重庆市地理信息遥感中心
1. 重庆旭光测绘地理信息有限公司怎么样
简介:注册号:****所在地:重庆市注册资本:500万元人民币法定代表:肖尧企版业类型:有限责任公权司登记状态:存续登记机关:重庆市工商行政管理局渝北区分局注册地址:重庆市渝北区龙溪街道红锦大道500号旭日凤凰城1幢2-8-1
法定代表人:谭旭光
成立时间:2014-03-05
注册资本:500万人民币
工商注册号:500112000460723
企业类型:有限责任公司
公司地址:重庆市渝北区龙溪街道红锦大道500号旭日凤凰城1幢2-8-1
2. 重庆宏创遥感地理信息工程有限公司怎么样
简介:重庆宏来创遥感地理信自息工程有限公司成立于2011年09月22日,主要经营范围为土地房屋测绘信息咨询服务等。
法定代表人:林敬德
成立时间:2011-09-22
注册资本:50万人民币
工商注册号:500903000037655
企业类型:有限责任公司(自然人独资)
公司地址:重庆市北部新区天宫殿街道树兰路127号5幢3单元204号
3. 遥感地理信息系统及地学应用
邝生爱
当今,遥感、地理信息系统、全球定位系统和信息网络等高新技术,已成为一门新的信息产业正在蓬勃兴起,并快速渗透到各学科领域、国民经济和人们生活之中,推动着科技和社会向更高的层次发展。
1 几个概念
1.1 遥感(Remote Sensing)
远距离感知目标物或远距离探测目标物的物性。“遥”具有空间概念,即近地空间、外层空间乃至宇宙空间。“感”表示信息系统,包括信息获取和传输、信息加工和提取、信息分析和可视化系统等。所谓目标物即观测对象,就地学而言,有地表物体、地质体、地学事件等。关于目标物的物性,主要指物体对电磁辐射的特性。人们利用物体波谱特性差异达到识别物体的目的,因而地物波谱特性成为遥感地学的重要理论基础。
遥感图像处理系统(Remote Sensing Image Processing System):借助光学仪器和计算机设备对遥感图像进行加工、分析、综合和可视化的系统,目前常用的是计算机遥感数字图像处理系统。
1.2 地理信息系统(Geographic Information System)
在计算机支持下,采集、存储、管理、分析、综合和描述与地理分布有关的地理空间信息系统。
1.3 遥感地理信息系统(RS-GIS)
泛指遥感图像处理系统和地理信息系统的集成、一体化。
1.4 全球定位系统(Global Positioning System)
借助多卫星进行全球导航和定位的系统。
2 发展概况
2.1 一门新的信息产业正在兴起
遥感、地理信息系统、全球定位系统和信息网络是近几十年来才发展起来的高新技术,由于他们具有很强的先进性和实用性,在很短的时间内由新技术转化成新产业,形成自身的产品、产值、市场,并产生出巨大的经济社会效益。产业的兴起反过来又加速他们的发展和相互融合,形成新的学科和技术方法,并渗透到其他学科领域和社会经济部门。
2.1.1 遥感(RS)
航空、航天遥感使得人们能快速准确地获得大地域范围以致全球的各种信息,如气象预报、资源分布、灾害监测、环境污染等,所以各国竞相发展遥感事业。
航天遥感:苏联于1957年10月4日发射第一颗人造地球卫星以来,各国都以极大的热情和庞大的经济预算来开展航天遥感,特别是美国以极快的速度和惊人的成果展现于世。美国于20世纪60~70年代先后发射了气象卫星、资源卫星,开拓了航天飞机、地球空间站,向太空发射了多个探测器探测月球、火星、木星等行星和天体。法国、俄罗斯、加拿大、日本、印度等国也相继发射了相应的资源卫星。中国已有自己的气象卫星和资源卫星,实现了载人航天飞行,拟定了探月和太阳系行星的计划。遥感探测地面分辨率已达到米(m)级,波谱分辨率已达到纳米(nm)级,重复周期几天至几小时。在科学和经济部门的应用逐日普及,应用效果十分显著,很多部门已把遥感技术纳入到生产规范之中。科研部门和院校已设有相应的专业,正在批量的培养遥感技术人才,国家和政府部门已有相应的遥感中心和站点专门从事遥感数据的获取、分发和使用。所有这些在发达国家和我国都已形成了遥感信息产业,并有了相当规模的产值和快速发展前景。
航空遥感:应用飞机获取一定地域范围的遥感图像已成为平常事。就中国而言一些大中城市和一些沿海经济发达区都已飞行获得多个时段的遥感图像,用于城市规划和城市发展监测,如北京、上海、天津、武汉、西安、沈阳、环渤海湾、长江三角洲、长江流域、珠江三角洲等城市和地区。
遥感图像在图像处理系统的加工、增强、分析和综合处理下大大改善图像质量,提取各种专题信息来满足广大用户的要求。图像处理软件层出不穷、功能越来越强大。图像处理硬件随着计算机的快速发展,形成了大、中、小型的处理系统以满足国家、地区和个人的各种需求,特别是微机处理系统已相当普及。
