当前位置:首页 » 地理信息 » 地理信息系统来源

地理信息系统来源

发布时间: 2021-01-24 09:27:49

㈠ 第一个GIS出现于哪年创始人是谁针对什么问题

第一个出现于1967年,创始人是罗杰·汤姆林森,被称为GIS之父。

当时被称为加拿大地理信息系统(CGIS ) ,用于存储,分析和利用加拿大土地统计局( CLI,使用的1:50,000比例尺,针对关于土壤、农业、休闲,野生动物、水禽、林业和土地利用的地理信息,以确定加拿大农村的土地能力。)收集的数据,并增设了等级分类因素来进行分析。

如今GIS是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述。

(1)地理信息系统来源扩展阅读:

我国GIS的发展较晚,经历了四个阶段,即起步(1970-1980)、准备(1980-1985)、发展(1985-1995)、产业化(1996以后)阶段。GIS已在许多部门和领域得到应用,并引起了政府部门的高度重视。

国内外已有城市测绘地理信息系统或测绘数据库正在运行或建设中。一批地理信息系统软件已研制开发成功,一批高等院校已设立了一些与GIS有关的专业或学科,一批专门从事GIS产业活动的高新技术产业相继成立。此外,还成立了“中国GIS协会“和“中国GPS技术应用协会“等。

㈡ 地理信息系统中的数据来源及获取方式(明天考试,急)

GIS的数据源,是指建立的地理数据库所需的各种数据的来源,主要包括地图、遥感图像、文本资料、统计资料、实测数据、多媒体数据、已有系统的数据等。
①地图
点――居民点、采样点、高程点、控制点等。
线――河流、道路、构造线等。
面――湖泊、海洋、植被等。
注记――地名注记、高程注记等。
②遥感数据
遥感数据是GIS的重要数据源。遥感数据含有丰富的资源与环境信息,在GIS支持下,可以与地质、地球物理、地球化学、地球生物、军事应用等方面的信息进行信息复合和综合分析。遥感数据是一种大面积的、动态的、近实时的数据源,遥感技术是GIS数据更新的重要手段。
③文本资料
文本资料是指各行业、各部门的有关法律文档、行业规范、技术标准、条文条例等,如边界条约等。这些也属于GIS的数据。
④统计资料
国家和军队的许多部门和机构都拥有不同领域(如人口、基础设施建设、兵要地志等)的大量统计资料,这些都是GIS的数据源,尤其是GIS属性数据的重要来源。
⑤实测数据
野外试验、实地测量等获取的数据可以通过转换直接进入GIS的地理数据库,以便于进行实时的分析和进一步的应用。GPS(全球定位系统)所获取的数据也是GIS的重要数据源。
⑥多媒体数据
多媒体数据(包括声音、录像等)通常可通过通讯口传入GIS的地理数据库中,目前其主要功能是辅助GIS的分析和查询。
⑦已有系统的数据
GIS还可以从其它已建成的信息系统和数据库中获取相应的数据。由于规范化、标准化的推广,不同系统间的数据共享和可交换性越来越强。这样就拓展了数据的可用性,增加了数据的潜在价值。

㈢ 海洋地理信息系统的由来

海洋地理信息系统的由来
随着数字地球概念的提出,“数字海洋”也随“数字地球”理念应运而生,其中数字海洋应用了遥感(RS)、地理信息系统(GIS)和全球定位系统(GPS),即3S技术,其中以用于海洋的GIS技术,就被称为MGIS。

MGIS 与 GIS比有以下三个特点:
1、具有多维数据处理能力;
2、具有多种数据源数据的集成能力和数据同化能力;
3、具有模型化、智能化和多功能性等特征。
应用范围:
1、 海岸带开发和管理
利用MGIS决策管理、分析评价和模拟预测等多项功能,可以为我国海岸带综合管理制订中长期发展规划、行业规划、土地利用规划、功能区划、海域划界等奠定了科学基础。
2、 海洋渔业
3、 海洋环境监测评价
海洋环境管理主要是利用MGIS分析评价功能和模拟预测功能,开展海岸带开发项目对社会、经济、生态环境和自然资源所产生的正面和负面影响进行定性和定量分析,从而对环境质量进行动态跟踪。
4、 海洋资源的开发与管理
利用MGIS的制图功能,可以制作海岸带各类资源分布图和开发利用图,若利用不同时期的资源开发利用图进行拓扑叠加,可以制作资源动态变化图。有了这些基本图件以及资源、环境数据,人们就掌握了某一地区海岸带各类海洋资源的分布、数量、质量、开发利用现状等全面信息,为制订海岸带资源合理开发规划提供可靠的依据。
5、 其他。例如在海洋地球物理学科方面的应用。

