Markov鏈和時間序列法等的預測精度,有時甚至會得出錯誤的判斷。另外,由於統計分析的基本假定,預測不可外推時間過長,只能用最新的預測資料,才可能得出較為准確的預測模型,這樣就限制了統計分析方法在滑坡失穩長期預報中的應用。因此,只有從滑坡變形機制出發,考慮多因素對滑坡失穩的影響,才能獲得較准確的破壞時間預報,這就是滑坡失穩工程地質力學綜合分析預報的根本所在。
2.滑坡活動強度預測預報研究
滑坡活動強度包括活動速度和活動距離兩方面,此方面的研究就是滑坡運動特徵的預測。滑坡運動學研究的基礎是運動物理學和能量轉化和守恆定律,國內外滑坡預測預報研究主要有以下幾個方面。
(1)質點運動學預測法
把滑坡運動看做是質量集中於重心的質點運動,從而利用質點運動學和相應的能量轉化和守恆定律,研究滑坡的運動演化過程。有學者提出了滑速預測公式。實踐證明,這些方法在滑坡運動特徵預測中具有一定的適用性。但這些研究對滑坡邊界的假設太簡單,所以如何確定滑坡邊界條件仍是今後研究的重點。
(2)質點運動學與滑坡運動機理研究相結合的預測方法
基於不同的滑坡運動機理假設,國內外有不同的預測方法。具有代表性的方法有以下幾種。
1)王思敬等在對我國幾個大型滑坡運動機理研究基礎之上,通過滑坡運動全過程能量分析,提出滑速及最大滑距預測公式:
南水北調西線工程地質災害研究
式中:M為滑體質量;U為滑體變形能;H為重心落差;L為水平滑距;f為動摩擦系數。其反演結果與實際接近,只是假設過多。
2)奧地利學者在調查了世界33個大型滑坡的運動特徵後,提出等價摩擦系數fc的概念,並發現:
南水北調西線工程地質災害研究
式中:V為體積;a=-0.15666;b=0.62219。
根據下式計算滑速:
南水北調西線工程地質災害研究
式中:H為重心落差;L為水平滑距。此式為反推公式,在實際應用中有局限性。
與滑坡滑動時間預報一樣,滑坡活動強度的預測預報研究也不夠成熟,有待進一步加強研究力度和開拓研究領域,從理論上完善預測預報方法,從實踐上總結滑坡活動規律,為滑坡預測預報研究作出新的貢獻,推動滑坡學預測預報研究的發展。
㈥ 什麼是地質災害氣象預報
根據崩塌、滑坡、泥石流等突發性地質災害與降雨密切相關的特點,利用降水預測對地質災害實施預警預報。江西省從2002年開始開展地質災害氣象預報工作。
地質災害氣象預報
㈦ 滑坡、泥石流地質災害氣象預警預報
氣象因素是誘發滑坡、泥石流等地質災害的關鍵因素,開發基於Web-GIS和實時氣象信息的實時預警預報系統,實現地質災害實時預警預報與網路連接的地質災害預警預報與減災防災體系,對可能遭受的地質災害進行實時預警預報,及時廣泛地發布預警信息,有利於實現科學高效、快速地開展災害防治,從而最大限度地減少災害損失,保護人民生命財產安全,變被動防治為主動防治地質災害。
一、滑坡、泥石流地質災害氣象預警預報的主要依據
區域地質災害(滑坡、泥石流等)空間預測主要是圈定地質災害易發區,也就是前面論述的地質災害危險性評估與區劃。在區域地質災害空間預測的基礎上,結合實時的氣象動態信息,分析研究滑坡、泥石流等地質災害的主要誘發因素,研究同一地質環境區域,在不同氣象條件下發生地質災害的統計規律和內在機理,通過確定有效降雨量模型、降雨強度模型、降雨過程模型的臨界閥值,建立基於實時動態氣象信息的區域地質災害預警預報時空耦合關系,從而對區域性的滑坡、泥石流等地質災害進行危險性時空預警預報。
根據研究區域的地質條件、災害調查情況、氣象條件等,劃分地質災害易發區等級,統計已發生滑坡、泥石流等地質災害與有效降雨量、24小時降雨強度的相關性,確定出不同易發區不同等級的臨界降雨量(I、II),作為判別分析的閥值,確定降雨量危險性等級。降雨量小於I級臨界降雨量的為低危險性,降雨量介於Ⅰ-Ⅱ級臨界降雨量之間的為中危險性,降雨量大於II級臨界降雨量的為高危險性。