由上可知,遥感技术的快速发展是与空间技术和计算机技术日新月异密不可分的。除此之外,在下面几个方面,遥感技术方法和理论开拓创新起着十分重要的作用:传感器——有摄像机、扫描仪、温度辐射计、微波辐射计、荧光辐射计等;波段——有近紫外、可见光、近红外、中红外、远红外、微波等;重复周期——由早期的几十天到现在几天到几个小时;分辨率——空间分辨率由几十米到几厘米,波谱分辨率由微米(μm)到纳米(nm)级;图像处理方法——由一般的增强、提取信息到人机交互对话、半自动识别;波谱信息——有实测地物波谱到直接从图像中提取或光谱重建;多尺度——由单一尺度发展到多种不同尺度图像融合;多数据源——由少数几种数据源发展到多种平台数据源,遥感信息和其他信息一起进行多元信息综合;理论拓宽——图像处理的理论依据由原来的概率统计理论拓宽到非线性理论、人工智能等多个领域。所以多波段、多时相、多尺度、多数据、高精度和快速,形成了遥感技术的很多特色,再加上图像处理技术和信息提取方法,使得遥感应用领域越来越宽,在某些行业已不可代替。
2.1.2 地理信息系统(GIS)
20世纪50年代,在欧洲刚刚萌芽的土地信息系统(LIS),其功能十分简单。到70年代随着计算机的快速发展,实用化的GIS已在美国、加拿大、德国、法国、瑞典、日本和澳大利亚相继出现。80年代GIS已进入普及和推广应用阶段,世界各国在基础GIS软件和应用软件的开发上取得突破性进展,其代表性的软件有ARCINFOR、MAPGIS等,在土地利用管理、城市规划、人口规划、资源管理、交通运输管理、安全管理等方面成为有关部门的必备工具。90年代随着GIS的深入发展和数字化产品的普及,数字城市、数字生活、数字地球的时代已经到来,GIS与其他学科的结合,地理信息的产业化已不可避免(标准化、信息共享、计算机软、硬件资源共享等)。
2.1.3 全球定位系统(GPS)
为军事目的服务的卫星导航、定位系统,现已向全球开放,人们在地球的任何地方都可以快速获取相应的地理坐标位置,只需持一个小小的定位接收器便可如愿。美国已发展到第三代定位系统,欧盟也在确立自己的“伽利略”计划,中国也有自己的定位系统(三个星),并与“伽利略”计划合作。
2.1.4 信息网络
20世纪70~80年代,人们为使得到的信息及计算机硬软件资源的共享,发展了计算机联网,出现了局域网络(如一个单位、一个局部地区),这些网络一出现就显示了极大的优越性,人们坐在自己的终端前就可调用他人、他部门的信息和享用别人计算机中的资源。80~90年代,人们可以跨区、跨国界以至国际间的通讯网络快速获取有关信息,网络以进入千家万户。随着无线通讯的普及化,人们可随时随地进出网络,网络已成为人们生活中不可缺少的东西。尽管网络会出现各种负面效应,但其发展趋势不减。
上述几个方面的科技进步和产业化告知我们,遥感和全球定位系统快速获取目标物的信息,以地理信息系统作为载体,快速流动在国际网络上,“信息高速公路”已经开通,信息革命正在我们身边发生,数字地球的时代即将到来。
2.2 人们的思维方式和行为正在发生变化
2.2.1 由宏观到微观、由整体到局部的思维方式
遥感的出现使得人们有可能从大地域范围以致全球角度,从宏观、整体上认识很多问题,使得局部不能认识的,从整体得到,使人们的思维方式更加全面、完整,使得事物的整体与局部的关系具体、明确,可避免“不识庐山真面目,只缘身在此山中”的片面思维方式。
2.2.2 一套全新的技术路线和工作方法
遥感图像处理不仅能给我们改善图像质量、增强和提取信息,更重要的是提供了信息综合、图像识别半自动化以及自动成图的技术前景。
地理信息系统提供了空间信息的存储、分析和成图功能,实现地理信息系统成图的自动化,大大减轻了人们的劳动力。
网络使人们对社会已有的信息和计算机资源实现全球共享,加速信息传播,真可谓“秀才不出门,便知天下事”。
2.2.3 出现了新的学科体系和机构
以遥感为基础的学科有:遥感地质学、环境遥感学、农业遥感学、城市遥感学、资源遥感学等。建立了很多的遥感机构:资源卫星发射机构、地面卫星数据接收站、遥感应用研究部门和遥感学科的专业及培训中心等。
以地理信息为基础的有:地理信息学,信息工程学等。建立了地理信息中心、站点、资源与环境遥感信息系统实验室及学术团体等。
2.2.4 政府的决策行为
西方国家政府正采取措施加速遥感发展和促使地理信息系统进一步产业化、标准化、国际化。中国政府也十分重视,有关部门正采取对策加速遥感、地理信息系统的发展。
3 新进展和发展趋势
3.1 RS技术新进展与趋势
3.1.1 遥感数据获取正在出现三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率、高时相分辨率)的新技术和趋势
多平台——如低、中、高轨道卫星,大、中、小、微型卫星等。
多传感器——如同一平台上装有摄像机、扫描仪、热成像仪、不同空间分辨率的成像仪等。
多角度——如垂向与侧向多角度成像。
高空间分辨率——如米级、厘米级的地面分辨率。
高光谱分辨率——如纳米级的波谱分辨率(如可见光波谱范围内分出十几个等级)。
高时相分辨率——如可重复观测的时间段达到小时级。