㈣ 地理信息系统的历史发展

古往今来,几乎人类所有活动都是发生在地球上,都与地球表面位置(即地理空间位置)息息相关,随着计算机技术的日益发展和普及,地理信息系统(Geography Information System,GIS)以及在此基础上发展起来的“数字地球”、“数字城市”在人们的生产和生活中起着越来越重要的作用。

GIS可以分为以下五部分:
人员,是GIS中最重要的组成部分。开发人员必须定义GIS中被执行的各种任务,开发处理程序。 熟练的操作人员通常可以克服GIS软件功能的不足,但是相反的情况就不成立。最好的软件也无法弥补操作人员对GIS的一无所知所带来的负作用。
数据,精确的可用的数据可以影响到查询和分析的结果。
硬件,硬件的性能影响到软件对数据的处理速度,使用是否方便及可能的输出方式。
软件,不仅包含GIS软件,还包括各种数据库,绘图、统计、影像处理及其它程序。
过程,GIS 要求明确定义,一致的方法来生成正确的可验证的结果。
GIS属于信息系统的一类,不同在于它能运作和处理地理参照数据。地理参照数据描述地球表面(包括大气层和较浅的地表下空间)空间要素的位置和属性,在GIS中的两种地理数据成分:空间数据,与空间要素几何特性有关;属性数据,提供空间要素的信息。
地理信息系统(GIS)与全球定位系统(GPS)、遥感系统(RS)合称3S系统。
地理信息系统(GIS) 是一种具有信息系统空间专业形式的数据管理系统。在严格的意义上, 这是一个具有集中、存储、操作、和显示地理参考信息的计算机系统。例如,根据在数据库中的位置对数据进行识别。实习者通常也认为整个GIS系统包括操作人员以及输入系统的数据。
地理信息系统(GIS)技术能够应用于科学调查、资源管理、财产管理、发展规划、绘图和路线规划。例如,一个地理信息系统(GIS)能使应急计划者在自然灾害的情况下较易地计算出应急反应时间,或利用GIS系统来发现那些需要保护不受污染的湿地。
地理数据和地理信息
什么是信息(Information)?1948年,美国数学家、信息论的创始人香农(Claude Elwood Shannon)在题为《通讯的数学理论》的论文中指出:“信息是用来消除随机不定性的东西”; 1948年,美国著名数学家、控制论的创始人维纳(Norbert Wiener)在《控制论》一书中,指出:“信息就是信息,既非物质,也非能量。” 狭义信息论将信息定义为“两次不定性之差”,即指人们获得信息前后对事物认识的差别;广义信息论认为,信息是指主体(人、生物或机器)与外部客体(环境、其他人、生物或机器)之间相互联系的一种形式,是主体与客体之间的一切有用的消息或知识。我们认为信息是通过某些介质向人们(或系统)提供关于现实世界新的事实的知识,它来源于数据且不随载体变化而变化,它具有客观性、实用性、传输性和共享性的特点 。
信息与数据既有区别,又有联系。数据是定性、定量描述某一目标的原始资料,包括文字、数字、符号、语言、图像、影像等,它具有可识别性、可存储性、可扩充性、可压缩性、可传递性及可转换性等特点。信息与数据是不可分离的,信息来源于数据,数据是信息的载体。数据是客观对象的表示,而信息则是数据中包含的意义,是数据的内容和解释。对数据进行处理(运算、排序、编码、分类、增强等)就是为了得到数据中包含的信息。数据包含原始事实,信息是数据处理的结果,是把数据处理成有意义的和有用的形式。
地理信息作为一种特殊的信息,它同样来源于地理数据。地理数据是各种地理特征和现象间关系的符号化表示,是指表征地理环境中要素的数量、质量、分布特征及其规律的数字、文字、图像等的总和。地理数据主要包括空间位置数据、属性特征数据及时域特征数据三个部分。空间位置数据描述地理对象所在的位置,这种位置既包括地理要素的绝对位置(如大地经纬度坐标),也包括地理要素间的相对位置关系(如空间上的相邻、包含等)。属性数据有时又称非空间数据,是描述特定地理要素特征的定性或定量指标,如公路的等级、宽度、起点、终点等。时域特征数据是记录地理数据采集或地理现象发生的时刻或时段。时域特征数据对环境模拟分析非常重要,正受到地理信息系统学界越来越多的重视。空间位置、属性及时域特征构成了地理空间分析的三大基本要素。