將各單元的有效降雨量與臨界有效降雨量進行對比,確定出各單元的降雨量危險性等級,將降雨量危險性等級和地質災害易發區等級進行疊加,疊加結果見表3-4和圖3-2,對應於4個不同的易發區把地質災害預警預報等級劃分為5級:其中,3級及3級以上為預警預報等級,5級為預警預報區的最高等級,1級和2級為不預警區,不同的預警預報等級採用不同的顏色予以表示。3級預警區是指應加強對災害點的監測地區;4級預警區是指應密切加強對災害點監測的地區,採取一定的防範措施;5級預警區是指應全天對災害點進行監測,直接受害對象尤其是住戶和人員在必要時應該採取避讓措施。在預警預報中,3級為注意級,4級為預警級,5級為警報級。
表3-4 地質災害預警區等級劃分表
圖3-2 區域地質災害宏觀預警構建思路示意圖
我國自2003年開展全國地質災害氣象預警預報工作以來,一些專家學者就致力於預警預報模型方法的研究與探索,主要經歷了兩個階段。
第一階段,2003~2006年,採用的是第一代預警方法,即臨界雨量判據法。該方法的主要原理是根據中國地貌格局、地質環境特徵及其與降雨誘發型崩滑流地質災害關系統計分析結果,以全國性分水嶺、氣候帶、大地構造單元和區域地質環境條件,進行一級分區;以區域分水嶺、歷史滑坡泥石流事件分布密度、地形地貌特徵、地層岩性、地質構造與新構造運動、年均降雨量分布等,進行二級分區;將全國劃分為7個預警大區、74個預警區;並分區開展歷史地質災害點與實況降雨量之間的統計關系,確定各預警區誘發滑坡泥石流災害的臨界雨量,建立預警預報判據模板(圖3-3);利用全國地質災害資料庫和縣市調查信息系統中的地質災害樣本和中國氣象局提供的降雨資料,通過統計分析,確定地質災害發生前的1日、2日、4日、7日、10日和15日的臨界雨量作為判據模板,建立地質災害氣象預警預報模型,開展地質災害預警預報。
圖3-3 預警預報判據模板
第二階段,即第二代預警方法。2006~2007年,「全國地質災害氣象預警預報技術方法研究」項目設立,開展了全國地質災害氣象預警預報方法升級換代的研究工作。劉傳正教授提出了地質災害區域預警理論的三分法,即隱式統計預報法、顯式統計預報法和動力預報法;並提出了顯式統計預警方法(稱為第二代預警方法)設計思路。該方法改進了第一代預警方法中僅依靠臨界過程雨量方法的局限,實現了臨界過程降雨量判據與地質環境空間分析相耦合。2007年該項工作取得初步研究成果,經完善後已在2008年全國汛期預警工作中正式使用。
根據地質災害區域預警原理和顯式預警系統設計思路,具體預警模型建立過程如下:
(1)地質災害預警分區。將全國分為7個預警大區,分區建立預警模型。
(2)地質災害氣象預警信息圖層編制。充分考慮地質災害發生的地質環境基礎信息、地質災害歷史發生實況等,共編制預警信息圖層30個。
(3)地質災害潛勢度計算。探索一條計算地質災害潛勢度的計算方法,根據歷史地質災害點分布情況,採用不確定系數法計算地質環境CF值、採用項目組創新提出的權重確定法確定權重,從而計算地質災害潛勢度。
(4)統計預警模型建立。以10km×10km的網格進行剖分,將地質災害潛勢度、歷史災害點當日雨量、前期雨量作為輸入因子,地質災害實發情況作為輸出因子,採用多元線性回歸方法,建立預警指數計算模型,從而確定預警等級。
二、美國舊金山灣滑坡泥石流氣象預警系統
目前世界上滑坡泥石流災害氣象預警主要是依據美國舊金山灣滑坡泥石流預警系統提出的臨界降雨閥值的方法。該系統在1985年至1995年期間運行了10年,後因種種原因被迫關閉。它是世界上運行時間最長的滑坡泥石流預警系統,其經驗值得思考。