3.1.2 遥感图像处理正在出现新技术方法
海量数据压缩,数据融合,大地域图像无缝镶嵌,光谱重建,混合光谱分析,超多维光谱图像信息显示,信息提取模型化,智能化处理的理论与方法,SAR信息处理与成像理论,多波段多极化影像分析方法等技术新进展和趋势。
当高空间和高光谱分辨率遥感出现后,提出了一系列的技术方法问题:分辨率的提高遥感数据量呈几何数量级上升,成为所谓的“海量数据”,要处理这些海量数据自然受到存储、速度和时间的制约,所以就要进行数据压缩;高光谱分辨率可以使我们识别出更“精细”的地物,如何从图像的混合光谱中分离、重建和多维显示这些精心地物的光谱就成为技术方法的关键。
同一平台可获得不同地面分辨率的数据,如何让不同地面分辨率的数据满足不同尺度的实际需要,数据融合必不可少,而数据融合又受到几何精度和波谱保真的限制,为满足实际需要又有兼顾两个方面,所以出现了各种各样的融合方法。
大地域范围是遥感的优势,但是一景卫星遥感图像覆盖地面的范围总有一定的限度,而这个限度还随着地面分辨率的提高在缩小。当今人们的需求远远的超出这个限制,如几十至几百平方公里的地域,就需要几十景至几百景的图像镶嵌,这么多景图像可能出现由于时间差异带来的色彩、色调的不协调,为使整体图像的协调一致,无缝镶嵌技术应运而生。
3.2 GIS技术新发展与趋势
属性数据与空间数据库管理一体化;
多种数据格式转换;
基础地理信息系统的通用化、标准化;
专业应用二次开发;
WebGIS开发与完善等。
3.3 GPS技术新进展与发展趋势
高精度第三代GPS;
“伽利略”GPS系统。
3.4 RS-GIS-GPS集成一体化(略)
4 地学应用及实例
4.1 地学应用
现在的遥感地理信息系统在地学中的应用十分广泛,虽然应用的先后和效果不尽相同,但都受到人们的关注和重视,有的已经成为行业规范。据不完全统计,可分为如下几个方面:
(1)区域地质调查应用,
(2)矿产资源调查应用,
(3)水资源与水环境监测应用,
(4)土地利用监测应用,
(5)土地荒漠化监测应用,
(6)海岸带资源开发与环境保护应用,
(7)海洋岛礁及浅海海底地形调查应用,
(8)生态环境监测应用,
(9)区域地质环境调查应用,
(10)灾害监测应用,
(11)城市规划应用(含数字城市),
(12)区域规划应用。
…………
4.2 实例
至今,应用实例不胜枚举,但有两个方面值得注意:一方面是前人应用中带有规律性的认识和成果,另一方面是前沿探索性的成果。
4.2.1 带有规律性的认识和成果
前人所作的带有规律性的认识和成果也是相当的丰富,都值得我们去认真吸取,而作为有限教学时间内的教学内容,只能略举一、二。依笔者认为,无论遥感地理信息系统在哪方面的应用,信息提取技术方法是共同的,也是解决实际问题的技术关键,所以用三个不同领域的实例说明遥感地学信息提取模式的共性和特性。
遥感地学信息提取模式:
实例一:遥感在金矿地质调查中应用,
实例二:遥感在土地荒漠化监测中的应用,
实例三:遥感在盐湖监测中应用。
4.2.2 前沿探索性成果
在众多前沿探索性成果中,笔者认为高光谱遥感在识别矿物方面的应用是当前的难点和热点。实例:“高光谱遥感矿物填图研究”(略)
5 理论、技术方法问题
5.1 理论问题
5.1.1 地物的异物同谱或同谱异物问题
前面已提到,地物电磁辐射特性是遥感最基础的理论,人们利用地物波谱特性差异来识别不同地物。但是在实际应用中,存在异物同谱或同谱异物的现象,即不同地物有相同的波谱特征,这时遥感就不能发挥作用。
5.1.2 地物分布的随机性和非随机性
遥感应用中,普遍认为在一较大的地域范围内,地物分布是随机的,于是可借用概率统计的一套方法来增强和提取目标地物信息,这样做往往获得成功,所以在图像处理软件中有一套完善的方法来满足专题信息提取的要求。但实际地物的分布还存在着非随机性,那么概率统计方法失效。例如有些地物分布存在着自相似性,人们采用非线性的分形分维方法加以解决。例如还有模糊理论、人工智能理论来完成相应的任务。
5.2 技术方法问题
5.2.1 实测地物波谱与遥感图像波谱的不一致性
实测地物波谱有室内标准样品波谱和野外实测地物波谱。遥感图像波谱是瞬间获得的实时像元混合光谱。二者在观测时间上和像元分辨率上都存在差异,其波谱显然有差异,有时还会很大,这就需要分析和处理。
5.2.2 地物图像波谱的时效性和地域性
有些地物的图像波谱会随着时相的不同而变化,如植被、土壤等,这种变化可称为时效性;有些地物波谱会随着地域的不同变化,如同一种岩石在潮湿地区和干旱地区,其波谱有差异,这叫地域性。在应用时必须注意这些特性,并采取必要的方法。
5.2.3 地物信息增强和提取方法的不唯一性
遥感图像地物信息增强和提取方法众多,虽然有不少方法是公认的但不是唯一的。特别是在增强和提取隐信息和微弱信息时,有些方法不奏效,并不等同不能提取,而可能是还没有找到合适的方法,有待深入探讨。
参考文献
陈述彭等.1995.遥感大辞典.北京:科学出版社
