国家地理哈勃太空望远镜
㈠ 为什么哈勃太空天文望远镜拍出来的星空是五彩缤纷的我们的普通望远镜却不行
首先哈勃太来空望远镜的口径比我自们爱好者用的要大得多,而口径就决定了通光量,而且一个最主要的因素是:大气层中的大气湍流与散射,以及会吸收紫外线的臭氧层,这些因素都限定了地面上望远镜做进一步的观测。太空望远镜的出现使天文学家成功地摆脱地面条件的限制,并获得更加清晰与更广泛波段的观测图像。 在轨道上环绕着地球的望远镜。它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。而且哈勃拍摄的照片还会经过专业计算机的色彩处理,所以啊,我们拍的和专业的差很远啊
㈡ 哈勃天文望远镜为什么能看那么远 为什么
哈勃太空望远镜是在地球大气层外运行的一台天文望远镜,它的工作原理与现代光学天文望远镜的原理是一样的,都是通过镜头,接收来自远处的光信号,转化成电信号后储存的存储器内,再转换成图像。我们知道,要拍摄到远处的图像,一是要求光信号要足够强,二是信号源要稳定。哈勃太空望远镜能够拍摄到清晰的深空图像,主要有两个原因。一是它是在大气层外工作,影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,因而图像非常清晰,不会有地面望远镜拍摄像片时无法避免的光源扩散现象。二是不论是拍摄还是图像的多次传送和转换,都是用数字化信号,避免了电信号的衰减和失真。因此,图像的清晰度比地面上所有的光学天文望远镜都要好。至于哈勃太空望远镜为什么能够“看”得那么深远,原因还是不受大气层的影响。在没有大气层影响时,哈勃太空望远镜的镜头能够长时间定位于某一片空间,接收并积累远处的光信号,直到形成足够亮度的图像。在地面上,虽然也可以长时间定位曝光,但由于大气湍流扰动和光线通过大气层时的衰减,光源太弱时,地面天文望远镜是无法拍摄到清晰的深空图像的。勉强拍摄,也只是一片光斑,看不清细节。而在真空环境中,光线再弱,也不会有散射、折射和衰减,理论上可以用无限长的曝光时间,拍摄到无限远处天体的影像。所以虽然哈勃太空望远镜的镜头口径只有6.5米,比不上地面天文望远镜的镜头口径,但拍摄效果却是再大的地面天文望远镜也无法达到的。
㈢ 为什么哈勃太空望远镜可以看到137亿光年以外的空间
由NASA的喷射推进实验室制造,附有一套由48片光学滤镜组成,可以筛选特殊的波段进行天体物理学的观察。整套仪器使用8片CCD,做出了两架照相机,每一架使用4片CCD。"广域照相机"因为视野较广,在解像力上有所损失,而"行星照相机"以比WFC长的焦距成像,所以有较高的放大率。
它位于地球大气层之上,因此获得了地基望远镜所没有的好处:影像不受大气湍流的扰动、视相度绝佳,且无大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。于1990年发射之后,已经成为天文史上最重要的仪器。它成功弥补了地面观测的不足,帮助天文学家解决了许多天文学上的基本问题,使得人类对天文物理有更多的认识。此外,哈勃的超深空视场则是天文学家目前能获得的最深入、也是最敏锐的太空光学影像。
㈣ 哈勃太空望远镜;哈勃空间望远镜;哈勃天文望远镜
哈勃空间望远镜科技名词定义
中文名称:哈勃空间望远镜 英文名称:Hubble space telescope;HST 定义:年4月24日发射的,设置在地球轨道上的,通光口径2.4m的反射式天文望远镜。用于从紫外到近红外(115—1 010nm) 探测宇宙目标。配备有光谱仪及高速光度计等多种附属设备。由高增益天线通过中继卫星与地面联系。计划工作15年。为纪念E.P.Hubble而得名。 应用学科:天文学(一级学科);天文仪器(二级学科) 本内容由全国科学技术名词审定委员会审定公布