Campbell從1969年開始研究洛杉磯滑坡發生機制,1975年提出了建立基於國家氣象局(NWS)降雨預報和(前多普勒)雷達影像的洛杉磯泥石流預警系統的設想。Campbell指出,泥石流預報還是可能的,可通過降雨強度和持續時間的監測,並與根據降雨-滑坡發生概率的關系所建立的臨界值進行比較,進行泥石流災害等級的等級預報。一旦超過臨界值,就要對居住在山腳下的居民發出預警,撤離危險地,最大程度地減少災害損失。Campbell提出的泥石流預警系統由以下方面構成:①雨量計觀測系統,記錄每小時的降雨量;②具有能夠識別暴雨地區降雨強度中心的氣象編圖系統;將降雨數據標繪在地形(坡度)圖及相關滑坡影響圖上;③實時採集數據和預警管理和通訊網路。
1982年1月初,災難性暴雨襲擊了舊金山灣地區,引發了數以千計的泥石流及其他類型的淺層滑坡。經濟損失達數百萬美元,25人死亡。盡管該地區的人們得知暴雨預報,但並沒有得到任何關於滑坡、泥石流的警報。盡管Campbell提出的建議沒有在舊金山灣地區得以實施,但1982年的這場災難性事件使得建立泥石流預警系統變得十分緊迫和必要。
圖3-4 加州La Honda的泥石流降雨臨界線
Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨臨界線(圖3-4)。他們用年均降雨量(MAP)對臨界降雨持續時間和臨界降雨強度進行了修正(標准化),即將臨界降雨強度修正為臨界降雨強度/年均降雨量(MAP)。他們建立的滑坡降雨臨界值是舊金山灣地區泥石流預警系統的基礎。1986年2月舊金山灣地區連降暴雨,美國地質調查局和國家氣象局聯合啟動了泥石流災害預警系統,通過NWS廣播電台系統發布了兩次公共預警。這是美國首次發出的泥石流災害預警。該次暴雨引發了舊金山灣地區數以百計的泥石流,造成1人死亡,財產損失達1000萬美元。如果不是預警系統的准確預報,損失將會更加嚴重。
1986年的泥石流災害預警是根據Cannon和Ellen(1985)確定的經驗降雨臨界值發布的。1989年Wilson等人在該經驗降雨臨界值的基礎上,建立了累積降雨量/降雨持續時間關系曲線,對不同的規模和頻率的泥石流確定不同的臨界值降雨量。據此USGS滑坡工作組進行泥石流災害預報。
Wilson自1995年一直研究困擾早期滑坡預警系統的泥石流降雨臨界值強烈受局部降水條件(地形效應)影響的難題。
如前所述,Cannon(1985)建立的舊金山灣地區的區域泥石流降雨臨界值,試圖用長期降雨量(MAP)來修正地形效應的影響。MAP是用來描述長期降雨氣候條件最常用的參數,可從標准氣象圖中獲得。Cannon建立MAP標准化臨界值,是滑坡預警系統的主要技術基礎。然而,正如Cannon本人所說,在早期滑坡預警系統運行過程中,發現降雨少的地區ALERT系統的雨量數據會產生「假警報」,反映了MAP標准化會出現低MAP地區的不一致性問題。後來Wilson(1997)將舊金山灣地區的MAP標准化方法應用到南加州和美國太平洋西北部地區,出現了明顯的低估或高估降雨臨界值的問題。
降雨量作為參數實際上反映了暴雨規模和頻率兩個綜合作用過程。美國太平洋西北部地區降雨量頻率高但每次降雨量小,導致年均降雨量大;而南加州地區則降雨頻率小但每次降雨量大,結果是年均降雨量小。年均降雨量標准化方法應識別出那些「極端」的降雨事件,即降雨量遠遠超過那些頻率高但降雨量小的暴雨事件。因此,對於估計泥石流降雨臨界值來說,單個暴雨的規模要比降雨頻率重要得多。