地理信息是地理数据中包含的意义,是关于地球表面特定位置的信息,是有关地理实体的性质、特征和运动状态的表征和一切有用的知识。作为一种特殊的信息,地理信息除具备一般信息的基本特征外,还具有区域性、空间层次性和动态性特点。
当今社会,人们非常依赖计算机以及计算机处理过的信息。在计算机时代,信息系统部分或全部由计算机系统支持,因此,计算机硬件、软件、数据和用户是信息系统的四大要素。其中,计算机硬件包括各类计算机处理及终端设备;软件是支持数据信息的采集、存贮加工、再现和回答用户问题的计算机程序系统;数据则是系统分析与处理的对象,构成系统的应用基础;用户是信息系统所服务的对象。
从20世纪中叶开始,人们就开始开发出许多计算机信息系统,这些系统采用各种技术手段来处理地理信息,它包括:
○ 数字化技术:输入地理数据,将数据转换为数字化形式的技术;
○ 存储技术:将这类信息以压缩的格式存储在磁盘、光盘、以及其他数字化存储介质上的技术;
○ 空间分析技术:对地理数据进行空间分析,完成对地理数据的检索、查询,对地理数据的长度、面积、体积等的量算,完成最佳位置的选择或最佳路径的分析以及其他许多相关任务的方法;
○ 环境预测与模拟技术:在不同的情况下,对环境的变化进行预测模拟的方法;
○ 可视化技术:用数字、图像、表格等形式显示、表达地理信息的技术。
这类系统共同的名字就是地理信息系统(GIS , Geographic Information System),它是用于采集、存储、处理、分析、检索和显示空间数据的计算机系统。与地图相比,GIS具备的先天优势是将数据的存储与数据的表达进行分离,因此基于相同的基础数据能够产生出各种不同的产品。
由于不同的部门和不同的应用目的,GIS的定义也有所不同。当前对GIS的定义一般有四种观点:即面向数据处理过程的定义、面向工具箱的定义、面向专题应用的定义和面向数据库的定义。Goodchild把GIS定义为“采集、存贮、管理、分析和显示有关地理现象信息的综合技术系统”。Burrough认为“GIS是属于从现实世界中采集、存储、提取、转换和显示空间数据的一组有力的工具”,俄罗斯学者也把GIS定义为“一种解决各种复杂的地理相关问题,以及具有内部联系的工具集合”。面向数据库是定义则是在工具箱定义的基础上,更加强调分析工具和数据库间的连接,认为GIS是空间分析方法和数据管理系统的结合。面向专题应用的定义是在面向过程定义的基础上,强调GIS所处理的数据类型,如土地利用GIS、交通GIS等;我们认为地理信息系统它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。它和其他计算系统一样包括计算机硬件、软件、数据和用户四大要素。只不过GIS中的所有数据都具有地理参照,也就是说,数据通过某个坐标系统与地球表面中的特定位置发生联系。
地理信息系统简称GIS,多数人认为是Geographical Information System(地理信息系统),也有人认为是Geo-information System(地学信息系统)等等。人们对GIS理解在不断深入,内涵在不断拓展,“GIS”中,“S”的含义包含四层意思:
一是系统(System),是从技术层面的角度论述地理信息系统,即面向区域、资源、环境等规划、管理和分析,是指处理地理数据的计算机技术系统,但更强调其对地理数据的管理和分析能力,地理信息系统从技术层面意味着帮助构建一个地理信息系统工具,如给现有地理信息系统增加新的功能或开发一个新的地理信息系统或利用现有地理信息系统工具解决一定的问题,如一个地理信息系统项目可能包括以下几个阶段:
(1)定义一个问题;
(2)获取软件或硬件;
(3)采集与获取数据;
(4)建立数据库;
(5)实施分析;
(6)解释和展示结果。
这里的地理信息系统技术(Geographic information technologies)是指收集与处理地理信息的技术,包括全球定位系统(GPS)、遥感(Remote Sensing)和GIS。从这个含义看,GIS包含两大任务,一是空间数据处理;二是GIS应用开发。
二是科学(Science),是广义上的地理信息系统,常称之为地理信息科学,是一个具有理论和技术的科学体系,意味着研究存在于GIS和其它地理信息技术后面的理论与观念(GIScience)。
三是代表着服务(Service),随着遥感等信息技术、互联网技术、计算机技术等的应用和普及,地理信息系统已经从单纯的技术型和研究型逐步向地理信息服务层面转移,如导航需要催生了导航GIS的诞生,著名的搜索引擎Google也增加了Google Earth功能,GIS成为人们日常生活中的一部分。当同时论述GIS技术、GIS科学或GIS服务时,为避免混淆,一般用GIS表示技术,GIScience或GISci表示地理信息科学,GIService或GISer表示地理信息服务。
四是研究(Studies),即GIS= Geographic Information Studies,研究有关地理信息技术引起的社会问题(societal context),如法律问题(legal context),私人或机密主题,地理信息的经济学问题等。
因此,地理信息系统(Geographic Information System,GIS)是一种专门用于采集、存储、管理、分析和表达空间数据的信息系统,它既是表达、模拟现实空间世界和进行空间数据处理分析的“工具”,也可看作是人们用于解决空间问题的“资源”,同时还是一门关于空间信息处理分析的“科学技术” 。 60年代早期,在核武器研究的推动下,计算机硬件的发展导致通用计算机“绘图”的应用。
1967年,世界上第一个真正投入应用的地理信息系统由联邦林业和农村发展部在加拿大安大略省的渥太华研发。罗杰·汤姆林森博士开发的这个系统被称为加拿大地理信息系统(CGIS ) ,用于存储,分析和利用加拿大土地统计局( CLI,使用的1:50,000比例尺,利用关于土壤、农业、休闲,野生动物、水禽、林业和土地利用的地理信息,以确定加拿大农村的土地能力。)收集的数据,并增设了等级分类因素来进行分析。
CGIS是“计算机制图”应用的改进版,它提供了覆盖,资料数字化/扫描功能。它支持一个横跨大陆的国家坐标系统,将线编码为具有真实的嵌入拓扑结构的“弧”,并在单独的文件中存储属性和区位信息。由于这一结果,汤姆林森已经成为称为“地理信息系统之父”,尤其是因为他在促进收敛地理数据的空间分析中对覆盖的应用。
CGIS一直持续到20世纪70年代才完成,但耗时太长,因此在其发展初期,不能与如Intergraph这样的销售各种商业地图应用软件的供应商竞争。CGIS一直使用到20世纪90年代,并在加拿大建立了一个庞大的数字化的土地资源数据库。它被开发为基于大型机的系统以支持一个在联邦和省的资源规划和管理。其能力是大陆范围内的复杂数据分析。CGIS未被应用于商业 。微型计算机硬件的发展使得象ESRI和CARIS那样的供应商成功地兼并了大多数的CGIS特征,并结合了对空间和属性信息的分离的第一种世代方法与对组织的属性数据的第二种世代方法入数据库结构。20世纪80年代和90年代产业成长刺激了应用了GIS的UNIX工作站和个人计算机飞速增长。至20世纪末,在各种系统中迅速增长使得其在相关的少量平台已经得到了巩固和规范。并且用户开始提出了在互联网上查看GIS数据的概念,这要求数据的格式和传输标准化。