哈勃望远镜哈勃空间望远镜(Hubble Space Telescope,缩写为HST),是以天文学家爱德温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕着地球的望远镜。它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。于1990年发射之后,已经成为天文史上最重要的仪器。它已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识。哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像。
大气层中的大气湍流与散射,以及会吸收紫外线的臭氧层,这些因素都限定了地面上望远镜做进一步的观测。太空望远镜的出现使天文学家成功地摆脱地面条件的限制,并获得更加清晰与更广泛波段的观测图像。 空间望远镜的概念最早出现上个世纪40年代,但一直到上个世纪90年代,哈勃空间望远镜才正式发射升空,并观测迄今。 哈勃空间望远镜属于美国航空航天局(NASA)与欧洲航天局(ESA)哈勃望远镜的太空图
的合作项目,其主要目标是建立一个能长期在太空中进行观测的轨道天文台。它的名字来源于美国著名天文学家埃德温·哈勃。 1990年4月25日,由美国航天飞机送上太空轨道的 “哈勃”望远镜长13.3米,直径4.3米,重11.6吨,造价近30亿美元。它以2.8万公里的时速沿太空轨道运行,清晰度是地面天文望远镜的10倍以上。同时,由于没有大气湍流的干扰,它所获得的图像和光谱具有极高的稳定性和可重复性。 哈勃望远镜帮助科学家对宇宙的研究有了更深的了解。然而,由于美国航空航天局将哈勃SM4确定为最后一次维修任务,因此,哈勃的退役在即,而它新的继任者詹姆斯·韦伯太空望远镜(JWST)将发射升空,并逐步接替哈勃太空望远镜的工作。
编辑本段发展历史
规划设计和准备工作
空间望远镜之父莱曼·斯必泽。 哈勃空间望远镜的历史可以追溯至1946年天文学家莱曼·斯必泽(Lyman Spitzer, Jr.)所提出的论文:《在地球之外的天文观测优势》。在文中,他指出在太空中的天文台有两项优于地面天文台的性能。首先,角分辨率(物体能被清楚分辨的最小分离角度)的极限将只受限于衍射,而不是由造成星光闪烁、动荡不安的大气所造成的视象度。在当时,以地面为基地的望远镜解析力只有0.5-1.0弧秒,相较下,只要口径2.5米的望远镜就能达到理论上衍射的极限值0.1弧秒。其次,在太空中的望远镜可以观测被大气层吸收殆尽的红外线和紫外线。 斯必泽以空间望远镜为事业,致力于空间望远镜的推展。在1962年,美国国家科学院在一份报告中推荐空间望远镜做为发展太空计划的一部分,在1965年,斯必泽被任命为一个科学委员会的主任委员,该委员会的目的就是建造一架空间望远镜。 在第二次世界大战时,科学家利用发展火箭技术的同时,曾经小规模的尝试过以太空为基地的天文学。在1946年,首度观察到了太阳的紫外线光谱。英国在1962年发射了太阳望远镜放置在轨道上,做为亚利安太空计划的一部分。1966年NASA进行了第一个轨道天文台(OAO)任务,但第一个OAO的电池在三天后就失效,中止了这项任务了。第二个OAO在1968至1972年对恒星和星系进行了紫外线的观测,比原先的计划多工作了一年的时间。 轨道天文台任务展示了以太空为基地的天文台在天文学上扮演的重要角色,因此在1968年NASA确定了在太空中建造直径3米反射望远镜的计划,当时暂时的名称是大型轨道望远镜或大型空间望远镜(LST),预计在1979年发射。这个计划强调须要有人进入太空进行维护,才能确保这个所费不贷的计划能够延续够长的工作时间;并且同步发展可以重复使用的航天飞机技术,才能使前项计划成为可行的计划。