長期的氣候作用使斜坡本身達到了一種重力平衡狀態,即斜坡入滲與蒸發及地表排水之間達到了平衡。這種長期的平衡作用過程可能包含著無數已知和未知的機制。斜坡土壤的岩土工程性質、地表排水率及水網分布、本土植被都可能對局部氣候產生影響。Wilson用日降雨規模—頻率分析,重新檢查了年均降水量標准化臨界值的不一致性。在年均降雨量低的舊金山灣地區,泥石流的降雨臨界值高於MAP標准化的預測值。Wilson提出了參考的泥石流降雨臨界值,這有益於研究降雨與地表排水之間的相互作用。Wilson的研究表明,5年暴雨重現率可以代表降雨頻率與侵蝕率的優化組合關系。對三個具有明顯不同降雨氣候模式的不同地區(南加州洛杉磯地區、舊金山灣地區、太平洋西北部地區),採集了觸發致命泥石流災害事件的歷史雨量數據,建立了(引發廣泛泥石流發生)歷史上觸發大范圍泥石流的24小時峰值暴雨降雨量與參考降雨值(5年暴雨重現值)之間的關系曲線(圖3-5)。該關系曲線可用來估計泥石流的降雨臨界值,與Cannon的MAP標准化降雨臨界值相比,特別是可以在更加可靠點的范圍內通過插值估計出特定地點(特別是受地形效應影響的山區)的臨界值。
圖3-5 歷史觸發大范圍泥石流的24小時峰值暴雨降雨量與
盡管舊金山灣地區的滑坡泥石流氣象預警系統在1995年關閉了,但自1995年以來沒有停止對降雨/泥石流臨界值方面的研究。這些研究加深了對降雨、山坡水文條件、長期降雨氣象條件和斜坡穩定性之間相互作用的認識,這將為舊金山灣地區乃至世界其他地區的滑坡氣象預警工作奠定很好的科學基礎。
三、降雨監測與預報
舊金山灣地區滑坡預警系統運行的十年間,當地NWS的天氣預報主要依靠1987年2月發射的氣象衛星GOE-7(1997年被GOES-10所取代)。每隔30分鍾,GOES氣象衛星傳送覆蓋從阿拉斯加灣至夏威夷的北美西海岸雲團圖像。根據這些圖像,當地NWS可以估計出大暴雨的速度、方向和強度。圖像中的紅外波譜圖像還能指示雲團的溫度,它是估計降雨強度的重要信息。另外,地面氣象觀測站可獲得大氣壓、風速、溫度、降雨數據,與衛星氣象數據雨季NWS國家氣象中心提供的長期天氣趨勢預報信息相結合,當地NWS天氣預報辦公室綜合分析這些數據,准備和提供定量天氣預報(QPT),一天發布兩次加州北部和南部地區未來24小時天氣預報。
雨量監測(ALERT)系統能遠距離自動採集高強度降雨觀測數據,並將數據傳送到當地實時天氣預報中心。到1995年,舊金山灣地區ALERT系統已建立了60個雨量觀測站點(圖3-6)。盡管每個站點的建立得到了NWS的支持,但每個站點的設備購買、安裝和維護則由其他聯邦、州和地方政府機構負責。從1985年到1995年滑坡預警系統運行期間,USGS一直負責維護設在加州Menlo公園的ALERT接收器和數據處理微機系統。
要評估即將到來的暴雨是否會引發泥石流災害,要考慮兩個臨界值:①前期累積降雨量(即土壤濕度);②臨近暴雨的強度和持續時間的綜合分析。為此,USGS滑坡工作組在La Honda研究區安裝了淺層測壓計,並對土壤進行了監測。如果測壓計首先顯示出對暴雨的強烈反應,即認為已達到前期臨界值。通常冬至後需幾個星期的時間才能使土壤濕度超過前期臨界值,之後要隨時關注暴雨強度和持續時間是否足以觸發泥石流災害。
圖3-6 1992年舊金山灣滑坡預警雨量監測系統—ALERT
四、泥石流災害預警的發布
當暴雨開始時,開始監測降雨強度,估計暴雨前鋒到來的速度。根據觀測的降雨量,結合當地NWS的定量降雨預測(QPF);與建立的泥石流降雨臨界值進行對比分析,確定泥石流災害的類型和規模。NWS和USGS的工作人員共同參與該階段的工作,向公眾發布三個等級的泥石流災害預警:即①城市和小河流洪水勸告(urban and small streamsflood advisory);②洪水/泥石流關注(flash-flood/debris-flow watch);③洪水/泥石流警報(flash-flood/debris-flow warning)。在1986年至1995年間,多次發布了不同級別的泥石流災害預警。
五、小結
滑坡和泥石流災害的危險性預測主要是通過災害產生條件分析,預測區域上或某斜坡地段將來產生滑坡泥石流災害的可能性,圈定出可能產生滑坡泥石流災害的影響范圍及活動強度。滑坡泥石流災害危險性預測的指標體系結構層次如圖3-7所示,根據滑坡泥石流災害危險性預測的研究對象的差異性,可從三種研究尺度建立滑坡泥石流災害危險性預測指標體系。