陈述彭等.1995.遥感资源纲要.北京:科学出版社
马霭乃.1997.遥感信息模型.北京:北京大学出版社
陈述彭.1998.遥感信息机理研究.北京:科学出版社
傅肃性.2002.遥感专题分析与地学图谱.北京:科学出版社
李树楷.2003.遥感时空信息集成技术及其应用.北京:科学出版社
曾志远等.2004.卫星遥感图像计算机分类及地学应用研究.北京:科学出版社
魏钟铨.2001.合成孔径雷达卫星.北京:科学出版社
孙天纵等.1995.城市遥感.上海:上海科学技术文献出版社
国土资源遥感.(季刊)1990年至今各期
用户简讯.中国科学院遥感卫星地面站(季刊)1998年至今各期
陈建飞译.2004.地理信息系统导论.北京:科学出版社
何建邦等.2003.地理信息共享的原理与方法.北京:科学出版社
李洪涛.2000.GPS应用程序设计.北京:科学出版社
地理信息世界.中国地理信息系统协会(季刊)1995年至今各期
张永生等.2005.高分辨遥感卫星应用——成像模型、处理算法与应用技术.北京:科学出版社
赵英时等.2003.遥感应用分析原理与方法.北京:科学出版社
承继成等.2004.遥感数据的不确定性问题.北京:科学出版社
钱乐祥.2004.遥感数字影像处理与地理特征提取.北京:科学出版社
李天文.2005.GPS原理与应用.北京:科学出版社
汤国安等.2004.遥感数字图像处理.北京:科学出版社
邝生爱等.2002.农牧交错带土地沙化遥感监测.国土资源遥感
田淑芳等.2005.西藏扎布耶盐湖总盐含量遥感定量分析.现代地质,2005年第19卷,第4期
4. 应届硕士去重庆地理信息中心待遇怎么样呢一年有10w吗
在这能来遇到了解公司的人解答源,概率还是很低的,如果没有认识的内部人问,还是直接投递简历,争取机会面试,当面向招聘HR人员了解公司情况和待遇。岗位不同待遇也不一样,同岗位工作经验和技能高低待遇也有差别,所以别人也难解答你
5. > 重庆大学通信与测控中心
通信与测控中心成立于2008年。其前身是通信与测控研究所,由著名通信与测回控专家杨士中教授创建于答1986年,在行政上先后挂靠于原无线电系、原信息工程学院、通信与测控工程学院。通信与测控工程学院由中国工程院院士杨士中教授任第一任院长,2008年根据科研和教学发展的需要又分离为通信工程学院和通信与测控中心。杨士中院士任通信与测控中心首席科学家。 通信与测控中心主要从事通信与测控学科领域的科学研究与高端创新人才培养。中心下设院士办公室(兼通信与测控总体设计室)、产学研办公室、通信与遥感信息传输研究室、飞行器测控与雷达研究室、电磁场与微波技术研究室、CNGI移动IP研究室。 在学科建设方面中心有国家重点学科:电工理论与新技术(与电气工程学院共建);通信与信息系统博士学位授权点;电路与系统博士学位授权点。 在科研基地方面中心有国家211工程重点学科基地:运载器测控及遥感信息传输技术学科基地;国家985工程重点建设科技创新平台: 运载器测控及遥感信息传输研究院;重庆市运载器测控及遥感技术信息传输重点实验室。 中心现有用房2000多平方米,高端实验仪器设备16台(套),价值2000多万元。
6. 遥感与地理信息系统一体化的详细信息
本专题介绍以下几个内容:
l遥感与GIS
l遥感与GIS一体化集成技术
lENVI/IDL与ArcGIS一体化集成方案
lENVI/IDL与ArcGIS一体化集成操作演示
lENVI/IDL与ArcGIS集成开发案例
1 遥感与GIS
遥感是空间数据采集和分类的有效工具,GIS是管理和分析空间数据的有效工具(彭望琭等,2002)。两者是空间信息的主要组成部分,有着必然的联系。遥感具有动态、多时相采集空间信息的能力,遥感影像已经成为GIS的主要信息源。作为GIS的核心组成部分,遥感影像是提供及时信息的理想方式。在遭遇灾害的情况下,遥感影像是唯一我们能够立刻获取的地理信息;在地图缺乏的地区,遥感影像甚至是我们能够获取的唯一信息;
下载(47.43 KB)
5 天前 22:20
图1 遥感与GIS
在空间信息的许多行业,离开遥感影像,GIS就是不完整的。另一方面,遥感获取丰富的、海量的空间数据有赖于GIS的有效管理与共享,同时利用GIS强大的空间分析功能提取更深层次的专题信息,全面提升影像的利用价值。
下载(46.73 KB)
5 天前 22:20
图2 遥感与GIS一体化集成意义
2 遥感与GIS一体化集成技术
遥感影像类似于GIS中的栅格数据,遥感和GIS很容易在数据层次上实现集成(邬伦等,2001)。GIS软件没有提供完善的图像处理功能,遥感软件中也缺少空间分析及数据管理工具。遥感和GIS一体化集成,可以有以下三个层次及途径实现。
(一)数据一体化管理与共享
l数据互操作
遥感影像和图像分析功能可以作为核心组成部分与GIS实现一体化,首先解决的问题就是遥感与GIS平台之间的数据互操作问题。数据互操作实现有两个途径:
一是将遥感数据或者GIS数据都以标准格式保存,两个平台都支持;
二是遥感和GIS平台直接支持对方数据格式。很明显后者比前者更加方便。
l栅矢数据集中和分布式管理
在遥感中,数据主要储存格式为栅格,GIS中主要由矢量数据格式组成。栅格和矢量一体化管理,需要这样一种数据模型,同时储存栅格和矢量数据,支持分布式管理。
l基于服务的企业级共享
影像天然地具有企业级应用的潜力,因为它可以实现多个用户在同一幅图上同时进行操作。而这对于大型企业级应用更加有利,其中最主要的一项优势就是节省成本。我们可以分享同一影像资源,从而显著地减少成本。而影像由于自身的特点,具有很高的存储要求,尤其是那些高空间分辨率、多光谱影像。传统以纸质影像图或者电子文件分发的形式也能实现数据共享,但是共享效率比较低。如今基于Web services的共享方式提供了一种合理的解决方式,它集中利用了计算机资源,可以为若干个客户端提供影像共享服务。
(二)平台一体化分析
在遥感软件中进行的图像处理工作流,与GIS软件下的GIS工作流实现无缝链接和交换。如在遥感软件中处理的数据通过菜单功能直接传送到GIS软件中,无需中间的保存、打开等步骤;GIS软件中分析的数据,直接导入遥感软件中,并且保持同步显示;遥感软件中集成GIS软件的部分组件功能。
虽然在两个不同的软件平台下工作,操作感和处理效率类似在一个平台下作业。
(三)系统一体化集成开发
大多数遥感和GIS软件平台都提供了二次开发功能。如在进行GIS系统开发时,将专业的影像数据处理和分析工具集成到GIS系统环境中,在同一系统中既能完成遥感数据的专业处理与分析,又能完成GIS空间分析和发布共享等工作,形成一个遥感与GIS一体化集成系统。
要实现一体化集成开发系统,前提是遥感和GIS软件平台提供的二次开发接口,都能通过程序开发语言调用,并整合在一起。
3 ENVI/IDL与ArcGIS一体化集成方案
遥感与GIS不仅从数据上,还会从整个软件构架体系上真正实现融合,从而可以达到优势互补,进一步提升GIS软件的可操作性,提升空间和影像分析的工作效率,并有效节约系统成本。为了适应这种新的用户需求和未来的技术发展趋势,更好地为用户提供服务,全球最大的GIS技术提供商ESRI公司与全球遥感领域的领导者美国ITT Visual Information Solutions(简称ITT VIS)公司,建立了全球战略合作伙伴关系,共同开发和建设遥感与GIS一体化平台。
ENVI是由遥感领域的科学家采用IDL(交互式数据处理开发语言)开发的一套功能强大的、完整的遥感图像处理软件。ArcGIS是由ESRI公司开发的、全球使用最广的GIS软件。ENVI/IDL与ArcGIS一体化集成解决方案,在真正意义上实现了遥感与GIS一体化集成。
(一)数据一体化管理与企业级共享
lENVI/IDL与ArcGIS数据互操作
从2007年6月开始,ESRI公司和ITT VIS公司宣布两者的商务和技术合作计划。两个平台互相支持对方的格式,同时两者都支持一些通用文件格式,如GeoTiff、JPEG2000等(图3)。
图3 ENVI/IDL与ArcGIS数据互操作
l栅矢数据集中和分布式管理
Geodatabase是按照一定的模型和规则组合起来的存储空间数据和属性数据的容器,已经成为ArcGIS的核心数据模型,它实现了多源空间数据的集中和分布式管理。它是一种天然的遥感与GIS数据一体化储存模型。根据不同的应用需求,它分为三个级别:File Based Geodatabase、Personal Geodatabase、Enterprise(SDE)Geodatabase。其中Enterprise(SDE)Geodatabase支持分布式管理与储存。
图4 天然的遥感与GIS数据一体化储存模型
ENVI完全支持ArcGIS Geodatabase各个级别的读写,在ENVI、ENVI Zoom、ENVI EX中,都可以通过菜单Remote Connection Manager打开相应的面板,也可以通过Save to ArcGIS Geodatabase菜单将数据保存到Geodatabase。
图5 打开Geodatabase以及服务的数据
图6数据保存到Geodatabase
l基于服务的企业级共享
ENVI可以当作一个客户端,打开OGC标准的服务(WCS/WMS),这些服务可以是ArcGIS Server发布的。
其中WCS服务发布的影像数据保留了原始的数据的像元值和波段信息,因此通过WCS服务获得的影像可以做进一步的分析,跟分析本地影像效果是一样。
图7 远程数据接收与本地处理、成果共享
(二)ENVI/IDL与ArcGIS平台一体化分析
最新版的ENVI4.7推出专门为GISer使用的ENVI EX模块,这个模块整合了部分ArcGIS®和ENVI功能,将影像处理和分析与GIS工作流无缝链接到一起,在ENVI EX中能完成三个方面的工作:
1)无缝链接GIS工作流