资金需求
轨道天文台计划的成功,鼓舞了越来越强的公众舆论支持,大型空间望远镜应该是天文学领域内重要的目标。在1970年NASA设立了两个委员会,一个规划空间望远镜的工程,另一个研究空间望远镜任务的科学目标。在这之后,NASA下一个需要排除的障碍就是资金的问题,因为这比任何一个地面上的天文台所耗费的资金都要庞大许多倍。美国的国会对空间望远镜的预算需求提出了许多的质疑,为了与裁军所需要的预算对抗,当时就详细的列出了望远镜的硬件需求以及后续发展所需要的仪器。在1974年,在裁减政府开支的鼓动下,杰拉尔德·福特剔除了所有进行空间望远镜的预算。 在康涅狄格州丹柏立的Perkin-Elmer公司抛光中的哈勃主镜 为回应此,天文学家协调了全国性的游说努力。许多天文学家亲自前往拜会众议员和参议员,并且进行了大规模的信件和文字宣传。国家科学院出版的报告也强调空间望远镜的重要性,最后参议院决议恢复原先被国会删除的一半预算。 资金的缩减导致目标项目的减少,镜片的口径也由3米缩为2.4米,以降低成本和更有效与紧密的配置望远镜的硬件。原先计划做为先期测试,放置在卫星上的1.5米空间望远镜也被取消了,对预算表示关切的欧洲航天局也成为共同合作的伙伴。欧洲航天局同意提供经费和一些望远镜上需要的仪器,像是做为动力来源的太阳能电池,回馈的是欧洲的天文学家可以使用不少于15%的望远镜观测时间。在1978年,美国国会拨付了36,000,000C元美金,让大型空间望远镜开始设计,并计划在1983年发射升空。在1980年初,望远镜被命为哈勃,以纪念在20世纪初期发现宇宙膨胀的天文学家艾德温·哈勃。
设计与制造
空间望远镜的计划一经批准,计划就被分割成许多子计划分送各机关执行。马歇尔太空飞行中心(MSFC)负责设计、发展和建造望远镜,金石太空飞行中心(GSFC)负责科学仪器的整体控制和地面的任务控制中心。马歇尔太空飞行中心委托珀金埃尔默设计和制造空间望远镜的光学组件,还有精密定位传感器(FGS),洛克希德被委托建造安装望远镜的太空船。
光学望远镜的组合安装(OTA)
望远镜的镜子和光学系统是最关键的部分,因此在设计上有很严格的规范。一般的望远镜,镜子在抛光之后的准确性大约是可见光波长的十分之一,但是因为空间望远镜观测的范围是从紫外线到近红外线,所以需要比以前的望远镜更高十倍的解析力,它的镜子在抛光后的准确性达到可见光波长的二分之一,也就是大约30纳米。 珀金埃尔默刻意使用极端复杂的电脑控制抛光机研磨镜子,但却在最尖端的技术上出了问题;柯达被委托使用传统的抛光技术制做一个备用的镜子(柯达的这面镜子现在永久保存在史密松宁学会))。1979年,珀金埃尔默开始磨制镜片,使用的是超低膨胀玻璃,为了将镜子的重量降至最低,采用蜂窝格子,只有表面和底面各一吋是厚实的玻璃。 镜子的抛光从1979年开始持续到1981年5月,抛光的进度已经落后并且超过了预算,这时NASA的报告才开始对珀金埃尔默的管理结构质疑。为了节约经费,NASA停止支援镜片的制作,并且将发射日期延后至1984年10月。镜片在1981年底全部完成,并且镀上了75nm厚的铝增强反射,和25 nm厚的镁氟保护层。 因为在光学望远镜组合上的预算持续膨胀,进度也落后的情况下,对珀金埃尔默能否胜任后续工作的质疑继续存在。为了回应被描述成“未定案和善变的日报表”,NASA将发射的日期再延至1985年的4月。但是,珀金埃尔默的进度持续的每季增加一个月的速率恶化中,时间上的延迟也达到每个工作天都在持续落后中。NASA被迫延后发射日期,先延至1986年3月,然后又延至1986年9月。这时整个计划的总花费已经高达美金11亿7500万。
太空平台系统