圖3-7 地質災害空間預測指標體系結構層次圖
區域性滑坡泥石流災害危險性預測就是通過分析滑坡泥石流災害在區域空間分布的聚集性及規律性,圈定出滑坡泥石流災害相對危險性區域,從而為國土規劃、減災防災、災害管理與決策提供依據。不同的預測尺度對應於不同的勘察階段和研究精度。滑坡泥石流災害危險性區劃對應於可行性研究階段,要求對擬開發地域工程地質條件的分帶規律進行初步綜合評價,確定滑坡泥石流災害作用發生的可能性及敏感性,提交的成果是區域工程地質條件綜合分區圖和地質災害預測區劃圖。
㈧ 新疆地質災害預警、預報與防治
第一節 地質災害預警、預報與防治現狀
一、地質災害預警、預報與防治現狀
新疆地質災害預警、預報與防治工作起步較晚。截至2005年,主要工作內容為以下5個方面:
(一)群測群防系統建設與運行
本項工作始於2000年以來開展的《縣(市)地質災害調查與區劃》項目,截至2005年,已開展「縣(市)地質災害調查與區劃」工作的縣(市)共計33個,主要開展的工作內容包括:
1.以縣為單位建立了監測網
一級網—縣級監測網;二級網—鄉(鎮)級監測網;三級網—村級監測網。
2.主要工作內容
(1)定期巡視,汛期來臨前強化監測,主要對災害體的變形量和位移量進行測量。
(2)出現險情時採取預警、避讓等應急處理措施,以及其他緩解災害發生的措施。
(3)以居民點為防治對象,明確監測范圍和監測人,主要任務是目測災害體變化,發現異常及時上報。
(4)加強宣傳和培訓工作。
(5)編制地質災害防災預案,並廣而告之於民眾。
(6)對監測網點的管理和運行做出了明確規定,主要包括簽訂責任書;監測信息的及時反饋、分析處理、指導性意見的再反饋;落實汛期值班制度;建立地質災害災情速報制度等。
(二)地質災害應急反應系統建設
主要包括地質災害險情巡查、應急調查和速報工作。截至2005年底,全疆共出動300餘人次進行險情巡查和應急調查工作,提交調查報告40餘份。
僅2003年自治區國土資源廳先後共派出8個巡查和檢查組,33人次,行程22100餘千米,歷時49天,並於3月31日~4月13日專門派出汛期地質災害防治工作檢查巡查組,重點對伊犁地區、塔城地區、博爾塔拉州、昌吉州4個地(州)的新源縣、鞏留縣等9個縣(市)地質災害防治工作進行了巡查檢查。上述工作的開展避免了已發生災害點人員傷亡增多、財產損失加重、災情擴大;及時發現了新的地質災害隱患點,會同當地人民政府、國土資源局及鄉、村領導制定出預防措施,在很大程度上避免和減少了生命財產損失。
通過巡查檢查我區地質災害重點防治區域的防治工作情況,採取與當地政府座談等形式,提高了當地政府對地質災害防治工作的重視程度,保障了地質災害防治各項工作的順利進行。目前各地都不同程度地開展了地質災害險情巡查工作,遇有災情都能及時進行調查和上報,自治區國土資源廳以不定期工作簡報形式及時向自治區領導和國土資源部報告災情。
(三)汛期地質災害氣象預報預警
主要開展的工作有:確定了地質災害預報預警災害種類為區域群發突發性滑坡、崩塌和泥石流,地質災害氣象預報預警採用空間預報預警類型;劃分了預報預警等級、時間段及區域;地質災害氣象預報預警區劃及預報預警模式;制定了地質災害預報預警程序。
2003年地質災害氣象預報預警首先在伊犁至托克遜後溝天山南北麓區域試運行發布。由於新疆地質災害預報預警開展較晚,預報判據還未分析建立,採用專家分析方法進行預報。2003 年9 月15日~2003年9月30日,利用氣象局內部信息系統進行了試運行發布,資料傳送通過撥號進入氣象局網路設置的上傳下載專用文件夾,下載24小時降水預報等值線圖,上傳地質災害預報預警圖。
(四)全面落實地質災害防災預案的編制