㈤ 地理信息系统

在农用地分等中需要对地块(图斑)进行空间定位、面积测算、类型调查以及权属确认等,图件是辅助农用地分等最重要的技术手段,这些图件包括土壤图、地形图、土地利用现状图、坡度图等。这些图件如果采用手工方式绘制,操作起来费时费力,更新时也极其不方便。采用GIS技术可以轻松地完成这些工作。GIS技术在农用地分等中的应用贯穿于工作的整个过程。该工作实质上是针对农用地这一特定空间对象所做的多因素叠加综合分析,以及基于此分析的进一步数据挖掘。在农用地分等中,GIS技术主要应用在以下几个方面。

(一)数据库建设

1.数据采集、检验与编辑

主要用于获取数据,保证农用地分等工作中的数据在内容与空间上的完整性、数据值逻辑上的一致性等。而这一过程的工作量超过全部分等工作量的一半。该过程主要采用自动化扫描输入与遥感数据集成的方法,扫描后的数据进行自动化编辑与处理后成为工作的基础数据(底图)。

2.数据处理

农用地分等工作中,数据的初步处理主要包括数据格式化、转换和综合。由于各地采用的专业软件不同,在开始工作前必须对各种来源的数据进行数据格式、坐标系统和比例尺的统一,使之满足农用地分等工作的具体要求,同时为分等成果数据的共享打下基础。数据的格式化是指不同数据结构之间的转化;数据比例尺的变换涉及数据比例尺缩放、平移、旋转等方面,其中最为重要的是投影变换;数据综合包括数据平滑、特征集结等。

3.数据的存储与组织

这一部分工作在农用地分等工作中表现为空间数据与属性数据的对接,是一个数据集成的过程,也是建立分等数据库的关键步骤,涉及空间数据和属性数据的组织。在地理数据组织与管理中,最为关键的是如何将空间数据与属性数据融合为一体。采用GIS软件系统将二者分开存储,通过唯一标识码(单元编码)连接起来。

以上部分构建了分等数据库,是农用地分等工作开展的前提和基础。而在农用地分等过程中同样应用了GIS技术,主要表现为采用GIS技术的空间分析技术提取和传输空间信息。

(二)在分等计算过程及省级汇总中的应用

1.空间叠加

农用地分等中同一个图斑受多种因素(主要表现为10个分等因素,涉及土壤图、地形图、坡度图、水文图等图件叠加)覆盖,需要采用叠置分析方法,按照面积或者中心权重进行运算。通过叠置分析将同一地区、同一比例尺的数据层进行叠置,生成一个新的数据层(含有分等相关属性的图层),实现了各个图斑具有多重属性和各叠置层目标属性的统计计算。

2.缓冲分析

在因素量化的过程中大量采用了缓冲区分析方法计算确定某一因素的影响范围。将点、线、面等因素,根据各自的衰减方式计算得出缓冲区多边形,采用叠置分析的方法将分值赋予各个图斑。这是GIS重要的和基本的空间分析功能之一。

3.空间分析与计算

在实现三级分等成果的联动追溯查询中还使用了包括泰森多边形分析在内的多种分析方法,解决市级图斑与县级图斑、省级图斑与市级图斑的一对多关系。泰森多边形可用于定性分析、统计分析、邻近分析等。如用离散点的性质来描述泰森多边形区域的性质;用离散点的数据来计算泰森多边形的数据;判断一个离散点与其他离散点相邻时,可根据泰森多边形直接得出。

4.地形分析

主要是利用等高线内插生成DEM或DTM模型描述地表起伏状况,用于提取各种地形参数,如坡度、坡向等数据。

(三)在数据库管理信息系统中的应用

1.用户管理

用户管理主要指用户的添加、删除和用户属性的编辑。该程序是系统安全运行的重要保证。通过菜单或工具栏,用户可以进行关联查询,通过省或市的数据查询县级数据,或者通过市、县的数据查询该数据相对应的省、市数据;还可查询汇总图中的某个分等单元是由工作底图中的哪些分等单元综合而成。