安置望远镜和仪器的太空船是主要工程上的另一个挑战。它必须能胜任与抵挡在阳光与地球的阴影之间频繁进出所造成的温度变化,还要极端的稳定并能长间的将望远镜精确的对准目标。以多层绝缘材料制成的遮蔽物能使望远镜内部的温度保持稳定,并且以轻质的铝壳包围住望远镜和仪器的支架。在外壳之内,石墨环氧的框架将校准好的工作仪器牢固的固定住。 有一段时间用于安置仪器和望远镜的太空船在建造上比光学望远镜的组合来得顺利,但洛克希德仍然经历了预算不足和进度的落后,在1985年的夏天之前,太空船的进度落后了个月,而预算超出了30%。马歇尔太空飞行中心的报告认为洛克希德在太空船的建造上没有采取主动,而且过度依赖NASA的指导。
1980年,建造中的哈勃望远镜。在1983年,空间望远镜科学协会(STScI)在经历NASA与科学界之间的权力争夺后成立。空间望远镜科学协会隶属于美国大学天文研究联盟 (AURA),这是由32个美国大学和7个国际会员组成的单位,总部坐落在马里兰州巴尔地摩的约翰·霍普金斯大学校园内。空间望远镜科学协会负责空间望远镜的操作和将数据交付给天文学家。美国国家航空航天局(NASA)想将之做为内部的组织,但是科学家依据科学界的做法将之规划创立成研究单位,由NASA位在马里兰州绿堤,空间望远镜科学协会南方48公里,的哥达德太空飞行中心和承包厂商提供工程上的支援。哈勃望远镜每天24小时不间断的运作,由四个工作团队轮流负责操作。 空间望远镜欧洲协调机构于1984年设立在德国邻近慕尼黑的Garching bei München,为欧洲的天文学家提供相似的支援。
仪器
携带哈伯空间望远镜进入轨道的航天飞机升空。在发射时,哈勃空间望远镜携带的仪器如下:广域和行星照相机(WF/PC)戈达德高解析摄谱仪(GHRS)高速光度计(HSP)) 暗天体照相机(FOC) 暗天体摄谱仪(FOS) WF/PC原先计划是光学观测使用的高分辨率照相机。由NASA的喷射推进实验室制造,附有一套由48片光学滤镜组成,可以筛选特殊的波段进行天体物理学的观察。整套仪器使用8片CCD,做出了两架照相机,每一架使用4片CCD。"广域照相机"(WFC)因为视野较广,在解像力上有所损失,而"行星照相机"(PC)以比WFC长的焦距成像,所以有较高的放大率。 GHRS是被设计在紫外线波段使用的摄谱仪,由哥达德太空中心制造,可以达到90,000的光谱分辨率,同时也为FOC和FOS选择适宜观测的目标。FOC和FOS都是哈勃空间望远镜上分辨率最高的仪器。这三个仪器都舍弃了CCD,使用数位光子计数器做为检测装置。FOC是由欧洲航天局制造, FOS 则由Martin Marietta公司制造。 最后一件仪器是由威斯康辛麦迪逊大学设计制造的HSP,它用于在可见光和紫外光的波段上观测变星,和其他被筛选出的天体在亮度上的变化。它的光度计每秒钟可以侦测100,000次,精确度至少可以达到2%。 哈勃空间望远镜的导引系统也可以做为科学仪器,它的三个精细导星传感器(FGS)在观测期间主要用于保持望远镜指向的准确性, 但也能用于进行非常准确的天体测量,测量的精确度达到 0.0003弧秒。用于光学观测的高分辨率照相机。由NASA的喷射推进实验室制造,附有48片光学滤镜,可以通过筛选特殊的波段进行天体物理学的观察。 广域照相机(WFC)视野较广,因此在解像能力上有所不足,但可对光度微弱的天体进行全景观测。而行星照相机每个画素的解析力为0.043弧秒,可以与广域照相机互补,用于高分辨率的观测。 在1993年12月STS-61的维修任务中,广域和行星照相机被新的第二代替换,为了避免混淆,通常WFPC就是第一代的广域和行星照相机,新机称为WFPC-2。 WFPC-2本身也将在第四次维修任务中被在1997年开始研发的WFC-3替换。
戈达德高解析摄谱仪