年度汛期防災預案編制制度始於1998 年,近年來覆蓋面逐步擴大。2005年全疆14個地(州、市)均於2月上旬完成了本轄區「汛期地質災害防災預案」的編制工作,並報當地政府,預案編制覆蓋率達到了100%。防災預案對全區14個地區、46個易發區段、百餘處隱患點進行了預測,並提出了防禦措施。成功預報地質災害典型實例包括:鞏留縣莫乎爾鄉小莫乎爾溝孔格亞夏東側山體滑坡、新源縣別斯托別鄉恰普河牧業村別拉西滑坡,避免了24 人死亡、19萬元的經濟損失,並總結出了一套成功預報減災的經驗。
(五)地質災害空間信息系統建設
根據已開展的地質災害調查專項調查及相關調查成果,建立了地質災害空間資料庫。
(六)對重大地質災害(隱患)點開展了治理工作
主要包括:烏魯木齊市六道灣煤礦、阿勒泰將軍溝泥石流;西溝煤礦、哈密硫磺溝煤礦、昌吉五宮煤礦、哈巴河賽都金礦、富蘊喬夏哈拉金銅礦、伊犁伊能煤礦、巴音郭楞州石棉礦、烏市老君廟煤礦等礦山崩塌、滑坡、泥石流、地面塌陷災害治理。
二、存在的主要問題
地質災害預警預報及防治工作尚處於起步階段,在管理上、技術上尚存在較多不完善之處,有待進一步提高。
第二節 地質災害預警、預報與防治
一、地質災害預警、預報
(一)群測群防系統建設與運行
根據地質災害發育分布特點,按照「分步建立、逐步完善」的原則,建立自治區群測群防網路體系。「十一五」期間,完成52個縣(市)群測群防網路體系的建立。與此同時,建立專業監測骨幹網路,對於重要地質災害隱患點,由專業技術人員採用專業設備進行監測;因工程建設可能引發地質災害的,由建設單位安排專人負責地質災害監測,形成自治區專業監測骨幹網路體系,實現監測數據傳輸、自動處理。「十一五」期間,首先建成伊犁谷地、天山北坡經濟帶兩個區域重要地質災害隱患點的專業監測骨幹網路,之後,完成北疆、東疆重要地質災害點的專業監測骨幹網路的建設。
(二)地質災害應急反應系統建設
建成以自治區國土資源行政主管部門為指揮核心、自治區地質環境監測院為主體的自治區地質災害應急反應指揮中心,建成以各地(州、市)、縣(市)國土資源行政主管部門為指揮核心、地質環境監測機構和各地勘單位為主體的地質災害應急反應系統,構成全疆的應急反應系統。配置必要的專業設備,每年汛期前進行險情巡查,重點檢查各級防災預案、群測群防網路、汛期值班、監測責任的落實情況,並對主要地質災害隱患點進行險情巡查;汛期中對監測工作加強監督管理,接到險情或災情報告及時組織技術力量在最短的時間內趕到現場,調查災害原因、發展趨勢,協助當地政府採取應急措施,並提出處理對策,汛期後進行復查,總結經驗,部署下一年度的地質災害防治工作。
(三)汛期地質災害氣象預報預警
(1)正式開展地質災害氣象預報預警工作,主要區域為烏魯木齊以及西天山南北地區。
(2)地質災害預報預警的災種崩塌、滑坡、泥石流3種類型。
(3)預報等級按國土發 〔2003〕 229 號文件統一劃分為5 級:1級為可能性很小;2級為可能性較小;3級為可能性較大;4級為可能性大;5級為可能性很大。其中3級在預報中為預報級(注意級);4級在預報中為預警級;5 級在預報中為警報級;1、2 級為不發布級。
(4)地質災害預報預警信息的許可權:發布警報(5 級)由廳領導審批;發布預報信息(3、4 級)由廳地環處處長審批;不發布預報預警信息(1、2 級)由廳授權新疆維吾爾自治地質環境監測院主管領導審批。
(5)發布對象為各級國土資源主管部門及廣大社會民眾。
(6)完善地質災害氣象預報預警發布程序以及地質災害和氣象數據信息的傳輸、採集、匯總、分析和處理系統,引用最新的數據信息技術處理手段和方法,提高預報准確度。
(四)全面落實地質災害防災預案的編制
對新發現的地質災害(隱患)點編制防災預案,並落實實施。對已編制防災預案的地質災害(隱患)點,加強實施情況的監督和檢查。
(五)地質災害空間信息系統建設