2.综合查询

综合查询指对图形数据和属性数据的提取和显示,主要有单目标查询、多目标查询和条件查询。单目标查询指通过鼠标选择某个分等单元,以查看其所有的属性。多目标查询指由多边形框选择多个分等单元,然后在列表中查看每个分等单元的属性。条件查询指使用界面提供的SQL语句编辑工具生成一个SQL条件语句,然后根据它来查找与条件相符合的目标,并把他们突出显示。

3.空间量算

空间量算包括空间位置、长度、面积的度量和图层的管理。图层管理包括图层的添加和删除、图层的移动、图层数据的表现形式和图形信息的提示方式。

4.图形操作

对图形的操作主要指对图形的浏览,主要有缩放、漫游、全图显示、导航图的显示、分等单元的突出显示、前景色及背景色的设置以及图层的分色显示。

5.数据分析

数据分析主要指数据的统计和分析。数据可以是当前的选择集,也可以是某个图层的全部对象。选择分类的字段,如镇、自然质量等,可对选择统计的对象进行和、最大值、最小值、计数等的统计,并以表的形式表达出来。

6.文件操作

文件操作主要是外部数据的输入和输出。主要分为两个方面,即所有图层的基本信息(包括图层的名称、类型、保存的路径等)导入工作环境和各图层文件的生成。图层信息的入库通过程序代码自动录入。

㈥ 地理信息系统的数据来源

GIS(地理信息系统)的数据源有:地图数据 ,遥感数据,文本数据,统计数据,实测数据,多媒体数据和已有系统的数据。

(1)空间数据:野外数据采集和地图数字化。对于大比例尺的城市地理信息系统而言,野外数据采集可能是一个主要手段。野外数据采集的方式有平板测量、全站仪测量、GPS测量。另外,地图数字化目前仍是GIS中获取数据的主要手段。地图数字化有两种作业方式:数字化仪的手扶跟踪数字化和地图扫描数字化。

(2)属性数据:一般为字符串和数字,一般采用键盘输入,它的获取主要在于资料的收集。

地理信息系统(Geographic Information System或 Geo-Information system,GIS)有时又称为“地学信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

地理信息系统(GIS,Geographic Information System)是一门综合性学科,结合地理学与地图学以及遥感和计算机科学,已经广泛的应用在不同的领域,是用于输入、存储、查询、分析和显示地理数据的计算机系统,随着GIS的发展,也有称GIS为“地理信息科学”(Geographic Information Science),近年来,也有称GIS为"地理信息服务"(Geographic Information service)。GIS是一种基于计算机的工具,它可以对空间信息进行分析和处理(简而言之,是对地球上存在的现象和发生的事件进行成图和分析)。 GIS 技术把地图这种独特的视觉化效果和地理分析功能与一般的数据库操作(例如查询和统计分析等)集成在一起。

㈦ 地理信息系统有何用途

其基本功能抄包括对数据的采集、管理、处理、分析和输出。同时,地理信息系统依托这些基本功能,通过利用空间分析技术、模型分析技术、网络技术和数据库集成技术等,更进一步演绎丰富相关功能,满足社会和用户的广泛需要。

从总体上看,地理信息系统的功能可分为:数据采集与编辑、数据处理与存储管理、图形显示、空间查询与分析以及地图制作。

(7)地理信息系统来源扩展阅读

所需要的知识能力:

1、掌握数学、物理、计算机科学等方面的基本理论和基本知识;

2、掌握地理信息系统和地图学的基本理论、基本知识和基本实验技能,以及地理信息系统技术开发的基本原理和基本力法;

3、了解相邻专业如地理学、资源环境与城乡规划管理、测绘工程等的一般原理和方法;

4、了解国家科学技术政策、知识产权、可持续发展战略等有关政策和法规;

5、了解地理信息系统的理论前沿、应用前景和最新发展动态,以及地理信息系统产业发展状况;

6、掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有-定的实验设计、创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