戈达德高解析摄谱仪是被用于紫外线波段的摄谱仪,由戈达德太空中心制造,可以达到90,000的光谱分辨率。它舍弃了CCD,使用数位光子计数器作为检测装置。在1997年2月的哈柏维护任务中被太空望远镜影像摄谱仪(STIS)取代。
高速光度计
高速光度计能够快速的测量天体的光度变化和偏极性。它可以每10微秒在紫外线、可见光和近红外线的波段上测量一次光度,因此用于在可见光和紫外线波段上观测变星,精确度至少可以达到2%。 高速光度计因为主镜的光学问题,自升空以来一直未能成功使用。1993年12月,在第一次的哈勃维护任务中,它被用于矫正其他仪器的光学问题的太空望远镜光轴补偿校正光学(COSTAR)替换掉。
暗天体照相机
暗天体照相机的观测波段在115至650纳米,它在2002年被先进巡天照相机(ACS)取代。
暗天体摄谱仪
暗天体摄谱仪是观测波长在1150至8500埃的摄谱仪。在1997年第二次哈勃维护任务中被太空望远镜影像摄谱仪(STIS)取代。
㈤ 美国的哈勃太空天文望远镜花了多少钱
是以天文抄学家哈勃为名,在轨道袭上环绕著地球的望远镜.他的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处——影像不会受到大气湍流的扰动,视宁度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线.于1990年发射之后,已经成为天文史上最重要的仪器.他已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识.哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像.
㈥ 哈勃太空望远镜拍摄出了上帝之城,这是真的吗
假的。人们一直没有停过对宇宙的探索,但是似乎也不曾揭开广大宇宙的奥秘。就比如说,哈勃望远镜在很多年前拍摄到的照片,被人们形象地称为“上帝之城”,因为从照片中显示的,在一个星系的中心,有一块发光的区域,随之把这块区域放大后出现了一些比较奇异的图像,这些发光的点围成了规则的矩形,无异于我国古代的城市布局,所以名字因此而来。
再说一点,也有利用“上帝之城”进行过分宣传的,甚至把其ps成了金光闪闪的宫殿和宣传高级文明等等,虽说对于浩瀚的宇宙而言,人类不过如尘埃一样渺小,但是可以肯定的是没有神话故事中的人物,也不会存在神话故事中的宫殿,不过我还是觉得,在科技探索技术达到一定的高度之后,可能会有更多的发现。
㈦ 用哈勃太空望远镜所捕捉到的神奇影像,看完哪些后让人不寒而栗
我们大家都非常明白的,如果你有太空望远镜的话,可以看到很多我们用肉眼看不到的东西,这也是我们大家都觉得非常不错的一个事情得了。但是没有想到了,就是说用哈勃望远镜进行相关查看的时候,却让很多的一个人们都感觉到非常的害怕。那么就是说的就是这一个望远镜捕捉到了一个相关的一个神奇的一个景象,而这是一个景象之中,很有可能是让人们觉得是非常的一个不错的事情。
所以根据现在这样一个总体那个结果上我们可以了解到就是非常的不错,不然也就不会发生这样的一个事情和这样一个解决措施的了。所以在面对这样的一个望远镜的过程中,科学人员正在进一步的一个调查的过程之中,也希望能够给我们带来一个相关不一样的一个措施。而这些成分大家能够去进行一个理解和明白的一个事情了。但是我们还是需要进行一个想象的就是说现在在宇宙这一个范围之内还是一个非常热闹,所以说发生什么样的一个事情也是我们所难以进行一个相应的一个预料到了。
㈧ 1993年12月26日,美国航天局的哈勃太空望远镜拍摄到的“天国世界
美国宇航员维修过哈勃太空望远镜之后,短短几天就出现奇迹,
望远镜1993年12月26日拍摄到宇宙中璀璨的天国世界!