ENVI EX将影像处理和分析与GIS工作流无缝链接到一起,在ENVI EX中能实现:
轻松交换数据和图层文件:ArcGIS中的数据或图层文件(*.lyr)可以通过鼠标拖拽方式放到ENVI EX上进行显示。
查看和处理ArcGIS图层:ENVI EX支持ArcGIS的图层符号化显示,即可以完全按照ArcGIS风格和样式显示图层数据。
同步查看图像处理结果:在ENVI EX下执行图像处理过程中,动态修改参数,在ENVI EX和ArcGIS可以看到相同的变化结果。
2)向导式专业影像处理工具
ENVI EX提供GIS用户最需要的图像处理和分析功能,并以流程化、向导操作方式提供。并具有透视窗口随时预览处理结果。
3)成果共享
ENVI EX提供多种成果共享方式,将影像处理与分析结果无缝集成到GIS工作流中。
l存储为通用格式或PowerPoint文件
l直接保存Geodatabase或输出Shapefile
l在ENVI EX中直接调用ArcGIS制图组件进行出图
l通过菜单直接将成果导入ArcMap进行制图,无需中间保存与打开过程。
同样ENVI Zoom视窗具有ENVI EX类似的功能。
图8 平台一体化分析方式
(三)ENVI/IDL与ArcGIS集成开发
ENVI是一个非常开放的平台,提供一个健全的函数库(图9),几何涵盖ENVI平台大部分图像处理功能。
图9 ENVI部分函数库列表
同时IDL具有很好的扩展性,能很方便地与其他开发环境(VB、VC、.NET、Java等)进行集成开发。IDL可以通过以下方式与其他语言集成开发:
1)Callable技术
IDL作为动态链接库被外部程序调用的技术。使用Callable 技术,外部程序可以像IDL命令行一样使用IDL命令或调用执行IDL的程序。
简单实现方法(在vc6.0):
1.将ITTIDL71externalinclude目录下的idl_export.h头文件,添加到VC工程中
2.工程→设置→连接 中的对象/库模块 中 添加idl.lib
3.添加Library files 安装路径ITTIDL71BINBIN.X86
4.系统变量path中添加IDL的安装路径ITTIDL71BINBIN.X86
5.进行初始化IDL_Win32Init(0,handle,NULL,0)
6.执行IDL命令行IDL_ExecuteStr(“restore,‘satstretch.sav’”)
7 .IDL_Cleanup(true)
2)对象输出助手
将IDL编写的功能模块输出为Java类和COM组件(.DLL或者.OCX)。
3)IDLDrawWidget (VS2005中)
首先在建立一windows应用程序。在工具箱上右键→选择项→COM组建选中IDLDrawWidget Control 3.0 拖动 控件到窗体上 axIDLDrawWidget1.IdlPath设定IDL库文件目录 n = axIDLDrawWidget1.InitIDL((int)this.Handle) axIDLDrawWidget1.ExecuteStr(“”);执行IDL命令 4)COM_IDL_CONNECT
同IDLDrawWidget类似。
同时,ArcGIS提供ArcObjects软件组件库,它提供了模块化、可伸缩、跨平台的通用API。
ENVI/IDL与ArcGIS集成开发可以通过以下三个途径实现:
图10 三种集成开发模式
1)ENVI / IDL与ArcGIS桌面定制
通过ArcGIS桌面SDK及开发语言(如Python、VBA、VB、VC、.net等),将ENVI/IDL图像处理与分析功能集成到ArcMAP中:
图11将 ENVI/IDL功能嵌入ArcMAP Toolbar中
图12 ENVI/IDL功能嵌入ArcToolBox中
图13 ENVI/IDL功能嵌入ModelBuilding(GP工具)
2)ENVI / IDL与ArcGIS Engine
ArcGIS Engine是组件式开发工具包,可以灵活、方便地定制地图及GIS解决方案。ENVI / IDL与ArcEngine的一体化集成开发具有以下三个特点:
1.通过ArcGIS Engine解决了数据浏览、栅格矢量叠加、矢量编辑、渲染、专题制图以及空间分析等问题;
2.将ENVI/IDL作为影像处理引擎,解决专业的影像处理过程;
3.基于成熟平台的二次开发,快速实现了系统无缝集成开发,而且大大减少了程序的开发量、开发周期,减少了系统开发的风险,开发者可以将大部分精力放在系统业务流程上。
图14 ENVI/IDL与ArcEngine一体化集成开发
3)ENVI / IDL与ArcGIS Server
将ENVI/IDL图像处理与分析功能集成在服务器端,以ArcGIS Server作为地图服务器,将处理结果传递到客户端,较好地实现了B/S模式下对影像实时计算处理的需求。