㈧ 地理信息系统的数据来源

GIS(地理信息系统)的数据源有:地图数据 ,遥感数据,文本数据,统计数据,实测数据,多媒体数据和已有系统的数据。 (1)空间数据:野外数据采集和地图数字化。对于大比例尺的城市地理信息系统而言,野外数据采集可能是一个主要手段。野外数地理信息系统的数据来源

㈨ gis中地理数据的来源有哪些

图形数据的输入主要是依靠导入测量数据,屏幕跟踪数字化,以及转回换其他非本系统图形格式数据等答方式得到。大型GIS平台软件都带有数据格式转换接口,即可以从其他库转换得到。而属性数据的输入的方法主要有: (1)手工输入方法;(2)交互输入方法;(3)根据关键字进行属性连接的方法。4)基于空间位置的属性数据连接方法。显然后两种方法适用于批量的数据录入。
选自本人尚未见刊的论文节选,请勿转载。

㈩ 地理空间数据的来源

GIS是世界上独一无二的一种数据库――空间数据库(Geodatabase)。它是一个“用于地理的信息系统”。从根本上说,GIS是基于一种使用地理术语来描述世界的结构化数据库。

这里我们来回顾一些在空间数据库中重要的基本原理。

· 地理表现形式

作为GIS空间数据库设计工作的一部分,用户要指定要素该如何合理的表现。例如,地块通常用多边形来表达,街道在地图中是中心线(centerline)的形式,水井表现为点等等。这些要素会组成要素类,每个要素类都有共同的地理表现形式。

每个GIS数据集都提供了对世界某一方面的空间表达,包括:

· 基于矢量的要素(点、线和多边形)的有序集合

诸如数字高程模型和影像的栅格数据集

网络

地形和其它地表

测量数据集

其他类型数据,诸如地址、地名和制图信息

描述性的属性
除了地理表现形式以外,地理数据集还包括传统的描述地理对象的属性表。许多表和空间对象之间可以通过它们所共有的字段(也常称为“关键字”)相互关联。就像它们在传统数据库应用中一样,这些以表的形式存在的信息集和信息关系在GIS数据模型中扮演着非常关键的角色。

空间关系:拓扑和网络
空间关系,比如拓扑和网络,也是一个GIS数据库的重要部分。使用拓扑是为了管理要素间的共同边界、定义和维护数据的一致性法则,以及支持拓扑查询和漫游(比如,确定要素的邻接性和连接性)。拓扑也用于支持复杂的编辑,和从非结构化的几何图形来构建要素(例如,用线来构建多边形)。

地理要素共享几何形状。可以使用节点、边、面的关系来描述要素的几何形状

在这个网络示例中,街道要素代表连接它们的端点(称为“连接”)的边。
转向模型可用于控制从一边到另一边的通行能力

· 专题图层与数据集

GIS将空间数据组织成一系列的专题图层和表格。由于GIS中的空间数据集具有地理参考,因此它们具有现实世界的位置信息并互相叠加。

GIS集成了多种类型的空间数据
在一个GIS中,同类型的地理对象集合被组织成图层,例如地块、水井、建筑物、正射影像以及基于栅格的数字高程模型(DEM)。明确定义的地理数据集对于一个实用的地理信息系统是相当重要的,同时专题信息集合使用层来组织,这样的思想也是GIS数据集一个关键的思想。

数据集可以用于表达:

原始量测值(例如卫星影像)
经过解译的信息 l 通过空间分析和建模处理而得来的数据
通过层之间共同的地理位置,我们可以很容易地得到多个层之间的空间关系。

GIS使用普通的对象类来管理这些简单的图层,同时凭借一套功能丰富的工具获取数据层之间的关键联系。

GIS会使用通常是来自不同组织机构,并且具有各种表现方式的大量数据集。因此对于GIS数据集很重要的是:

· 使用简单并易于理解
· 易于同其他的地理数据集结合使用
· 能够被有效地编辑与校验
· 能够形成具有内容详实,使用和目标描述明确的清晰文档
任何的GIS数据库或者用基于文件的数据组织方式都遵循这些共同的原则与概念。每个GIS都需要有一个机制依据这些原则来描述地理数据,并且通过一套综合的工具来使用和管理此信息。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864