通過地質災害空間信息系統的建設,建立比較完善的自治區地質災害資料庫、礦山地質環境資料庫、地質災害防治決策支持系統和信息管理系統,建成地質災害監控空間信息網路系統。對地質災害進行信息採集、匯總、分析和處理,及時反映地質災害綜合研究成果及地質災害預警信息,快速准確地將這些成果和信息提供給政府決策並傳播給廣大公眾,為新疆的經濟建設服務。
「十一五」期間完成52 個縣(市)地質災害資料庫建設,建成自治區地質災害監控中心站。通過互聯網實現區級中心站與國家中心站信息數據共享,及時為政府和社會提供服務,為國家防災減災提供基礎信息。建成14 個地(州、市)級監控站。實現國家、自治區中心站與地、州、市級監控站的網路互聯和信息數據共享。建立相對完善的基於地理信息系統(GIS)和互聯網的地質災害空間信息系統,實現地質災害監測信息採集、存儲、傳輸、處理及成果發布等全過程的有效管理與監控,提高處理突發事件的能力和地質災害防治水平。
(六)地質災害監測預報預警示範區建設
建立伊犁哈薩克自治州鞏留縣滑坡地質災害監測預報預警示範區。通過詳細的地質環境調查、災害歷史和降水歷史資料分析、滑坡和氣象水文監測等,研究滑坡災害的形成機制,掌握滑坡災害主要誘發因素,特別是融雪水和降雨在災害發生中所起的作用,確定發生滑坡的臨界降雨量、降雨強度和積雪深度,充分運用「3S」等現代化的技術手段開展滑坡災害氣象預報預警;完善鞏留縣滑坡災害監測預報預警示範區建設,建成鞏留地質災害防治示範縣;遠期推廣滑坡災害監測預報預警經驗。
二、地質災害防治
根據新疆地質災害易發程度分區,結合自治區國民經濟和社會發展計劃,將突發性地質災害防治劃分為地質災害重點防治區(Ⅰ)、次重點防治區(Ⅱ)和一般防治區(Ⅲ)。結合致災的災種不同和區域性地質災害的危害特點,在重點防治區內進一步劃分出4個防治亞區,在次重點防治區內劃分出2個防治亞區。
地質災害防治工作的重點放在易發程度高的經濟發達區、人口相對密集區和重要基礎設施建設分布區。按照「統籌規劃、突出重點、分步實施、全面推進」的原則,進行工作部署。
(一)重點防治區(Ⅰ)
1.伊犁谷地山區滑坡、泥石流、地面塌陷災害重點防治亞區(Ⅰ1)
分布於伊犁谷地黃土覆蓋的中低山丘陵區和煤系地層區,面積21632.24平方千米。滑坡、泥石流災害在新源縣、鞏留縣、尼勒克縣和特克斯縣尤為發育,地面塌陷災害在伊犁哈薩克自治州直屬8縣1市均有分布。「十一五」期間,制定伊犁哈薩克自治州直屬8縣1市的地質災害防治規劃,建立地質災害群測群防網路體系,新建伊犁哈薩克自治州地質環境監測站,開展汛期地質災害氣象預報預警,對受重要地質災害隱患嚴重威脅的學校、農牧民實施移民搬遷工程。
嚴禁已遷出危險區域的居民回遷。限制在重要地質災害隱患點威脅范圍內從事各類工程建設;確需建設且又無法避讓的,必須進行地質災害防治工程勘查治理。
2.重要交通沿線崩塌、滑坡、泥石流災害重點防治亞區(Ⅰ2)
該區包括216、217、218、219、312、314、315 國道山區段、南疆鐵路魚兒溝至和靜段、蘭新鐵路了墩至十三間房段等,面積20598.30平方千米。
完成217、312、314國道山區段的地質災害專項調查,劃定危險區,建立警示標志,制定防災預案,完成217國道獨—庫公路山區段、312國道果子溝段地質災害勘查。
在重要交通沿線兩側200米范圍內,嚴禁露天采礦活動,限制地下采礦活動;嚴禁誘發或加劇地質災害的其他人類活動。
3.天山南北麓和准噶爾西部山地低山丘陵含煤帶地面塌陷災害重點防治亞區(Ⅰ3)
該區包括准噶爾盆地西、北、東部、吐—哈盆地北部、塔里木盆地南部及天山南北麓的低山丘陵煤礦區分布段等。面積36353.38平方千米。
完成天山北坡經濟帶11縣(市)的以地面塌陷災害為主的礦山地質環境及地質災害專項調查工作,完成烏魯木齊市六道灣煤礦地面塌陷區治理示範工程,出台礦山地質環境治理恢復保證金制度實施辦法,全面推行礦山地質環境保護方案編審制度和新建礦山准入制度,嚴格執行礦產資源儲量壓覆佔用制度。