ENVI/IDL与ArcGIS一体化集成打破了传统单一的遥感图像处理流程,形成影像数据处理与分析、管理、空间分析、发布共享的空间信息工程化与流程一体化(图15)。
图15空间信息工程化与流程一体化的最佳组合
4 ENVI/IDL与ArcGIS一体化集成操作演示
(一)企业级共享
下面以一个比较简单的例子演示这个过程。
1)将ENVI中处理好的数据用ArcGIS Server发布成wcs服务。
图16 发布wcs服务
2)获取WCS服务的URL地址。
图17 获得WCS服务URL
3)打开ENVI或者ENVI Zoom或者 ENVI EX,这里打开ENVI EX。在ENVI EX中,选择File->Remote Connection Manager(图18),在Remote Connection Manager中New一个连接,连接的属性面板中(Connection Properies)中,Type中选择OGC Web Coverage Servics(WCS)项,将WCS服务的URL输入URL项中,后加一个英文半角“?”,其他信息自动从URL中获取,单击OK。
图18新建一个WCS连接
4)可以看到获取的WCS服务中的影像数据(图19)。单击Open按钮,将获取的数据在ENVI EX中打开。
图19 获取的WCS服务中的影像信息
5)在ENVI EX中打开的WCS服务中的影像数据(图20),可以对这个影像数据进行分析,如这里对其进行Classification,这是一个流程化的操作,一路Next下去(也可以修改一些参数),其中可以打开Proview功能对结果随时预览。
图20 对WCS服务中的影像数据进行分析
6)到输出结果步骤时,可以选择GDB或者Shapefile,这里选择保存到GDB中(如图21)。
图21 保存结果到Geodatabase中
这样我们就完成了一个比较典型的影像共享过程:影像服务发布(数据中心)->使用影像服务(数据使用单位)->浏览与分析影像->分析结果储存与再次共享。
(二)平台一体化分析
下面以利用影像来更新矢量数据的例子演示ENVI/IDL与ArcGIS平台一体化分析过程。
1)将“旧”矢量数据和“新”的影像数据加载到ArcMAP中(图22)。
图22 加载矢量和影像数据的ArcMAP
2)根据“旧”矢量数据和影像目视解译结合方法选择部分矢量要素作为样本。生成新的一个矢量图层。
图23 选取的样本
3)打开ENVI EX(ENVI Zoom也可以),鼠标左键在ArcMAP中单击样本矢量层拖拽到ENVI EX中,可以看到ENVI EX中已经将样本图层打开并保持ArcMAP一样的专题符号。同样的方法将影像拖拽到ENVI EX中(图24)。
图24ENVI EX中打开矢量样本和影像数据
4)在ENVI EX中,鼠标左键按住影像图层拖拽到Toolbox中的Classification流程化工具中。启动Classification流程化工具。单击Next按钮,选择监督分类(Use Training data),将前面的矢量样本导入(图25)。
图25 选择矢量样本
5)同样可以用Preview预览分类结果。一路Next,在Save Results同样可以选择保存文件还是GDB。这里选择保存为shapefile文件。
6)在ENVI中加载获得的结果,选择File->Print,集成了ArcMAP制图输出组件,支持ArcMAP制图模板。
图26 打印输出结果
7)或者在ENVI EX的Layer Manager中分类矢量结果图层上单击右键,在快捷菜单中选择Send to ArcMap命令,可以直接将结果传送到ArcMap平台中。
8)选择ENVI EX中的Geo Link To ArcMap命令,可以将ENVI与ArcMap进行地理链接,使两个平台浏览的范围保持一致。
这个例子完成了一个GIS工作流与遥感工作流无缝链接的过程。
5 ENVI/IDL与ArcGIS集成开发案例
(一)城市遥感动态监测管理系统——北京建设数字科技股份有限公司
以地理信息基础平台为基础,3S技术一体化为核心,结合专业遥感处理软件ENVI,实现对城市范内区域、街道、重点对象的影像特征的采样和分析,快速获取其空间特征。并利用ArcGIS Engine的叠加分析、缓冲区分析等功能,实现对多时相城市航空影像数据之间、遥感影像数据与规划编制、规划审批成果之间的比对分析,及时了解城市的土地利用变化情况,掌握城市建设中与规划不符的情况。并通过核查上报、统计分析等手段,为城市规划监察、城市管理服务。
图27 系统主界面
图28 遥感影像信息分类提取
(二)环北京土地利用动态监测与评价平台——2009ESRI开发大赛ENVI/IDL组一等奖作品,首都师范大学
系统的基本功能包括各种栅格数据的加载、显示(单波段显示和多波段合成)、数据管理、数据格式转换、波段统计、ROI选取工具、图像的增强等功能。