这里有一个美国科学家看到天国世界的图片,这个图片拍摄于1993年12月26日,是哈勃太空望远镜传回美国马里兰州格林贝尔特的戈达德太空飞行中心的,到了2009年11月才被女研究员梅森博士揭示出来,离发现已经过去整整16年。
图片上,在茫茫的夜空当中,有一大片璀璨无比的城市,绝对是城市,这简直就是现实生活中的神话故事!
女研究员梅森博士引述美国航天局内部专家的话,表示那片城市绝对是天国,「因为就我们所知,人体生命是不可能存在于一个冰冷的、没有空气的太空中。」
「就是它,它就是我们一直在等待的证据!」相信有神存在的梅森博士兴奋的说。
美国航天局的专家证实,此图片引起美国前总统克林顿和副总统戈尔的兴趣,他们要求每日提出简报。
梅森博士说,哈勃太空望远镜的目的是为拍摄远在宇宙边缘的图像,但16年前镜头一度发生故障,直到有宇航员奉令去将它修复。修复完成后,该望远镜传回的第一张图片是千变万化的色彩和亮光。当调整聚焦后,传回的图片出现了天国城市,美国航天局分析家惊呆了,他们都不敢相信自己的眼睛,原来那些千变万化的色彩和亮光来自于神的世界。
「经过检查和再检查,他们的结论是『图像是真的』。他们还推论,那个城市不可能是由我们已知的生命在居住。」梅森博士说,「我们发现的是上帝居住的地方!」
1993年,美国航天局曾按教皇约翰-保罗二世(2005年去世)的要求,将照片传给他。由于美国航天局拒绝对12月26日的照片报导作出评论,所以梵蒂冈方面低调处理,保持沉默。但航天局专家们承认,美国航天局已发现到一些有可能改变未来全人类思维和信仰的东西了。
获得航天局那一张照片副本的梅森博士认为拍摄到神的世界决不是偶然的,她说:「歪打正着,超级好运之下,美国航天局哈勃望远镜瞄准了特定的地点、在特定的时间里,拍摄到了这些照片。我没有特定的宗教信仰,但是我并不怀疑是有某人或某事在影响着,让哈勃望远镜对准了某一个特定的太空位置。」
随后,她更明确阐述自己的观点:「某人或某事是指上帝自己吗?宇宙那么广阔,所有地方都是美国航天局可以拍摄探索的对象,为何会偏偏选中那里呢?肯定是有生命操控这件事情。」
前苏联有录音有人证发现了地狱,美国航天局有图片发现了能改变未来全人类思维和信仰的天国。
㈨ 为什么哈勃太空望远镜拍摄的图像,比地球上的望远镜拍摄的清晰
是以天文复学家哈勃为名,制在轨道上环绕著地球的望远镜。他的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处——影像不会受到大气湍流的扰动,视宁度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。于1990年发射之后,已经成为天文史上最重要的仪器。他已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识。哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像。
㈩ 哈勃太空望远镜能看到什么
宇宙,一个神秘而又陌生的空间,千百年来,人类对宇宙一直充满着无限的遐想。随着科学的进步,我们开始认识到了宇宙的真正样貌。
回望哈勃望远镜拍摄的著名宇宙图片还有很多,就不一一诉说了,但这不经让我们想到,地球是如此渺小,宇宙有多么浩瀚!