嚴禁威脅城鎮及重要工程設施安全的采礦活動,禁止在地面塌陷危險區進行其他人類活動。
4.大河流域山區段及西昆侖高山區以泥石流為主的地質災害重點防治亞區(Ⅰ4)
主要包括克蘭河阿勒泰市區段、葉爾羌河山區段(以暴雨泥石流為主)、喀拉喀什河、西昆侖高山區及天山南北麓大河山口段(以滑坡—泥石流為主),總面積25601.87平方千米。
完成克蘭河阿勒泰市區段、葉爾羌河山區段以泥石流為主的專項地質災害調查工作;完成阿勒泰市將軍溝泥石流治理和葉爾羌河、開都河山區段和庫車河、喀拉喀什河、奎屯河、瑪納斯河等出山口段嚴重威脅人民生命財產和重要工程設施安全的以泥石流、滑坡為主的地質災害隱患點的勘查治理工作。
嚴禁從事誘發對人民生命財產和重要工程設施安全構成威脅的泥石流、滑坡災害的人類工程活動。
(二)次重點防治區(Ⅱ)
1.中高山、極高山以崩塌、泥石流為主的地質災害次重點防治亞區(Ⅱ1)
分布在天山、昆侖山西段和阿爾泰山林帶以上的中高山、極高山地帶,面積135993.50平方千米。雪線以下的高山草甸多為良好的夏季牧場,局部地段存在采礦活動。通過分期開展地質災害調查與區劃,設立警示標志、實施避讓措施、加強地質災害防治科普宣傳等預防工作,以避讓為主,避免人員傷亡和財產損失。
2.中低山以崩塌、滑坡-泥石流為主的地質災害次重點防治亞區(Ⅱ2)
主要分布在阿爾泰山南坡、天山、昆侖山—阿爾金山北坡的中低山區等,面積105898.74平方千米。人類經濟活動主要為礦業開發和牧業生產。
通過分期開展地質災害調查與區劃,加強地質災害防治知識科普宣傳,採取以避讓為主的防治手段,達到防災減災目的;實施礦山地質環境保護方案編審制度、礦山地質環境治理恢復保證金制度,對礦業開發誘發的地質災害,採用工程、生物等多種措施進行治理。
(三)一般防治區(Ⅲ)
包括全疆除重點防治區和次重點防治區以外的所有地區,面積1322012.15平方千米。低山丘陵區多為小型崩塌和泥石流,局部地段存在滑坡;盆地平原區存在沙漠化、鹽漬化。
分期開展地質災害調查與區劃,採取避讓和生物工程措施對低山丘陵區地質災害進行防治,保護地質環境;通過科學規劃、合理開發利用水土等自然資源,保護並逐步改善生態環境;採取退耕還林、還牧、還草、植樹造林等措施,防治土地沙漠化;採取豎井排灌、井排與渠排相結合等降低地下水位的措施,防治土壤鹽漬化。
㈨ 地質災害可以預測嗎
地質災害可以預測復。
根據歷史地質災害活動規制律、形成條件、發生機制以及災害區承災能力等因素,運用邏輯推理、數值模擬和綜合分析等方法,推測和評估未來一定時期內地質災害的發展變化情況和可能的危險性與破壞損失程度。地質災害預測根據預測時間長短,可分為長期預測、中期預測、短期預測。根據預測內容分為時間預測(預測某一地區在未來不同時間地質災害的可能程度)、區域性預測(預測未來某一時間內地質災害的地區變化)和綜合預測(預測未來不同時間、不同地區的地質災害的可能程度)。地質災害預測的基礎是充分掌握地質災害形成條件和活動規律,建立有效的監測系統,運用科學的預測理論和方法。採用的主要預測方法有:相關分析法、類比分析法、專家會商法、計算機模擬等。在實踐中,大多需要多種方法相互配合進行預測。地質災害預測是評價地質災害風險的基礎,是地質災害研究的重要內容。
㈩ 地質災害預報制度
縣級人民政府國土資源主管部門和氣象主管機構加強合作,聯合開展地質災害氣象預報預警回工作,並答將預報預警結果及時報告本級人民政府,同時通過媒體向社會發布。當發出某個區域有可能發生地質災害的預警預報後,當地人民政府要依照群測群防責任制的規定,立即將有關信息通知到地質災害危險點的防災責任人、監測人和該區域內的群眾;各單位和當地群眾要對照「防災明白卡」的要求,做好防災的各項准備工作。