在业务功能方面,系统主要分成类三个模块,其中包括监测指标和计算模块、土地利用信息提取模块和土地资源监测评价模块。监测指标和计算模块的功能主要包括NDVI(归一化植被指数)、MSAVI(土壤调整植被指数)、FC(植被覆盖度)、Slope(DEM的坡度计算)和PCA变换(主成分变换);土地利用信息提取模块包括基本的图像信息提取方法,如监督分类、非监督分类、目视解翻,并提供的基本的分类后处理的功能;土地资源监测评价模块主要包括:土壤侵蚀监测评价、土地退化监测评价、土地沙化监测评价和土地盐碱化监测评价。其中前两种评价主要是用IDL编写的决策树算法,后两个评价介于ArcGIS Desktop的model builder创建模型,在ArcGIS Engine的Geoprocessing中进行调用。
图29 系统主界面
图30 土壤侵蚀监测评价子模块
图31 支持向量机监督分类
(三)遥感震害快速评估技术系统——中国地震局地壳应力研究所
遥感震害快速评估技术系统是在地震遥感震害快速增强、震害分类提取与震害评估技术研究的基础上,针对国家抗震救灾指挥和地震现场评估的需要,研制的适应近地表遥感信息获取系统获取的多景图像的技术系统。用户可以利用该系统在图像接收后2-6小时内提供初步的宏观灾情提取结果与损失评估结果,6-18小时内提供准确的宏观灾情分布结果和损失评估结果。
遥感震害快速评估技术系统的主要功能包括遥感(RS)和地理信息系统(GIS)的无缝结合,近地表数据处理,遥感影像快速校正,遥感影像快速增强,用面向对象等实用的分类技术进行震害识别,震害损失评估,与数据库结合,成果图像的快速显示和制图,专用的评估流程和集体评估的集成。
图32综合评估平台
图33 影像自动配置子功能
(四)农作物调优栽培决策支持系统——国家农业信息化工程技术研究中心
农作物调优栽培决策支持系统是依托农业部公益性行业科研专项“主要农作物调优栽培信息化技术”项目,基于最新的ENVI/IDL技术、WebGIS、GPS、企业空间数据库、通信技术、作物模拟技术等信息技术和农学知识的高度集成,建立的用于主要农作物调优栽培的信息化决策支持系统。
系统主要面向农业管理部门、农业生产部门(如农场)、作物协会(如谷物协会)及大型涉农企业的专业技术及生产管理人员,对主要农作物的产前优良品种种植区划——产中调优栽培及产量、品质预报——产后指导按质收购等作物生产全过程进行信息化管理,最大限度地为农作物生产的信息化管理与粮食政策的制定提供决策支持。
系统通过采用ENVI/IDL编程技术实现对遥感影像的实时计算和处理,生成初步的作物分类结果以及影像光谱指数,结合野外采集的GPS定位数据、农学样点信息,综合分析各种常用的农学模型,通过WebGIS技术实现实时直观的专题图、统计图表、细节点击查询等多种展现方式,实现对作物长势监测、作物产量估算、作物品质预测、病虫害监测、干旱监测、冻害监测、肥水诊断等作物生产全过程的信息化管理。
系统采用Oracle10g +ArcSDE作为空间数据库,后台采用ENVI/IDL、ArcGIS Engine、ArcIMS实现遥感影像处理与发布,前端页面展现完全基于Ajax技术构建,综合采用了OpenLayers、JQuery、Google Maps API等脚本库。
图34 自定义植被指数计算界面
图35 作物长势分级专题图
6总结
随着空间信息市场的快速发展,遥感数据与GIS的结合日益紧密。遥感与GIS的一体化集成逐渐成为一种趋势和发展潮流。ENVI/IDL与ArcGIS为遥感和GIS的一体化集成提供了一个最佳的解决方案。
7. 武大测绘本科 去重庆市勘测院 和重庆地理信息中心 哪个发展好一点
重庆市勘测院(重庆市地图编制中心)始建于一九五0年,坐落在重庆市江北区电测村231号,是隶属于重庆市规划局的事业单位,主要从事测绘与地理信息、工程勘察、工程设计、计算机系统集成等业务。为社会各界提供各种比例尺地形图、勘察数据报告以及地理信息产品。拥有建设部工程勘察综合类甲级、国家测绘局测绘甲级、国土资源部地质灾害防治工程勘查甲级、地质灾害危险性评估甲级和信息产业部计算机信息系统集成三级资质,市政设计专业乙级资质,院档案馆获科技事业档案管理国家一级证书,是以3S开发应用为主的科研单位。2000年3月通过ISO9001质量管理体系认证。
2000年9月,重庆市地理信息中心挂牌成立,2007年5月,增挂重庆市遥感中心牌子。具有甲级测绘资质、乙级城乡规划编制资质。主要承担全市地理空间信息基础设施建设和行业发展规划编制工作;负责全市地理空间信息公共服务平台建设运维,地理空间(遥感)信息收集、建库与分发,测绘定位基准、成果质检、档案管理;承担地理空间(遥感)信息应急保障工作,城乡规划地理空间信息服务、遥感监测与地理设计工作,地理空间(遥感)信息科学研究、行业标准规范制定、产品开发与推广、技术合作交流与人才培训。同时承担重庆市测绘质量监督站、重庆市规划与测绘档案馆(测绘部分)、重庆市应急救援地理信息服务队、重庆市地下管线普查办公室日常工作职责。
个人觉得重庆市勘测院更好一些,资历比地理中心强多了